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Abstract
With modern automated microscopes and digital cameras, pathologists no longer have 
to examine samples looking through microscope binoculars. Instead, the slide is digitized 
to an image, which can then be examined on a screen. This creates the possibility for 
computers to analyze the image. In this work, a fully automated approach to region of 
interest (ROI) segmentation in prostate biopsy images is proposed. This will allow the 
pathologists to focus on the most important areas of the image. The method proposed 
is based on level-set and mean filtering techniques for lumen centered expansion and 
cell density localization respectively. The novelty of the technique lies in the ability to 
detect complete ROIs, where a ROI is composed by the conjunction of three different 
structures, that is, lumen, cytoplasm, and cells, as well as regions with a high density of cells. 
The method is capable of dealing with full biopsies digitized at different magnifications. In 
this paper, results are shown with a set of 100 H and E slides, digitized at 5×, and ranging 
from 12 MB to 500 MB. The tests carried out show an average specificity above 99% 
across the board and average sensitivities of 95% and 80%, respectively, for the lumen 
centered expansion and cell density localization. The algorithms were also tested with 
images at 10× magnification (up to 1228 MB) obtaining similar results. 
Key words: Histological segmentation, level set, mean filtering, prostate cancer, whole-
slide imaging
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INTRODUCTION

Prostate cancer is currently the most common cancer 
type among men in the United States.[1] Screening 
protocols aimed at cancer prognosis include digital rectal 
examinations (DRE), prostate-specific antigen (PSA) 
measurements, and in vivo imaging techniques (CT, MRI, 
or ultrasound). However, these tests allow the pathologists 
to know that there is a reason to be suspicious, rather 
than the actual cause of the problem, so if the doctor 
finds any irregularity in these examinations, he usually 

requires the patient to undergo a biopsy in order to 
make an accurate diagnosis. Early detection is essential 
to overcome the disease, but a third of the affected 
patients present a highly developed scenario when they 
are initially diagnosed.[2]

Once the biopsy is performed, tissue samples are stained 
with some biomarker, usually Hematoxilyn-Eosin (H&E), 
and placed onto a transparent slide. Then, doctors place 
that slide under a microscope and examine it looking for 
suspicious areas, gradually increasing the level of detail 
(changing the objective to obtain higher magnification) 
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if they find any clue of cancer. Samples are classified 
using the Gleason Score,[3] which quantifies both 
cancer spreading grade and its aggressiveness from 1 to 
5. Robotic microscopes equipped with digital cameras, 
along with whole slide imaging (WSI) methods, allow 
pathologists to watch the sample on a screen rather than 
using a microscope directly,[4] and also provide the starting 
point for computer-based biopsy processing, providing a 
complete toolkit for computer-aided diagnosis (CAD).

One of the problems working with WSI is the image size, 
which usually takes several gigabytes depending on the 
magnification of the objective used in the digitization 
process. Despite fast improvement in image processing 
techniques, there are few software tools that are able to 
analyze prostate biopsy images in a fully automated way, 
in order to find ROI in those images.

In recent years, there have been several studies that focus 
on H&E prostate biopsy image processing. However, these 
systems are focused on the extraction of descriptors that 
may be useful for automatic tissue classification, rather 
than in ROI segmentation. Jafari-Khouzani et al.[5] used 
an algorithm that calculates multiwavelet coefficients 
from 100× magnification images, and then computes 
energy and entropy from them, using those values for 
image classification into grades 2-5 of the Gleason Score.

Farjam et al.[2,6] aim at malignancy detection in the same 
type of images. They first preprocess images using wavelets 
or simply transforming them into grayscale images. 
Texture features are extracted from the preprocessed 
images and clustered using a K-means algorithm. Doyle 
et al.[7,8] have developed a classification system that is 
able to differentiate between 40× magnification images 
of benign epithelium, benign stroma, Gleason grade 
3, and Gleason grade 4. They use first and second 
order statistics, as well as wavelet features, and support 
vector machines (SVM) for classification. Recently, 
they have improved their system to use multiresolution 
classification.[9] Other novel classification methods use 
fractal dimension to perform Gleason classification.[10] 

Naik et al.[11-13] have worked on the integration of high-
level a-priori information (such as size and structure of 
the glands) with the image features computed. Using this 
approach, they are able to detect and accurately segment 
glands in H&E images using Bayesian probability and 
level sets. Their system is also able to differentiate images 
of benign tissue, Gleason grade 3, and Gleason grade 4. 
Xu et al. also propose a way to improve robustness of level 
set segmentation which is suitable for histopathological 
images.[14]

Hafiane et al.[15,16] perform prostate biopsy segmentation 
using a variation of fuzzy C-means that includes a 
spatial constraint to the traditional clustering to initially 
classify the image pixels into four classes (two classes for 
epithelial nuclei, one for lumen, and one for cytoplasm). 

Then, multiphase vector-based level sets are used to 
refine the initial segmentation. Their main aim is the 
correct segmentation of nuclei, and they obtain an 85% 
accuracy versus manual segmentation.

There are two key differences between our method 
presented here and the previous ones. First, none of the 
systems uses complete mosaics but rather fragments of 
them (with the exception of Ref.[9]), and they were tested 
with high magnification (up to 100×) images, which 
are slow to acquire and extremely large to be processed 
without a dedicated cluster. Our proposed algorithm 
works with images acquired with low magnification (5×, 
10×), and thus requires much lower computational 
resources. Second, the previous algorithms aim at the 
segmentation of the different structures within the 
images, that is, lumen, cytoplasm, and nuclei, whereas 
our method, presented here, is aimed at separating ROIs 
from non interesting areas.

The method that will be described here is able to work 
with mosaics created at different magnification. Here, 
the method is illustrated with image digitized at 5× 
magnification, whose typical sizes take from 12 up to 500 
MB. The aim of this system is the segmentation of ROI 
from these images in a way that mimics the method used 
by the doctors, that is, identifying at low magnification 
the regions with high concentration of cells or where 
the architectural distribution between lumen and cells 
is relevant. Thus, in order to fulfill the criteria used by 
pathologists to identify ROIs, two techniques have been 
implemented. The methods are called Lumen Centered 
Expansion and Cell Density Localization, and they are based 
on level-set segmentation and mean filtering respectively.

Methods and materials used are detailed in section 2. 
Experimental work carried out so far, as well as discussion 
and future work, is presented in sections 3 and 4 respectively.

MATERIALS AND METHODS

The images that we are working with were digitized 
using an ALIAS II motorized microscope from LifeSpan 
Biosciences Inc. This microscope acquires tiles with a size 
of 2000×2000 pixels and 24 bits per pixel (RGB). These 
tiles are stored in an uncompressed RAW file, with no 
header, and planar format (first part of the file is used 
to store the red channel, second one to store the green 
channel, and last part to store blue channel). Each tile 
requires 11.4 MB. The ALIAS microscope is equipped 
with five different objectives, whose magnifications are 
2.5×, 5×, 10×, 20×, and 40×. Although the method is 
magnification independent, in this work the results are 
provided on samples digitized at 5× magnification.

The slides have been provided by the Anatomic Pathology 
Department of the Hospital General Universitario de 
Ciudad Real (HGUCR). This group of pathologists has 
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also specified for us the most relevant features that should 
be considered when analyzing prostate biopsies at these 
magnifications, such as minimum size of relevant regions, 
or their architectural distribution. H and E stained 
prostate biopsies have three types of well-differentiated 
structures of interest: lumen, cytoplasm, and cells 
[Figure 1]. Apart from those, crystals or necrosed areas 
might as well appear. Furthermore, if the biopsied tissue 
is not perfectly extracted and placed onto the slide, folded 
tissue and/or tissue cuts are likely to be present.

For pathological purposes, the most relevant structures are 
cells.[17] Their density, morphology, distribution between 
them, and relationship with lumen and cytoplasm are 
the most relevant features that pathologists consider to 
elaborate a diagnosis. Thus, groups of cells are especially 
important, and they may appear either surrounding a 
lumen area, or packed very closely in isolated clusters.

As mentioned above, the method takes into account 
the pathologists criteria. The technique is able to 
detect complete ROIs, where a ROI is composed by the 
conjunction of three different structures, that is, lumen, 
cytoplasm, and cells. Therefore, we focus on the following: 
(a) Regions where the three structures of interest appear 
concentrically: lumen is surrounded by cytoplasm, which 
is surrounded by cells. It is not rare that the last two 
structures appear mixed. (b) Regions where several cells 
lie together. The concentric regions are detected using 
our novel Lumen Centered Expansion approach, while the 
latter are detected using another novel approach, which 
we term Cell Density Localization. 

In the first case, since there are three different 
structures of interest, we have developed our algorithm 
to sequentially segment each type of structure. First of 
all, potential lumen areas are segmented. Then, for each 
of them, two different level sets are used to segment 
cytoplasm and cells. Finally, the outputs of all three steps 
are merged into one single ROI. 

These techniques are described as follows.

Lumen centered expansion
Although H and E images are typically digitized using 
RGB format, this approach only uses the green channel 
of the original RGB image. As shown in Figure 2b, the 
green channel provides better contrast between the 
lumen areas and the other types of structures of interest 
than either the red [Figure 2a] or the blue [Figure 2c] 
channels. This decision is also aimed at lowering the 

Figure 1: Examples of structures of interest: lumen (1), cytoplasm 
(2), and cells (3) Figure 2: (a) Red; (b) Green; (c) Blue channels of Figure 1
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memory requirements of the processing, which may 
be huge if the input image is large. A flow chart of the 
complete algorithm is shown in Figure 3. 

The first step of the segmentation, once the green 
channel is extracted, consists in smoothing the image 
to remove noise. Since the acquisition conditions are 
very well controlled, there is little noise on the images. 
However, smoothing with an anisotropic diffusion filter 
reduces pixel intensity variance, which improves the 
result of subsequent processing. After smoothing, the 
image is binarized with high threshold, so that only 
high intensity areas such as lumen (and “empty” areas 
containing no tissue at all) appear at foreground. We are 
currently using a fixed threshold, because all images in 
our test set have similar intensities. This threshold has 
been set to 200 (the range of possible intensities using 8 
bits is 0-255). 

Each set of touching foreground pixels (i.e., each 
connected component) from the binarization output 
is considered a blob. The physical size of each blob is 
measured and those which are too small or too large to be 
considered lumen areas are removed, since they probably 
represent noise in the former case, and areas lacking any 
tissue in the latter. Minimum blob size has been set to 
500 nm2, and maximum size to 20,000 nm2.

Thresholding usually produces blobs that are not 
compact and contain small holes, so a voting technique 
is used to fill in those holes. The voting method is 
similar to morphologic dilation, but it is more restrictive. 
In traditional dilation, a structuring element (kernel) is 
moved along the image and all the background pixels that 
lie in the region covered by the kernel when it is centered 
in a foreground pixel are automatically promoted to 
the foreground set. In comparison, when using voting, 
instead of directly promoting the pixels, they receive a 
vote, and only the pixels that receive a certain number 
of votes are subsequently moved to the foreground set. 
This filter is used iteratively five times, using a squared 
3×3 kernel. Each of the resulting blobs is considered a 
potential lumen area and labeled individually. 

Potential lumen areas are processed one by one, in a 
sequential loop, in order to expand them outward in 
search of concentric regions. For each of them, a working 
region (a square with its sides separated 120 pixels in each 
direction from the potential lumen) is defined. Then, 

the contour of the potential lumen area is used as initial 
zero set for a geodesic active contours level set. [18] This is 
illustrated in Figure 4. Figure 4a shows the lumen areas 
in pseudocolor (red), and their contours as initial zero 
set. The evolution function of this level set is established 
so that it can grow freely almost everywhere except on 

Figure 3: Flowchart of the lumen centered expansion algorithm

Figure 4: Partial and final results of the lumen centered expansion 
algorithm. (a) Initialization of the level set with lumen segmentation. 
(b) First level set with cytoplasm segmentation. (c) Final result with 
cell segmentation
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cell regions, where it gets stuck and, as stated in Ref.[19], 
it can be represented as

( ) ( ) ( )
u

A x P x Z x
t

a b g¶
= + +

¶
 (1)

where A is the advection term, P is the propagation 
term, and Z the curvature term. The first term attracts 
the curve to desired areas, the second term regulates 
the speed with which the curve moves outward (always 
in a normal direction of the curve), and the third term 
controls how much the curve may bend itself, preventing 
uncontrolled growth. It should be noted that the curve 
may split and merge at any time. Since the objective is 
to make the curve grow from the contour of the lumen 
to the inner contour of the cells, the advection term is 
constructed so that the curve is attracted by cells. The 
curvature and propagation terms are calculated using a 
distance map where the lumen contour is zero valued, 
points inside the contour are negative, and points outside 
it are positive. In this scenario, the curve grows outward, 
and such behavior allows it to include the glandular 
border into the segmented region.

Propagation and curvature coefficients are set to low 
values compared to the advection coefficient, so that the 
curve grows slowly and is able to bend (creating high-
curvature edges if necessary). These coefficients are set to 
1.0 for the advection term, 0.1 for the propagation term, 
and 0.3 for the curvature term. It should be remarked 
that, for each potential lumen area, the presence of 
other lumen areas does not affect the level set evolution, 
because the distance map is calculated based only on the 
working region, and thus only one potential lumen area 
contributes for each distance map at any time.

When the geodesic level set has finished its evolution, 
the curve should be touching the inner border of the 
cells that surround the lumen and cytoplasm. This partial 
result is illustrated in Figure 4b.

Since the region of interest also includes the cells, 
a second level set is used to obtain the ROI. The 
initialization of this second level set is a dilation of the 
output of the previous one, so that the initial zero set 
goes across the cells. This time, the curve may either 
grow or contract, but the evolution function is simpler, 
and it just depends on the intensity values of the image. 
An expansion interval is determined by a lower and 
upper threshold (L, U). The mean between L and U 
is called maximum expansion value (MEV). For each 
pixel belonging to the curve, if its intensity is inside the 
interval (L, U), then the level set will expand with a 
speed proportional to the distance to the MEV as shown 
in Figure 5.

The evolution function for this level set does not consider 
an advection term. Rather, it just considers propagation 
and curvature, and propagation does not depend on the 
distance from the initial contour. According to Ref.[19], 
the evolution of this level set is

( ) ( )
u

P x Z x
u

b g¶
= +

¶
 (2)

{ if ( ) ( )/2( )
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It has been observed that this level set works better if the 
MEV is set close to the mean value of the pixels that are 
to be segmented. The targets are the cells which have 
medium-low intensity values in the green channel of the 
image, so the lower and upper thresholds were set to 60 
and 160, respectively. The weights for the propagation 
and advection terms were the same as in the geodesic 
level set.

Finally, outputs of both level set segmentations are 
merged into just one, which represents the segmented 
region. If the potential lumen area was really a true one 
(composed of the three structures of interest in the 
predicted fashion) the output of the segmentation should 
be the full ROI. This is illustrated in Figure 4c.

Cell density localization
As with lumen centered expansion, this approach just 
uses one of the channels, in this case, the red channel 
of the original RGB image. As Figure 2 shows, the red 
channel provides better contrast between the cells and 
the other types of structures of interest than any other 
channel. As said before, using just one channel also 
reduces memory requirements, which is a nice side effect. 
A flowchart depicting this algorithm is shown in Figure 6. 

The first step of the segmentation, once the red channel 
has been extracted, is thresholding that channel to 
separate the cells from the rest of the tissue. The cells are 
darker than the rest of the tissue, which is almost white 

Figure 5: Threshold segmentation propagation term[19]
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(Figure 2, red channel). The threshold has been set to 
the 80% of the maximum intensity of the image (around 
200 when using 8-bit images), so that any pixel with  an 
intensity lower than the threshold is considered a cell.

The result of the thresholding is used to compute the 
cell density of the image. For each pixel in the image, 
a circular neighborhood of radius 7 pixels is used to 
calculate its cell density. This radius is valid for both 5× Figure 6: Flowchart of the cell density localization algorithm

Figure 7: Segmented ROIs. (a)-(c) Results of the lumen centered expansion algorithm. (d)-(f) Results of the cell density localization algorithm

a

c
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b

d

f
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and 10× images. The pixel density is easily computed 
using a mean filter:

N
i

i

p
Nå  (4)

where N is the number of pixels in the neighborhood, 
and pi are each one of those pixels. In order to keep the 
regions that feature a higher cell density, only pixels with 
a cell density higher than 30% are considered relevant. 
Radius 7 was chosen because it is small enough to keep 
the calculations localized, and large enough to let each 
pixel be influenced by more than one cell. 

In order to obtain a smooth and compact final result, 
several operations are performed. First, a dilation using a 
3×3 kernel (4-neighbors, 5 iterations) is executed. This 
aims at closing small gaps between cells, so that groups of 
cells are merged into big blobs. Next, in case that any of 
those blobs is not compact (i.e., it has holes inside it), it is 
filled. Then erosion using the same kernel and number of 
iterations is used to restore the size of the blobs previously 
dilated. Finally the blobs that are not big enough (at least 
110 µm in perimeter) to be relevant are discarded.

All these steps are only performed in the regions of the 
image where there is tissue present. In order to know 
where the tissue is present, the background of the image 
(which is almost white, due to illumination used in 
the microscope), is extracted by thresholding the green 
channel of the image. Pixels with an intensity higher than 
90% and not surrounded by any tissue are considered 
background. The application of the algorithm only in 
tissue regions speeds up the execution.

RESULTS

A dataset of 100 complete prostate H and E stained 
biopsy images has been used to test the algorithms. All 
the image were acquired with 5× magnification, with 
memory requirements ranging from 12 MB (2000×2000 
pixels) to 500 MB (14,000×12,000 pixels). Some selected 
fragments that exemplify the Lumen Centered Expansion 
and the Cell Density Localization algorithms are shown 
in Figures 7a-c, and Figures 7d-f respectively.

Although the images used to test the algorithm were 
large, computational times were not deemed excessive. 
Figure 8 shows a scatter plot with the computational 

Figure 8: Computational times. (a) Times of the lumen centered 
expansion algorithm. (b) Times of the cell density localization algorithm

a

b
Figure 9: ROC analysis. (a) ROC of the lumen centered expansion 
algorithm. (b) ROC of the cell density localization algorithm

a

b
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time for both algorithms run with the 100 images. The 
level set algorithm takes from 6 seconds to 9 minutes for 
12 MB and 500 MB images respectively [Figure 8a], and 
mean filtering method takes from 1 second to 38 seconds 
[Figure 8b]. The testing machine was equipped with an 
Intel Core i7 950 (3.07 GHz) processor and 12 GB RAM.

A quantitative validation based on ROC analysis was carried 
out with our set of 100 different tissue samples of WSI, 
stained with a variety of H and E dyes (weak and dark). The 
samples were both benign and malign samples of prostate 
biopsy. The results of both algorithms were compared to 
the manual selection of ROIs done by pathologists from the 
local Hospital (HGUCR). Thus, the rates of true positive 
(TP), true negative (TN), false positive (FP), and false 
negative (FN) detections were calculated. The ROC analysis 
for the algorithms of lumen centered expansion and cell 
density localization are shown in Figure 9.

In the case of the lumen centered expansion algorithm, 
the rate of both FP and TP is higher than that for the cell 
density localization algorithm. However, the errors (FP 
and FN) are kept quite low for both methods. Thus, in 
the case of the lumen expansion [Figure 9a], an average 

of 5% detections were FN, 0.39% were FP, 95% were 
TP, and 99.61% were TN. In the case of the cell density 
technique [Figure 9b], an average of 20% detections 
were FN, 0.08 were FP, 80% were TP, and 99.92 were 
TN. The results show an average sensitivity of 95% and 
80% with specificity above 99% for the lumen centered 
expansion and cell density localization respectively.
The type I and II errors, that is, the FP and FN for the 
100 images are illustrated in Figure 10a for the Lumen 
Centered Expansion and Figure 10b for the Cell Density 
Localization algorithms. Most of the FP errors occur in 
those samples stained with weak H&E dye, above all for 
the lumen centered algorithm.

The accuracy (ACC) and Matthews correlation coefficient 
(MCC) were also obtained. These quantitative metrics 
are defined by

ACC
TP TN

TP FN FP FN
= +

+ + +
( )

( )
 (5)

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
= ∗ − ∗

+ + + + +
( ) ( )

( )( ) ( )( )
 (6)

Figure 10: Type I and II errors (FP and FN). (a) Errors for the 
lumen centered expansion algorithm. (b) Errors for the cell density 
localization algorithm

a

b
Figure 11:  Validation metrics. (a) Accuracy. (b) Matthews correlation 
coefficient

a

b
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Both the ACC [Figure 11a] and the MCC [Figure 11b] 
give good results. An average of 99% ACC with 0.87 
MCC is obtained for the lumen expansion and 99% ACC 
with 0.71 MCC for the cell density algorithm. The MCC 
is a correlation coefficient between the truth values and 
detected ones; it returns a value between -1 and +1. A 
coefficient of +1 represents a perfect prediction, 0 an 

average random prediction, and -1 an inverse prediction. 
These metrics are illustrated in Figure 11.

The results on the WSI for both algorithms are illustrated 
in Figure 12. Figure 12a-c are the manual ROI selection, 
(Figure 12d-f) show the ROIs obtained with the lumen 
centered expansion segmentation, and (Figure 12g-i) 
show the ROIs obtained with the cell density localization 

Figure 12: Results for the quantitative validation. (a-c) Manual ROI selection. (d-f) ROIs obtained with the lumen centered expansion 
algorithm. (g-i) ROIs obtained with the cell density localization algorithm
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segmentation.

The algorithms were also tested with images at 10× 
magnification and up to 1228 MB (24,000×16,000 pixels) 
obtaining similar results.

Further improvements shall consider the fusion of 
information in the two algorithms together with texture 
analysis[2,8,20,21] and methods based on invariant color 
information.

CONCLUSIONS

In this paper, an approach to ROI segmentation in 
whole-slide images of prostate biopsies has been 
described. The method proposed is based on level set 
and mean filtering techniques for lumen centered 
expansion and cell density localization respectively. 
The approach followed in this paper is different from 
previous work that attempts to segment all significant 
regions such as nuclei, lumen, and epithelial cytoplasm. 
The novelty of the technique lies in the ability to 
detect complete ROIs, where a ROI is composed by the 
conjunction of three different structures, that is, lumen, 
cytoplasm, and cells with a high density of cells and the 
architectural distribution between lumen and cells. The 
method is capable of dealing with full biopsies digitized 
at different magnification. The proposed algorithm is 
also original because it works on large images acquired 
with low magnification, thus being different from other 
algorithms that require higher magnification and have 
been tested only on small samples. In this way, the 
method tries to mimic the manual procedure of expert 
clinicians.

The proposed system is also useful because it can be 
used for different purposes. It could be integrated into 
a slide visualization environment to highlight the ROIs 
for the pathologists, either for slide analysis or even with 
teaching purposes. Another possible use of the ROI 
segmentation is virtual microscopy systems. In order 
to avoid the full digitization of all samples, they could 
be first digitized at low magnification (5×, or 10×), 
and then processed to locate the ROIs, which would be 
the only regions to be subsequently digitized at higher 
magnification. The system could also be used as a 
previous step in classification applications, since it could 
reduce the amount of information to be processed, and 
probably speed up the whole classification process.

A dataset of 100 prostate biopsies WSI stained with a 
variety of H and E dyes (weak and dark) has been used to 
test the algorithms. All the images were acquired with 5× 
magnification, with memory requirements ranging from 
12 MB to 500 MB. The tests carried out show that the 
algorithms are both fast and accurate. The segmentation 
accuracy by means of ROC analysis and the Matthews 
correlation coefficient give good results. An average 99% 

ACC with 0.87 MCC, sensitivity of 95% and specificity of 
99.61% is obtained for the lumen expansion, and 99.92% 
ACC with 0.71 MCC, sensitivity of 80%, and specificity 
of 99% is obtained for the cell density algorithm.

Although segmentation accuracy is not high enough to 
be used in a medical environment in the short term, 
we consider that our results are promising and we are 
confident that future enhancements to the system will 
improve the results. Further improvements shall consider 
the fusion of information in the two algorithms together 
with texture analysis and methods based on invariant 
color information.
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