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The biomedical data landscape is fragmented with several isolated, heterogeneous data and knowledge sources, which use varying
formats, syntaxes, schemas, and entity notations, existing on the Web. Biomedical researchers face severe logistical and technical
challenges to query, integrate, analyze, and visualize data from multiple diverse sources in the context of available biomedical
knowledge. Semantic Web technologies and Linked Data principles may aid toward Web-scale semantic processing and data
integration in biomedicine. The biomedical research community has been one of the earliest adopters of these technologies and
principles to publish data and knowledge on the Web as linked graphs and ontologies, hence creating the Life Sciences Linked
Open Data (LSLOD) cloud. In this paper, we provide our perspective on some opportunities proffered by the use of LSLOD to
integrate biomedical data and knowledge in three domains: (1) pharmacology, (2) cancer research, and (3) infectious diseases. We
will discuss some of the major challenges that hinder the wide-spread use and consumption of LSLOD by the biomedical research
community. Finally, we provide a few technical solutions and insights that can address these challenges. Eventually, LSLOD can
enable the development of scalable, intelligent infrastructures that support artificial intelligence methods for augmenting human
intelligence to achieve better clinical outcomes for patients, to enhance the quality of biomedical research, and to improve our
understanding of living systems.
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A DATA DELUGE IN BIOMEDICINE
The 21st century is the age of data and knowledge explosion in
biomedicine. Several key events, such as the completion of the
Human Genome Project and the advent of next-generation
sequencing technologies,1,2 the enactment of the Health Informa-
tion Technology for Economic and Clinical Health (HITECH) Act,3

and the Internet of Things phenomenon,4 have led to a significant
increase in the volume, velocity, and variety of biomedical data. To
create a complete profile of any individual, to perform predictive
and inferential analytics, and to investigate the mechanisms
behind any biological event, the biomedical researcher has at his
disposal several different sources of data: medical records,
imaging data (e.g., X-ray images, MRI scans), claims, sequencing
data (e.g., gene expression, DNA methylation, MicroRNA expres-
sion, chromatin accessibility data), genotypes, sensor data (e.g.,
wearable data, social media streams).
There is also a rapid increase in the number of structured,

machine-processable knowledge artifacts, as well as an increase in
unstructured knowledge sources in the form of publications in
biomedicine. Knowledge bases (e.g., DrugBank,5 UniProt6) and
ontologies (e.g., Gene Ontology,7 National Cancer Institute
Thesaurus8) are widely-used and popular resources in biomedi-
cine, and contain knowledge pertaining to molecules (e.g., drugs,
proteins) and their characteristics, biological pathways, animal
models and phenotypes, organs, symptoms, diseases, and adverse
reactions.9,10 As of January 2019, there are more than 750
ontologies and terminologies in BioPortal,11 the world’s most
comprehensive repository of biomedical ontologies. MEDLINE,12

the largest repository of scientific articles in biomedicine and the
primary component of the PubMed search engine,13 currently
contains more than 25 million citations and thousands more are
added each day.

Despite the open availability of many important databases and
knowledge bases, biomedical researchers still face severe logistical
and technical difficulties when integrating, analyzing and visualiz-
ing heterogeneous data and knowledge from these diverse and
isolated sources. These tasks pose a steep learning curve for most
biomedical researchers. Researchers need to be aware of the
sources where the data and knowledge relevant to their research
exist. Depending on the availability and the accessibility,
biomedical researchers need exhaustive computational resources
and extensive programming skills to query and explore the data
and knowledge sources. The heterogeneity across these sources,
in terms of formats, syntaxes, notations and schemas, severely
stymies the systematic consumption of data and knowledge
stored in these sources. The biomedical researcher ends up
learning multiple systems, configurations and access require-
ments, significantly increasing the complexity and time of
scientific research. In most cases, the researcher just hops across
web portals and search engines (e.g., PubMed13) to retrieve
relevant data pertaining to their unique requirements or to
retrieve answers to queries, such as “What are the medications
prescribed to melanoma patients that have a V600E mutation in
their BRAF gene?”.
While we are on the cusp of another artificial intelligence

revolution in biomedicine14 with the development of advanced
machine learning methods that can analyze several modes of
data, scalable intelligent infrastructures that can support these
methods are not yet prevalent. These infrastructures must provide
integrated biomedical data and semantically-interlinked entities
for seamless utilization in machine learning methods. With such a
confluence, biomedical researchers can then mine novel associa-
tions from multiple, diverse, and heterogeneous sources simulta-
neously in the context of all relevant knowledge to achieve better
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clinical outcomes for individuals on a personalized basis, to
enhance the quality of biomedical research, and to improve our
understanding of living systems.
Semantic Web and Linked Open Data are promising solutions

that can be used to develop such scalable infrastructures for
complex biomedical tasks. Web-scale Semantic Processing and
Data Integration is the methodology through which biomedical
researchers can query, retrieve, integrate, and analyze data and
knowledge from multiple sources on the Web without the
requirement on the part of the researchers to download and
manually integrate those sources.15 Ideally, the researchers should
not be concerned with the location, heterogeneous schemas,
syntaxes, varying entity notations and representations of the
underlying sources, or the mappings to reconcile similar concepts,
relations, and entities between these sources. Integrated content
can then be used in machine learning platforms to drive
biomedical research and discovery, as well as improve clinical
outcomes of individuals.
In this paper, we will present an overview of the opportunities

proffered by Semantic Web technologies and the Life Sciences
Linked Open Data (LSLOD) cloud to enable Web-scale semantic
processing and to develop applications that integrate data and
knowledge from multiple heterogeneous sources in different
biomedical domains. We will provide our perspective on the
challenges associated with querying and consuming data and
knowledge from multiple LSLOD sources in an integrated fashion,
which are faced by most biomedical researchers. Finally, we will
provide a few technical solutions that address these challenges
and that can assist software engineers and biomedical researchers
to develop the next generation of intelligent infrastructures to
power advanced machine learning methods.

LIFE SCIENCES LINKED OPEN DATA (LSLOD) CLOUD
The Linked Open Data (LOD) cloud has emerged from the vision of
a Web of data that co-exists with the current Web of documents.16

The World Wide Web Consortium (W3C) has recommended and
standardized a set of Semantic Web languages and technologies
that aim toward accomplishing specific tasks for the creation of
this Web of data and knowledge. We present a brief technical
overview on Uniform Resource Identifiers (URIs), the Resource
Description Framework (RDF)17 and Linked Data principles18 for
representing and linking data on the Web as graphs in Box 1, on
RDF Schema19 (RDFS) and the Web Ontology Language20 (OWL)
for defining Web-based vocabularies and ontologies in Box 2, and
the SPARQL graph query language21 to query multiple diverse RDF
graphs in Box 3.
Using a hypothetical scenario from biomedicine, we will provide

an intuitive explanation on what it means for data and knowledge
to be linked and queried on the Web (Fig. 1). Suppose a researcher
wishes to retrieve and integrate all available data and knowledge
related to a given DRUG entity (e.g., drug–protein target interac-
tions, downstream targets located in biological pathways, pub-
lications that describe the drug, assays that test the cytotoxicity of
the “drug active ingredient”). In the current state of art, biomedical
data and knowledge exist on the Web in fragmented and isolated
sources (e.g., in relational databases, flat files, or graph databases)
that may or may not provide programmatic access to users.
Consider that two imaginary isolated sources, a drug-related
knowledge base (Source 1) and a biological pathway or disease-
related knowledge base (Source 3) exist on the Web. The facts
GLEEVEC �!

has�target
PDGFR (platelet-derived growth factor receptor)

and PDGFR �!
is�implicated�in

GLIOMA may exist in Source 1 and Source 3,

respectively. Such facts are not always necessarily represented as
directed edges—for example, these facts may be represented
using cell values in a database table. Similarly, other arbitrary

databases (e.g., Source 2 contains cytotoxicity assay data and
Source 4 contains proteomics data) that may be relevant for the
researcher also exist on the Web.
Using RDF (Box 1), these facts will be represented as triples (i.e.,

directed edges) in a network of entities represented using URIs. It
is assumed that publishers, who convert their data to RDF graphs,
will either reuse from a uniform set of URIs (e.g., shared PDGFR
entity URI drugbank:BE0000852 between Source 1 and Source 3 in
Fig. 1), or map similar entities through their URIs (using entity
reconciliation mapping services) and those mappings are present
on the LOD cloud as physical links. These links, often called cross-
reference or ‘x-ref’ links, between two URIs in different LSLOD
sources usually indicate that the represented entities are similar
(e.g., drugbank:DB00619  !

x�ref
kegg:D01441 in Fig. 2 indicates

similar GLEEVEC drug entities present in different sources). In an
ideal sense, the boundaries between different sources will vanish
and a Web of Data composed of interlinked entities will manifest.
A human user or a computational agent can explore this linked
Web of Data by just navigating the different URIs (similar to how a
user navigates on the World Wide Web using the URLs of web
pages), and generate novel hypotheses (e.g., a naïve link
prediction method may indicate GLEEVEC �!

possibly�associated�with
GLIOMA,

since GLIOMA can be navigated from GLEEVEC via the PDGFR entity
URI and the semantics of the edges connecting the different
entities in Fig. 1).
While the biomedical researcher can navigate across the Web of

interlinked biomedical entities and data, the SPARQL graph query
language and a query federation architecture can be used for
formulation of queries that target a set of RDF graphs on this Web
(Box 3). The process of SPARQL query federation is depicted in Fig.
2. Consider that the biomedical researcher wishes to retrieve the
list of DRUG entities (and their half-lives) that have molecular
weight <1000 g/mol and target PROTEIN entities involved in the

Box 1 Resource Description Framework (RDF)

RDF is a simple, standard triple-based model for data interchange and
representation on the Web.17 Each entity (e.g., GLEEVEC) or a class of entities
(e.g., DRUG) is considered to be a “thing” or a “resource”, that is represented using
a Uniform Resource Identifier (URI). An example of an HTTP URI is http://bio2rdf.
org/drugbank:DB00619, where http://bio2rdf.org/drugbank: is the URI name-
space and DB00619 is the identifier of the drug GLEEVEC.
Using RDF, the relations will be expressed as [subject, predicate, object] triples.
Each component of this triple (i.e., subject, predicate, or object) is represented
using an URI. Hence, RDF extends the linking structure of the Web by using the
URIs to represent relations between two resources. This facilitates integration and
discovery of relevant data and knowledge even if the schemas and syntaxes of
the underlying data sources differ. RDF allows structured and semi-structured
data to be mixed, exposed, and shared across different applications. If the
isolated sources in Fig. 1a are transformed to RDF, the different entities in these
relations will be represented as unique HTTP URIs. Hence, [GLEEVEC, has-target,
PDGFR] will be a valid triple in the RDF Source 1, where each component is
represented using an URI (e.g., PDGFR entity URI drugbank:BE0000852).
To ‘dereference’ a URI means to convert a relative URI reference to an absolute
form by attempting to obtain a representation of the resource that it identifies.
Dereferencing any URI enables the user to discover additional data and
knowledge on the LOD cloud related to the representative entity. For example,
dereferencing the GLEEVEC URI (http://bio2rdf.org/drugbank:DB00619) using any
Web browser (e.g., Google Chrome) will provide additional information on the
entity GLEEVEC retrieved from other relevant sources (e.g., cytotoxicity assay data,
molecular weight, protein targets of GLEEVEC).
Linked Data principles: To ensure the quality of the data and knowledge sources
published using RDF, the W3C has established the following four principles for
publishing Linked Data:18 [noitemsep]

1. Use URIs as names for entities.
2. Use HTTP URIs so that people can look up those entities using a Web

browser.
3. Provide useful information when someone looks up a URI (i.e.,

dereferenceable HTTP URIs).
4. Include RDF statements that link an entity to other URIs so that users can

discover related information regarding that entity (reuse and linking).
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SIGNAL TRANSDUCTION process. A visual representation of the SPARQL
query is depicted in Fig. 2c. For this query, multiple RDF graphs
need to be queried as no single source may contain the relevant
information. Two sources—DrugBank5 and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG)22 are present as RDF graphs on
the LOD cloud (Fig. 2a). Similar DRUG entities with different URIs in
these sources are mapped to each other using ‘x-ref’ links (e.g.,
GLEEVEC). An “intelligent” SPARQL query federation architecture
determines to query the DrugBank RDF graph for half-life
information, and the KEGG RDF graph for knowledge on
drug–protein interactions and biological pathways (Fig. 2b). The
query retrieves tuples (GLEEVEC, PDGFR, “18 h”) and (VIAGRA, BCL2,
“4 h”) as query results for three variables: (i) Drug ID/Label, (ii)
Protein ID/Label, and (iii) Half-life of the drug (Fig. 2d). A few
benefits of Web-based SPARQL query federation approach over
conventional approaches for data integration (e.g., data ware-
housing) are listed in Box 3.
Since 2006, using Semantic Web technologies and Linked Data

principles, more than 1200 distinct data and knowledge sources
from different research areas in life sciences, economics,
geography, linguistics, government, media, etc. have been
published and linked on the LOD cloud. A representative LOD
cloud diagram is shown at https://www.lod-cloud.net/.
The challenges stemming from the integration of disparate,

heterogeneous biomedical data and knowledge sources on the
Web have led biomedical publishers to be some of the earliest
adopters of Semantic Web technologies and Linked Data
principles.10,23–35 The various biomedical data and knowledge
sources published and linked using Semantic Web technologies
are often collectively referred to as the Life Sciences Linked Open
Data cloud (LSLOD).25,36 A few of these biomedical initiatives that

use Semantic Web technologies are listed in Table 1. While
historically, Semantic Web developers have transformed existing
open sources to RDF graphs and OWL ontologies, data providers
themselves are now embracing Semantic Web technologies and
provide content formalized using RDF or OWL (e.g., NIH PubChem
RDF37), or even incorporate SPARQL functionality in their Web
portals (e.g., the European Bioinformatics Institute RDF Platform28).
From the perspective of a biomedical researcher, Semantic Web
technologies and the LSLOD cloud may have potential advantages
for Web-scale computation, seamless integration of big biomedi-
cal data and knowledge, and structured querying and reasoning
over multiple heterogeneous sources simultaneously (i.e., Web-
scale semantic processing and integration).

OPPORTUNITIES AND APPLICATIONS IN BIOMEDICINE
Using examples from three main research domains: (1) pharma-
cology, (2) cancer biology, and (3) epidemics, we will provide our
perspective on how Semantic Web technologies and the LSLOD
cloud can tackle several challenges for big biomedical data and

Box 2 RDF Schema (RDFS) and Web Ontology Language (OWL)

RDF is essentially only a triple-based, schema-less modeling language. The
schema of an RDF dataset is represented using secondary specifications such as
RDFS19 or OWL.20 RDFS and OWL enable publishers to define structured Web-
based vocabularies and ontologies that enable richer integration and interoper-
ability of data among descriptive communities. Such an independent represen-
tation facilitates the evolution and modularization of the schemas separately
from the data.
RDFS facilitates the modeling and inclusion of instantiation triples (e.g., [GLEEVEC,
type, ANTI-NEOPLASTIC DRUG]), and classification triples of the types subClassOf (e.g.,
[ANTI-NEOPLASTIC DRUG, subClassOf, DRUG]) and subPropertyOf (e.g., [inhibit,
subPropertyOf, has-target]). All entities within a class share similar characteristics,
such as attributes and relations. RDFS also provides annotation properties that
can aid publishers to include human-readable annotations for different entity
and property URIs (e.g., drugbank:DB00619 URI has a label ‘Gleevec’ and a
description “Imatinib is a small molecule kinase inhibitor used to treat certain
types of cancer. It is currently marketed by Novartis as Gleevec (USA) or as its
mesylate salt, imatinib mesilate (INN).”)
OWL extends the capabilities of RDFS and facilitates the inclusion of advanced
class expressions, often composed of logical operators (e.g., A class expression
[AGONIST DRUG ∪ ANTAGONIST DRUG] with the union operator ∪ indicates a new class
composed of AGONIST DRUG entities and ANTAGONIST DRUG entities) and property
restrictions (e.g., [DRUG, subClassOf, COMPOUND ∩ has-target some PROTEIN] indicates
that a DRUG entity is a COMPOUND entity that targets at least one PROTEIN entity). OWL
documents, known as ontologies, can also be published on the LOD cloud and
may refer to or to be referred (i.e., reused) from other OWL ontologies and Linked
Data resources. Knowledge expressed in RDFS vocabularies and OWL ontologies
can be exploited by computer programs, called reasoners, to verify the
consistency of that knowledge (e.g., a PROTEIN entity implicated in two biological
processes that can not happen at the same time) or to make implicit knowledge
explicit and to generate novel inferences (e.g., all members of a particular drug
class target at least one protein involved in SIGNAL TRANSDUCTION through
subClassOf and role restriction expressions).
It should be noted that all class and property mentions in these above examples
are essentially URIs. Data and knowledge publishers are expected to adhere to
the standard best practices (e.g., Linked Data principles and ontology
engineering best practices83) when using these URIs to represent classes and
properties in their RDFS vocabularies and OWL ontologies (GLEEVEC may exist as an
instance of the class DRUG in one source, or as a separate class such that [GLEEVEC,
subClassOf, DRUG] may exist as a triple in another source on the LOD cloud. This is
an example of semantic mismatch).

Box 3 SPARQL Protocol and RDF Querying Language (SPARQL)

The Linked Open Data (LOD) cloud consists of different data and knowledge
sources, published as directed graphs using the RDF triple-based model and
linked with each other (ideally) through reuse of different URIs, with schemas
described using the RDFS and OWL languages. The SPARQL graph query
language can facilitate users to query multiple diverse RDF graphs, as well as the
RDFS vocabularies and OWL ontologies, exposed through SPARQL endpoints in
the LOD cloud.21

Each SPARQL query is composed of triple patterns. A triple pattern is essentially
similar to an RDF triple, but has a variable node (i.e., ?x) in at least one of the
subject, predicate or the object components of the triple. For example, [?x, has-
target, PDGFR] triple pattern will retrieve all drugs that target the protein entity
PDGFR. SPARQL also supports (i) extensible value testing (e.g., retrieve DRUG

entities with exactly one target), (ii) filtering of literals (e.g., retrieve DRUG entities
with molecular weight less than 500 g/mol), and (iii) constraining queries by
source RDF graph (e.g., retrieve DRUG entities where the drug–protein target
relation is present only in DrugBank source). In some cases, SPARQL can be
combined with an ontology reasoner for semantic query expansion–for example,
the query ‘Retrieve DRUG entities that target PROTEIN entities involved in SIGNAL
TRANSDUCTION’ will retrieve drug entities related to APOPTOTIC SIGNALING PATHWAY and
NECROPTOTIC SIGNALING PATHWAY, since both these classes will be children classes of
SIGNAL TRANSDUCTION. Multiple triple patterns can be combined to create basic graph
patterns. SPARQL graph pattern matching is defined in terms of combining the
results from matching basic graph patterns with RDF graphs. SPARQL enables
users to query RDF graphs using required and optional graph patterns along with
their conjunctions and disjunctions.
Ideally, using the SPARQL graph query language any user can query multiple RDF
graphs simultaneously on the LOD cloud. This approach is often called ‘SPARQL
query federation’ or ‘distributed SPARQL query processing’.29,40,61,107 While this
approach is inspired from the relational database community, SPARQL query
federation architectures leverage the advantages provided by the graphical,
uniform syntax, and schema-less nature of RDF to achieve query federation with
minimal effort. SPARQL query federation also differs from conventional ‘data
warehousing’ approach, where data and knowledge is extracted from multiple
sources, transformed to uniform schemas and entity notations, and loaded into a
data warehouse. Moreover, SPARQL query federation architectures can be
coupled with “intelligent” mechanisms (e.g., greedy algorithms, rule-based
reasoning methods) for efficient source selection, query execution, and
structured reasoning.29,40,61,107,108

Few benefits of such a Web-based SPARQL query federation approach over
conventional approaches for data and knowledge integration (e.g., data
warehousing) are enumerated below: [noitemsep]

1. Scalability: Easily deal with volume, variety and velocity of underlying
sources.

2. Flexibility: Easily incorporate multiple remote sources during query
processing and execution.

3. Exhaustivity: Easily retrieve all available and relevant knowledge related to
a specific entity.

4. Mutability: No update mechanisms are required to handle modifications
in remote sources.

5. Minimal technicality and redundancy: No requirements of downloading,
transforming and storing content locally, no additional copies of the
remote sources, minimal requirements of programming skills for most
users, sharing of queries between projects that integrate similar sources.
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Fig. 1 Diagrammatic representation of Linked Data and knowledge. RDF facilitates representation and data merging by extending the linking
structure of the web. Entities in different sources (e.g., PDGFR protein in Source 1 and Source 3) are represented using a unique URI. Disparate
sources can have independent facts (or triples) such as (GLEEVEC, has-target, PDGFR) and (PDGFR, is-implicated-in, GLIOMA), or other data (e.g.,
molecular weight of drugs, pathway information for proteins) that can be easily linked and integrated using RDF. A human user or a
computational agent should, ideally, be able to navigate this Web of data to generate novel hypotheses (e.g., (GLEEVEC, possibly-associated-
with, PDGFR)) and discover relevant data and knowledge in other sources (e.g., cytotoxicity assay data in Source 2)

Fig. 2 SPARQL Query Federation. a Two sources—KEGG, a knowledge base of biochemical pathways, and DrugBank, a database containing
molecular characteristics of drugs, are available as RDF Graphs on the LSLOD cloud (The LSLOD cloud image is derived with permission under
a CC-BY Attribution 4.0 International Licence from the LOD cloud diagram at lod-cloud.net after cropping modifications). Snippets of the KEGG
and DrugBank RDF graphs are respectively shown, and similar DRUG entities in these RDF graphs are mapped using the ‘x-ref’ link. b An
intelligent query federation architecture can determine which SPARQL endpoint to query based on the content of the underlying RDF graphs
(i.e., drug–protein interaction knowledge from KEGG, and half-life information from DrugBank). c The user-provided query is shown using a
visual SPARQL representation, with variable nodes ?dr (drugs), ?pr (proteins), and ?hl (half-lives of drugs). This query is executed by the user
against the query federation architecture. d The query federation architecture returns a result set to the user (e.g., GLEEVEC targets PDGFR, and
has a half-life of “18 h”)
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knowledge integration, endowed due to the: (i) the volume,
velocity, variety, and veracity of biomedical data and knowledge,
(ii) the heterogeneity across different sources, (iii) and the
requirements of exhaustive biomedical entity reconciliation, and
enable the discovery novel associations, often serendipitously, in
the context of available knowledge.

Drug discovery, drug repurposing, and drug safety
Currently, it costs US$2.87 billion (in 2013 dollars) for the discovery
of a novel drug by a bio-pharma company, and there is bound to
be exponential increase in these costs.38 Researchers are now
looking for novel uses of drugs existing in the market, often called
drug repurposing, to mitigate these costs.39 Federal regulators
monitor the occurrence of adverse drug reactions (ADR) after the
public release of a particular drug, often called pharmacovigilance
or drug safety. ADRs are not always be detected during the clinical
trials, and may also manifest due to drug–drug interactions in
patients.40 ADRs are the 4th leading cause of death exceeded only
by diabetes, AIDS, and pneumonia.41 The ever-rising cost of drug-
related morbidity and mortality in the United States was estimated
to be US$177.4 billion in 2000.42

For biomedical research pertaining to drug discovery, drug
repurposing, and drug safety, biomedical researchers often need
an aggregated summary on available data and knowledge for a
specific DRUG entity (e.g., GLEEVEC) or need to pose queries, an
example of which was introduced earlier using Fig. 2. Moreover,
drug-related data and knowledge feature collected from multiple
sources can be pushed into automated informatics pipelines (e.g.,
protein–ligand molecular docking, matching drug and disease
gene expression profiles, network-based systems pharmacology
methods) for large-scale systematic analyses to determine
potential drug repurposing candidates or drug–drug interactions.
Biomedical researchers have often used conventional methods

to address the problem of integrating data and knowledge from
multiple pharmacological sources. The Open PHACTS (Open
Pharmacological Concept Triple Store) data warehouse exposes

integrated content, harvested from several legacy databases and
structured using a common vocabulary with normalized entity
identifiers, through user-friendly software interfaces to accelerate
drug discovery research.43 Himmelstein et al.44 manually inte-
grated content from 29 different sources using a common data
model to create a systems pharmacology network ‘HetioNet’
composed of different biological entities. Similarly, Li et al.45

generated a causal systems pharmacology network ‘CauseNet’ by
manually integrating four sources: DrugBank,5 PharmGKB,46

KEGG,22 and the Comparative Toxicogenomics Database (CTD).47

A few of the foremost biomedical projects on the LSLOD cloud
were related to publishing pharmacological data and knowledge
on the Web (e.g., Linking Open Drug Data,48 Bio2RDF27). Whereas,
there has been research in ‘downloading’ the pharmacological
RDF graphs from multiple LSLOD sources and integrating the
content ‘locally’, these research methods do not perform Web-
scale semantic processing and integration. Noor et al.49 con-
structed a mechanism-based DDI knowledge warehouse by
integrating LSLOD content at the pharmacokinetic, pharmacody-
namic, and pathway interaction level, and used an inference
engine to generate mechanistic explanations for DDIs. ReDrugS50

uses a data warehousing approach to integrate Bio2RDF Linked
Data sources, and the integrated content is analyzed using a
probabilistic graphical model to predict drug repurposing
candidates for melanoma.
The above methods often entail redundancy of technical efforts

(e.g., all approaches may integrate content ‘locally’ from
DrugBank,5 PharmGKB46 and KEGG22), along with other disadvan-
tages (Box 3). Most of the sources are already available on the
LSLOD cloud for Web-scale data integration. Kamdar et al.40

generated a systems pharmacology network, similar to CauseNet,
using a SPARQL query federation method PhLeGrA (Linked Graph
Analytics in Pharmacology) over Bio2RDF sources, and used the
network in signal detection algorithms to detect pharmacovigi-
lance associations from the US FDA Adverse Event Reporting
database (FAERS) with explanations on underlying biological
mechanisms.

Table 1. Examples of Popular LSLOD sources

LSLOD Source Description

Bio2RDF Network of Linked Data resources generated from heterogeneously formatted sources published by
multiple data providers (e.g., DrugBank—molecular characteristics of drugs, KEGG—drug–protein
interactions and biological pathways, PharmGKB—pharmacogenomics knowledge)

BioPortal An open online repository of biomedical ontologies, with more than 750 biomedical ontologies and
terminologies (as of January, 2019), available for querying via SPARQL. Popular ontologies include
Gene Ontology—used for enrichment analysis during microarray experiments, SNOMED CT – used
for electronic exchange of clinical information, and ChEBI ontology used for annotation of molecular
entities.

European Bioinformatics Institute (EBI) RDF
Platform

SPARQL access to their proprietary databases (e.g., UniProt—protein sequences and annotations,
ChEMBL—bioactive molecules, and Reactome—biological pathways)

PubChem RDF PubChem data repository containing data on substances, compounds, structures, and biological
assays, published as Linked Data

WikiPathways Database of biological pathways maintained using a crowdsourcing architecture

NLM MeSH Medical Subject Headings (terms used to index publications) represented as RDF

Linked TCGA DNA methylation, gene expression and clinical data of cancer patients from The Cancer
Genome Atlas

PathwayCommons Data warehouse (HPRD, MiRTarbase, BioGrid, IntAct, etc.) of pathway and molecular interaction
databases

DisGenet Data warehouse (ClinVar, EXAC, dbSNP, GWAS Catalog, etc.) on genes and variants associated to
human diseases

NextProt Data warehouse (IntAct, Peptide Atlas, COSMIC, etc.) on human proteins, structures and interactions

Wikidata A collaboratively edited knowledge base consisting of structured Wikipedia data, including data
relevant for biomedicine

M.R. Kamdar et al.
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Data and knowledge integration for cancer research
Biomedical researchers are interested to investigate the dysregu-
lated biological mechanisms underlying the different cancer types,
and to introspect and validate the diagnostic, prognostic, and
therapeutic capabilities of different biomarkers in cancer patients
on a personalized basis. For such research goals, it is often
necessary to obtain the complete picture regarding the specific
cancer typology. This often entails the use of systems biology
approaches that integrate network biology knowledge (e.g.,
signaling, metabolic, regulator pathways), proteins and drugs
data (e.g., structures, indications, side effects), ‘-omics’ data (e.g.,
gene expression, DNA methylation), and patients’ clinical data,
environmental and nutritional data, etc.
Ding et al.51 emphasized the need for developing novel

approaches that investigate somatic mutations (i.e., genetic
alterations propagated through cell division but are not inherited
by children) in cancer genomes collectively, in conjunction with
knowledge in gene sets (e.g., Gene Ontology7 annotations) or
biological pathways and interaction networks (e.g., KEGG,22

Reactome,52 protein–protein interaction data from BioGrid,53

STRING,54 iRefIndex,55 protein–DNA interaction data from
ENCODE56). Most of these sources are already available on the
LSLOD cloud for querying. Apart from outperforming single-gene
tests (i.e., just determining whether a mutation in the gene is
significantly greater in cancer patients), such systems biology
approaches can enhance our understanding of somatic mutations,
decipher disease mechanisms and also aid in repurposing existing
drugs for treatment toward different cancer types (e.g., as
proposed by Turanli et al.57 for prostrate cancer). Moreover,
knowledge that is readily available along with the genomics and
clinical data of a patient, can aid the physician to make better
clinical decisions (e.g., whether or not to prescribe a particular
drug, such as Temozolomide, given a genomic alteration, such as a
CpG methylation, in the cancer patient).
Semantic Web technologies and LSLOD resources are ideal for

enabling Web-scale data integration for cancer research. Biome-
dical researchers have indeed utilized the OWL knowledge
representation language to develop several cancer-related ontol-
ogies (e.g., National Cancer Institute Thesaurus (NCIT),8 a popular
reference terminology, to represent cancer data across different
research centers, Common Terminology Criteria for Adverse
Events58 to capture adverse events observed in cancer therapy
clinical trials, NanoParticle Ontology59 to characterize nano-
materials used in cancer diagnosis and therapy, Radiation
Oncology Ontology60 to map radiation data across clinical
databases).
Kamdar et al.61 developed a visual query system ReVeaLD (Real-

time Visual Explorer and Aggregator of Linked Data) that used a
query federation architecture for querying 80+ LSLOD sources
relevant to cancer research. ReVeaLD enabled cancer researchers
to formulate SPARQL queries (e.g., Fig. 2) visually, and to then filter
and transfer the retrieved data (e.g., a set of retrieved molecular
structures) for further analysis in ‘in silico’ protein–ligand docking
experiments.62 ReVeaLD was also used to integrate publicly-
available knowledge on proteins and existing protein–protein
interactions from multiple sources, such as BioGrid,53 CORUM,63

pFam,64 and the Human Protein Atlas,65 and using the knowledge
features in machine learning algorithms to discover novel
protein–protein interactions.66 Saleem et al.29 published the
genomics and clinical datasets of cancer patients in The Cancer
Genome Atlas project as Linked Data (Linked TCGA) and
showcased the use of a query federation architecture to query
Linked TCGA in conjunction with other sources on the LSLOD
cloud. The Linked TCGA project and the associated multi-faceted
visualization perspectives are described in more detail in Box 4
(Fig. 3).

Infectious diseases and epidemics
While cancer research and pharmacological research typically deal
with data and knowledge of great volume and variety, research
pertaining to infectious diseases and epidemics is often char-
acterized by data and knowledge of great velocity. Web-scale
semantic processing can benefit several aspects of informatics
approaches that analyze social media streams for monitoring
epidemics (e.g., annotating dynamically generated content from
diverse geographical regions with concepts from the LSLOD
sources, and using the annotated content for reasoning and
inference). Apart from social media streams, there is relevant data
and knowledge from other research sources pertaining to
infectious diseases: sequencing of microbial genomes and
proteomes, experimental assays to identify ligands that target
select proteins for therapy, publications that document these
experiments, etc.
Nolin et al.67 generated a mashup of time-course microarray

gene expression results with protein–protein interaction data from
Bio2RDF sources to understand the infection of human macro-
phages with human immunodeficiency virus 1 (HIV-1). The
2013–2016 Ebola Virus epidemic had a cumulative death rate of
41% and 24,000 reported cases (as of 20 March 2015). Kamdar
et al.68 developed a linked mashup Ebola-KB that integrates

Box 4 Web-scale Linked Cancer Data

Cancer systems biology approaches often rely on ‘-omics’ and clinical datasets of
cancer patients, few of which are also available publicly. For example, the Cancer
Genome Atlas (TCGA) publishes the genomics (e.g., DNA methylation, exon
expression, miRNA expression) and clinical data of individuals, categorized under
different cancer types.
Semantic Web developers have published publicly-available cancer genomics
datasets as Linked Data to enable the development of analytical pipelines for
automated analyses. Developing such analytical pipelines over genomics data
often involves redundant, non-trivial, and difficult tasks for most biomedical
researchers, such as downloading and preprocessing large data archives, feature
extraction and linkage to existing biological knowledge. Under the Linked Cancer
Genome Atlas (Linked TCGA) project,29 raw TCGA data for 27 different cancer
types is preprocessed, converted, and published as Linked Data in order to
facilitate the querying and live integration of these cancer datasets via remote
SPARQL query processing. Linked TCGA data is also linked with content from
several existing LSLOD sources that contain relevant knowledge on biological
pathways (e.g., KEGG22), proteins (e.g., UniProt6), and diseases (e.g., Diseasome).
Biomedical publication abstracts from the PubMed MEDLINE13 repository are
processed through a natural language processing pipeline and named entities
(i.e., proteins, cancer types, and drugs) are annotated using concepts from the
LSLOD cloud. Hence, unstructured publications are made available for querying
along with structured cancer ‘-omics’ and clinical data, as well as knowledge from
public knowledge bases.
The Linked TCGA project also provides several different visualization perspectives
so that biomedical users can visualize and explore integrated content from
Linked TCGA and several other sources on the LSLOD cloud without formulating
extensive federated SPARQL queries. For example, the GenomeSnip104 perspec-
tive (shown in Fig. 3) allows the user to interact with an aggregative circular
visualization of the human genome and explore genomic regions (e.g., ideogram,
gene, regulatory region, or individual single nucleotide polymorphism—SNP)
and relationships (e.g., those genes that co-occur in the same publication or that
transcribe proteins involved in the same pathway or disease). Communities of
genes identified using a community-detection or a clustering algorithm can also
be visualized. Saleem et al.29 showcase how biomedical users can retrieve and
visualize cancer-related publications associated with a particular MESH topic (e.g.,
Clone Cell) or a gene (e.g., GRBB2) using a Network Explorer visualization
perspective, which features a highly dense, force-directed network linking the
different tumor typologies, genes, publications, and MESH topics. TCGA genomic
datasets (i.e., DNA methylation and exon expression) of the cancer patients can
be visualized against the human genome, and the GenomeSnip and the Network
Explorer perspectives can be used to further filter and explore the data
interactively on the Web (e.g., visualize the TCGA genomic data for a particular
Gene entity or a set of Gene entities mentioned in a given Publication, or Gene
entities that are present in the same cluster).
The Linked TCGA project demonstrates the true utility of Semantic Web
technologies and Life Sciences Linked Open Data for Web-scale semantic
processing and data integration. Content (structured and unstructured) from
several data and knowledge sources is integrated and made available for the
biomedical researcher to interactively explore, as well as to use the integrated
content for analysis in machine learning methods.
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Fig. 3 Interacting with Big Linked Cancer Data through the GenomeSnip visualization perspective. The Linked TCGA project provides several
different visualization perspectives for biomedical researchers to explore and visualize integrated content from the following LSLOD data
sources: (i) MESH, (ii) HGNC, (iii) KEGG, (iv) PubMed, (v) UniProt, and (vi) Linked TCGA. The GenomeSnip perspective provides an aggregative
circular visualization of the human genome, and allows the user to interactively explore different genomic regions at different scales—a
chromosome, b ideogram, and c gene and other regulatory regions (e.g., enhancers). d Relations (protein–protein interactions, gene co-
mentions, etc.), as well as communities of genes or genomic regulatory regions, as detected by a community-detection or clustering
algorithm, can also be visualized. The GenomeSnip perspective is available online at http://onto-apps.stanford.edu/genomesnip
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publicly-available knowledge, pertaining to the Ebola Virus
Disease, from several Linked Data sources such as Gene
Ontology,7 MEDLINE,12 Protein Data Bank,69 etc. Questions, such
as “Retrieve knowledge from KEGG and DrugBank on small
molecule ligands which bind to EBOV protein POLYMERASE”, can be
answered by executing SPARQL queries against the Ebola-KB
linked mashup in conjunction with the LSLOD cloud (see Fig. 4f).
Semantic Web technologies and LSLOD sources can also aid

biomedical researchers to gain insights into drug-related epi-
demics in the United States. To understand the genetic basis of
nicotine dependence, Sahoo et al.70 developed a semantic
mashup by integrating genetic resources Entrez Gene71 and
Homologene,72 with pathway resources KEGG,22 Reactome,52 and
BioCyc,73 structured using the BioPAX ontology.74 Approximately
50,000 individuals have died due to opioid-related overdoses in
2017 alone—this count has tripled in the last decade. Hypothe-
tically, a researcher can analyze clinical data and social media data
can be analyzed in conjunction with LOD resources, such as drug
ontologies (e.g., ATC75 and RxNorm), demographic and

geographic databases (e.g., Wikidata76 and DBPedia77), patient
symptoms terminologies (e.g., MEDDRA), disease ontologies (e.g.,
ICD-10), to determine opioid prescription and usage patterns and
predict whether a patient or a user demonstrates opioid abuse
behavior.

CHALLENGES IN USING LSLOD FOR BIOMEDICAL
APPLICATIONS
Significant resources have been invested in publishing biomedical
data and knowledge on the Web to create the LSLOD cloud.
However, to the best of our knowledge, outside of a few research
groups (including ours), there are not many biomedical applica-
tions that demonstrate Web-scale Semantic Processing and Data
Integration by consuming LSLOD in a decentralized fashion (i.e.,
querying directly on the Web). As seen through the examples in
the previous section, there are significant benefits of using query
federation and graph-based methods over conventional methods
for tackling the integration bottlenecks in different research areas

Fig. 4 Challenges in consuming LSLOD content for biomedical applications. a Different LSLOD sources may use different URI representations
for the same entity (e.g., different ChEBI URIs http://bio2rdf.org/chebi:31690 and http://purl.obolibrary.org/obo/CHEBI/31690 for the entity
GLEEVEC). Hence, link traversal or query federation methods are not able to integrate content from KEGG and ChEMBL RDF graphs even when
they have ‘x-ref ’ links to the ‘similar’ ChEBI entity. b Different RDF graphs may use different semantics (e.g., drug-target and target). Different
graph patterns may be used to depict the same relation, while capturing additional details. c Through a systematic analysis of biomedical
ontologies in BioPortal repository, we determined that while a significant overlap of content exists across biomedical ontologies, most
ontologies reuse less than 5% of their terms with several ontologies using incorrect term URIs (Graph generated from data presented in
Kamdar et al.81). d Unique drug–protein target interactions may exist across different data and knowledge sources, since these sources are
published with different methods and intentions (Figure used with permission under a CC-BY Attribution 4.0 International License from
Kamdar et al.40). e Real-world SPARQL query to retrieve drug–protein target interactions from four different LSLOD sources–DrugBank, KEGG,
PharmGKb and Comparative Toxicogenomics Database. f Real-world SPARQL query to retrieve activity, target, and pathway information for
ligands interacting with the Ebola virus polymerase protein
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of biomedicine. However, decentralized biomedical applications
that actually exist (e.g., Linked TCGA, ReVeaLD) have generally
seen minimal adoption by the broader biomedical research
community.
The biomedical community has indeed been using the Web

Ontology Language (OWL) for the development of large
biomedical vocabularies and ontologies for a long time.11 These
resources comprise a major portion of the LSLOD cloud. However,
biomedical ontologies are typically used in “closed” systems or
centralized applications (i.e., data warehouses), and they are not
queried over the Web in most cases. For example, the Gene
Ontology (GO),7 arguably the biomedical ontology with the
highest impact in the community, is widely used for Gene Set
Enrichment Analysis (GSEA) applications. However, these applica-
tions often rely on locally-downloaded versions of Gene Ontology.
Publishers often mention the “potential” of Linked Data to solve

data integration challenges, but only showcase use cases where
the LSLOD sources are queried in a controlled environment.29,68

However, most biomedical researchers do not retrieve fruitful
results (or any useful results in most cases) when they query
against the LSLOD sources in the wild. We have identified few of
the most important challenges faced while using content directly
from the LSLOD cloud in biomedical applications.

Accessibility and availability
The accessibility and availability of LSLOD sources are two of the
major reasons why data and knowledge within the LSLOD cloud
cannot be queried and consumed by biomedical researchers.
According to the statistics and metadata descriptions at lod-cloud.
net, the 2017 version of the Linked Open Data (LOD) cloud had
1281 sources, out of which only 50% (646 sources) had a
functional Linked Data access point (i.e., a RDF data dump or a
SPARQL endpoint).78 In addition, it is relatively easy that online
complex queries (e.g., queries with multiple non-selective joins)
may incur in timeouts, given the limited allocated resources of
public SPARQL endpoints.
If the LSLOD sources do not have high availability then the

research and development of Semantic Web query federation
methods and tools in biomedicine is severely impacted.
The liveliness and ‘freshness’ of LSLOD sources depends heavily

on the continued support and interest of their maintainers (who
are often from academia). Once the maintainers leave the project,
often, the SPARQL endpoints are not updated anymore and may
stop being available. Sustainable access on the Web with regular
updates, in compliance with the Linked Data principles, has simply
not been a priority for various data and knowledge providers. For
example, the highly-available SPARQL endpoint of BioPortal
(http://sparql.bioontology.org/) is not frequently updated. Simi-
larly, updated Bio2RDF RDF dumps, available only via a Javascript-
based page (http://download.bio2rdf.org/#/), cannot be easily
crawled by machines. Academia-based Linked Data resources
(e.g., DERI Health Care and Life Sciences workbench from National
University of Ireland Galway–http://bit.ly/2XmZQUX), which are
maintained by only one research group and are often reliant on
the funding sources, cease to exist once the funding periods end.
Several valuable LSLOD sources (e.g., RDF graphs from Linking
Open Drug Data projects) are no longer available.

Semantic heterogeneity
Semantic heterogeneity is a natural consequence of the independent
creation and evolution of autonomous data sources and ontologies
that are tailored to the requirements of the domain and application
system they serve.79 The semantic heterogeneity across the different
biomedical ontologies and Linked Data resources is another major
reason for the lack of usage of LSLOD content in biomedical
applications directly from the Web. The fourth Linked Data principle
(Box 1) emphasizes the correct reuse of existing vocabularies and

ontologies, as well as linking to entities that already exist on the
LSLOD cloud using the exact Uniform Resource Identifiers (URIs).
Automated traversal and data integration across LSLOD sources only
work if the sources are linked using exactly correct URIs for the same
terms consistently (i.e., as an analogy, navigating on the Web only
works when the http://hyperlinks are correctly specified). In practice,
this trivial requirement is often not satisfied.

Intent for reuse. Publishers reuse inconsistently (and often,
incorrectly) URIs used to represent different biomedical entities.
For example, Kamdar80 found that different LSLOD sources refer to
the same UniProt6 PROTEIN entity (e.g., Q9UJX6) using the following
different UniProt URI representations:
(i) http://purl.obolibrary.org/obo/UniProt:, (ii) http://bio2rdf.org/

uniprot:, (iii) http://purl.uniprot.org/uniprot/, and (iv) http://
identifiers.org/uniprot/.
This issue creates a significant burden for biomedical applica-

tion developers, who use the LSLOD cloud for Web-scale data
integration but will be unaware of all these URI representations
across different datasets. For example, as shown in Fig. 4a, a
biomedical researcher wishes to retrieve and integrate content
from KEGG and ChEMBL RDF graphs35 (a hypothetical query can
be “Retrieve biochemical activities of compounds that target
proteins in APOPTOPIC SIGNALING pathway”). However, while the
compounds in both these RDF graphs are mapped to terms in the
ChEBI ontology,82 the URIs are different. Hence, the researcher
cannot navigate or query the two RDF graphs in an integrated
fashion (manually, or using conventional query federation
methods). This issue, called “intent for reuse” (i.e., publishers wish
to refer to the same biomedical entity, but use slightly different
URI representations), is manifested across many biomedical
ontologies, as documented by Kamdar et al.80,81

Lack of reuse. In Fig. 4a, the different compound entities are still
mapped to similar terms (albeit different URIs) from a common
ontology (e.g., ChEBI ontology82). In many cases, instead of using
common vocabularies or ontologies (e.g., from BioPortal reposi-
tory) to represent the classes and properties in their RDF graph
schemas, data publishers use their own custom vocabularies to
generate RDF data.
As shown in Fig. 4b, different URIs may be used to represent the

relations of type DRUG �!
has�target

PROTEIN in different sources (e.g.,

drugbank:drug-target and kegg:target). Moreover, completely
different graph patterns may be used to capture these relations.
For example, in Fig. 4b, the object of the kegg:target triple is a
‘blank node’. A blank node is a specialized RDF resource that
facilitates the representation of complex relations and attributes
with higher level of granularity (e.g., type of interaction between
GLEEVEC and PDGFR), provenance information (e.g., publication that
documents the interaction between those entities), or even lists of
resources.17 Dealing with such blank nodes during Web-scale
query federation and integration is inherently difficult. To explain
simplistically, in Fig. 4b, the protein target of drug GLEEVEC is
located one hop away while navigating DrugBank RDF graph,
whereas the protein target is located two hops away while
navigating the KEGG RDF graph.
“Actual and Correct Reuse” as advocated by the Linked Data

principles and by various ontology engineering methodologies83 is
generally much less across biomedical ontologies and Linked Data
sources in the LSLOD cloud. Kamdar et al.81 found that while
significant term overlap exists across biomedical ontologies in the
BioPortal repository, most ontologies reuse less than 5% of their
terms and ontology developers just use completely different
representations (or show an “intent for reuse”, as presented in the
previous section). This result is shown in Fig. 4c. This lack of reuse of
concepts and properties from existing vocabularies and ontologies is
also observed across most biomedical Linked Data sources.80
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Learnability and usability of Semantic Web technologies
There is a steep learning curve to understand and use Linked Data
and Semantic Web technologies for biomedical researchers, who
will use the content for scientific research and discovery. The
architectural and structural issues with the LSLOD cloud, discussed
in the preceding sections, make it more difficult for biomedical
researchers to use the LSLOD cloud for Web-scale data
integration.
The assembly of federated SPARQL queries to retrieve informa-

tion necessary for bioinformatics analysis poses a high cognitive
entry barrier, is time-consuming and a highly technical process.
The direct consequence of semantic heterogeneity on Web-scale
semantic processing and integration is that biomedical users need
to formulate exhaustive SPARQL queries using conventional query
federation methods, and to be aware of the different URI
representations and data representation schemas used in the
LSLOD cloud. For example, a biomedical researcher may wish to
retrieve drug–protein target relations from multiple sources (e.g.,
DrugBank, KEGG, PharmGKB, and CTD), since unique relations may
exist in each source (e.g., drug–protein target relations may be
curated from drug product labels or from literature) as shown in
Fig. 4d (taken from Kamdar et al.40). However, he/she has to
formulate a complex SPARQL query with >20 triple patterns for
this task (Fig. 4e). It is ‘almost’ impossible to generate a systems
pharmacology network (composed of multiple relation types) as
presented by Himmelstein et al.44 or Li et al.45 using most
‘conventional’ query federation methods over the current LSLOD
cloud. Figure 4f shows another example of a complex (yet
relevant) federated query across the Ebola-KB linked mashup and
the KEGG LSLOD source.68

It is probably naive to expect that, for their data and knowledge
integration needs, most biomedical researchers will formulate
sophisticated SPARQL queries over heterogeneous LSLOD sources
that have limited availability, without minimal automated support.
There is a dire need for HCI-inspired applications and visualiza-
tions over the LSLOD cloud to make it easy for biomedical
researchers to query and explore LSLOD content (e.g., Linked
TCGA visualizations discussed in Box 4), as well as to make it easy
for data and knowledge publishers to discover and reuse existing
LSLOD content in a correct way, hence reducing the spread of
semantic heterogeneity.81,84

THE SILVER LINING OF THE LSLOD CLOUD
The major issues, presented in the previous section, which hinder
the use of Linked Open Data for Web-scale semantic processing
and data integration in biomedicine may present a bleak picture
on the future of the LSLOD cloud and Semantic Web technologies
in general.
For most biomedical projects that use Semantic Web technol-

ogies for reasoning and inference, the most common solution to
the semantic heterogeneity problem is to use a data warehousing
approach (e.g., OpenPhacts,43 ReDrugs50), where all data is
transformed under a common schema and using a uniform set
of entity notations. There are other significant advantages of data
warehousing over query federation even in a Linked Open Data
scenario—data cleaning, privacy, trust, data preservation, and to a
certain extent, indexing and querying.85 Data warehouses indeed
require a lot of centralization and maintenance, and need to be
updated when the underlying content changes. Data warehousing
approaches require significant resources and can only be
implemented as part of a consortium or by companies. However,
the issues of network latency, the availability and accessibility of
SPARQL endpoints, as well as the quality of remote data sources,
can easily be remedied through a data warehousing approach.
In this section, we assert that there is definitely a silver lining to

the LSLOD cloud and the Semantic Web community is actively

working on technical solutions to address each of these issues. In
this section, we briefly touch on a few examples of such technical
solutions.

Accessibility and availability
As a part of a solution path to one of the main handicaps for
further adoption, monitoring frameworks, such as SPARQLES86 or
the Dynamic Linked Data Observatory,87 are essential to assess the
parts of the LSLOD cloud that are still “alive”. Preservation efforts,
such as the LOD Laundromat project,88 are also good starting
points to crawl and provide archives of existing datasets. There
has been recent development on scalable off-the-shelf tools that
can alleviate some of burden of the Linked Data publisher. In
particular, a combination of (i) RDF graphs uploaded as HDT89

(Header-Description-Triples), a highly compressed and queryable
RDF format, as well as (ii) Triple Pattern Fragments endpoints90 as
the standard access method for LSLOD sources, significantly
reduces both infrastructural and maintenance needs. Improving
the availability of public SPARQL endpoints is also an area of active
research (e.g., research on alternative query strategies for
federated queries91 and better load balancing between client
and server.92)
There are two main LSLOD sources that are exemptions related

to the Web-based availability and “freshness” of biomedical
semantic resources: the Gene Ontology (GO)7 and the Unified
Medical Language System (UMLS).24 In our opinion, the success of
the Gene Ontology is, in part, due to the following main factors: (1)
A dedicated and a very active development team with continuous
funding has maintained it over several years; (2) A strong
community of domain users from different areas has been actively
built around it, and their requirements serve as the main impetus
the development process; (3) The ontology itself has an exemplary
documentation on its usage in applications targeted to domain
users, and on the processes for building and maintaining it; (4) A
principled approach was used for developing the ontology; (5)
Automated pipelines are used to check and ensure the quality of
the ontology. This is also true for UMLS-based semantic resources
(e.g., SNOMED CT terminology93). Public SPARQL endpoints of
DBPedia77 and Wikidata76 have started registering ≈99% uptime,
as monitored using the SPARQLES framework. The providers of
other LSLOD resources can definitely learn from these projects.

Semantic heterogeneity
Hybrid approaches (i.e., approaches that combine query federa-
tion with initial processing and transformation) have been
successful in the pharmacological research community for
heterogeneous data integration. OHDSI collaborative94 (Observa-
tional Health Data Science Initiative) for observational drug safety,
DisQover95—a commercial platform for semantic search in life
sciences, and even the Open PHACTS data warehouse,43 extract
and transform content uniformly using a common data model and
entity notations, and publish the transformed content as Linked
Data interfaces. If such approaches can be combined with
methods to detect changes and evolution in LSLOD resources
(e.g., COnto–Diff96), then we can have sustainable Web-scale data
integration solutions.
Novel frameworks, such as Debattista et al.97 and Kamdar,80 can

automatically provide fine-grained quality metrics to mitigate
availability and semantic heterogeneity problems. In addition to
these initiatives, the LSLOD cloud itself needs to be a “live”
environment and providers who do not provide minimal
availability (i.e., less than 99% uptime) or desired quality should
be notified. Conversely, LSLOD consumers should be notified of
important changes in a dataset. Decentralized protocols using the
same technologies, such as Linked Data Notifications,98 can serve
as communication vehicles for such synchronization.
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Usability and learnability
Emergent industry-strength solutions for Linked Data-related
tasks, such as extraction and mapping (e.g., Rules Markup
Language—R2ML for rules interchange between different sys-
tems99), validation (e.g., Shapes Constraint Language—SHACL for
validating the structure of RDF graphs100), integration of legacy
systems (e.g., Ontology Based Data Access—OBDA for using an
ontology to access legacy relational databases101), and consump-
tion (e.g., efficient RDF triplestores102), can assist towards
addressing usability issues and maintaining documentation
standards.
Mappings-based query federation methods40,61,62,80 can slightly

alleviate the challenge of semantic heterogeneity. Biomedical
researchers can formulate SPARQL queries using elements from a
domain-specific common data model. These SPARQL queries are
then transformed “under-the-hood” to source-specific SPARQL
queries, through mappings between the elements from the
domain-specific data model and the elements of from the data
representation schemas of the remote LSLOD sources.
In the example shown below, the triple pattern composed using

some domain-specific common data model is transformed to two
sets of triple patterns for two different LSLOD sources–DrugBank
and KEGG. This transformation is guided through mappings
between the elements of the domain-specific common data
model and the elements observed in the schemas of DrugBank
and KEGG.

Drug �!hasTarget
Protein ¼ Drug �drug Target� Relation �!target Protein if ðDrugBankÞ

Drug �!target :�blank�!link Protein if ðKEGGÞ

8
<

:

Using such mapping rules and a mappings-based query
federation method, the SPARQL query shown in Fig. 4e can be
formulated with ≈5 triple patterns and the biomedical researcher
can retrieve the drug–protein target relations from four sources.80

Hence, the researcher does not need to be familiar with the
various representation schemas used in the LSLOD cloud to
formulate SPARQL queries. However, the mappings need to be
validated, often manually, by Semantic Web experts. If the
mapping rules can be validated, either autonomously (e.g., using
Shape Expressions103) or using a visualization interface by a
domain expert, then such methods can also be sustainable for
Web-scale data integration using Linked Open Data without the
shackles of centralization using data warehousing methods.
Finally, more applications that enable biomedical researchers to

formulate SPARQL queries using visual interactions (e.g.,
ReVeaLD61), applications that generate multi-faceted visualizations
(e.g., Linked TCGA dashboard29,104 and Ebola-KB dashboard68) for
biomedical researchers to explore the integrated data, abstracting
SPARQL and RDF entirely, or more studies that analyze user
interactions with LSLOD sources (e.g., Kamdar et al.61,84) are
definitely required for increasing the adoption of LSLOD and
Semantic Web technologies in the biomedical research
community.
Most of the aforementioned issues can be further ameliorated

by following standard best practices, such as the recent FAIR data
principles105 (findable, accessible, interoperable, reusable) and the
‘Data on the Web Best Practices’,106 both fostering the creation of
a self-sustainable ecosystem. Additionally, common-sense good
practices suggest to provide: (1) better metadata descriptions of
the datasets; (2) better documentation and provision of sample
queries for usage of the datasets; (3) better support for enabling
reuse of existing vocabularies; and (4) better support for the use of
developer-friendly formats (e.g., JSON), with a toolchain main-
tained by an active and a broader community.
Finally, while redundancy of technical efforts is not ideal, several

research groups may often wish to keep their data, searches, and
inferences private. While biomedical data and knowledge sources

form the largest portion on the Linked Open Data cloud, a lot of
biomedical data is, and will always remain, in closed systems (e.g.,
electronic health records). Hence, we envision that centralized and
decentralized approaches will always have to co-exist and
complement each other in the biomedical ecosystem to tackle
complex problems. Ideally, researchers can avail the benefits of
Linked Open Data for Web-scale integration of public data and
knowledge, slices of which can then guide advanced searches and
inferences over the private data and knowledge stored in their
centralized data warehouse.

CONCLUSION
The biomedical data landscape is fragmented with several isolated
data and knowledge sources existing on the Web. These
biomedical sources may use varying formats, schemas, syntaxes,
entity notations, and modes of access, which increase the
logistical and technical challenges related to data and knowledge
integration for most biomedical researchers. While there is hope
that the next generation of artificial intelligence methods can
augment human intelligence for achieving better clinical out-
comes for patients on a personalized level, for increasing our
understanding of living organisms, and for enhancing the quality
of biomedical research, we lack scalable, intelligent infrastructures
that can generate integrated content for use in these methods.
This eventually leads to minimal scalability, minimal flexibility,
minimal reproducibility, and increased redundancy of data
integration efforts across different research groups that may
simultaneously be working on similar biomedical problems.
In this paper, we have put forth our perspective on how

Semantic Web technologies and the Life Sciences Linked Open
Data (LSLOD) can enable the development of such scalable
intelligent infrastructures for Web-scale semantic processing and
data integration in biomedicine. We have showcased a real-world
example pertaining to querying, retrieval, and integration, of data
and knowledge from diverse biomedical sources. We have also
discussed the main challenges: (i) accessibility and availability, (ii)
semantic heterogeneity, and (iii) usability and learnability, which
hinder the use and consumption of content from the LSLOD
cloud. We present a few technical solutions from the Semantic
Web community that hope to convince biomedical researchers,
that while these challenges provide a bleak outlook on the future
of the LSLOD cloud, there is indeed light at the end of the tunnel.
In an ideal state of the LSLOD cloud, the opportunities for data
and knowledge integration in pharmacology, cancer research,
infectious diseases, and several other biomedical domains, will
eventually be realized in biomedicine, leading to better clinical
outcomes and enhancing the quality of biomedical research.
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