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Homeostatic Regulation of Memory Systems and Adaptive Decisions
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ABSTRACT: While it is clear that many brain areas process mnemonic
information, understanding how their interactions result in continuously
adaptive behaviors has been a challenge. A homeostatic-regulated predic-
tion model of memory is presented that considers the existence of a single
memory system that is based on a multilevel coordinated and integrated
network (from cells to neural systems) that determines the extent to which
events and outcomes occur as predicted. The “multiple memory systems of
the brain” have in common output that signals errors in the prediction of
events and=or their outcomes, although these signals differ in terms of
what the error signal represents (e.g., hippocampus: context prediction
errors vs. midbrain=striatum: reward prediction errors). The prefrontal cor-
tex likely plays a pivotal role in the coordination of prediction analysis
within and across prediction brain areas. By virtue of its widespread con-
trol and influence, and intrinsic working memory mechanisms. Thus, the
prefrontal cortex supports the flexible processing needed to generate
adaptive behaviors and predict future outcomes. It is proposed that pre-
frontal cortex continually and automatically produces adaptive responses
according to homeostatic regulatory principles: prefrontal cortex may
serve as a controller that is intrinsically driven to maintain in prediction
areas an experience-dependent firing rate set point that ensures adaptive
temporally and spatially resolved neural responses to future prediction
errors. This same drive by prefrontal cortex may also restore set point firing
rates after deviations (i.e. prediction errors) are detected. In this way, pre-
frontal cortex contributes to reducing uncertainty in prediction systems.
An emergent outcome of this homeostatic view may be the flexible and
adaptive control that prefrontal cortex is known to implement (i.e. working
memory) in the most challenging of situations. Compromise to any of the
prediction circuits should result in rigid and suboptimal decision making
and memory as seen in addiction and neurological disease. VC 2013 The
Authors. Hippocampus Published by Wiley Periodicals, Inc.

KEY WORDS: hippocampus; striatum; prefrontal cortex; predictions;
error correction

INTRODUCTION

Different motivational systems can be simultaneously active, and as
such, they must compete for control over decision processing and behav-

ioral responses. For example, a hungry animal may
explore a territory for food while “keeping an eye out”
for potential mates and predators. In this case, a single
behavioral sequence is engage but it may be driven
from moment to moment by whichever motivation is
the strongest. The current and strongest motivation
should determine which cues draw one’s attention, the
appropriate behavioral responses, and one’s expectations
for particular outcomes of choices and actions. As such,
motivation state likely influences the organization of cur-
rently active neural representations in memory-related
brain structures. Indeed, it has been shown that different
hippocampal place field “maps” (which presumably
reflect different memories) are recalled depending on
whether rats are searching the same space for food or
water after being made hungry or thirsty, respectively, in
a single environment (Kennedy and Shapiro, 2004).

The ability to efficiently switch between different mne-
monic influences on choices and actions is undoubtedly
essential for the continuous execution of adaptive behav-
iors. A current challenge for the field of memory research
is to understand the mechanisms by which different
memory systems are dynamically and continuously coor-
dinated according to one’s current goal. There are numer-
ous excellent reviews of literatures that define the
functionality of individual memory systems of the brains
(e.g., Eichenbaum and Cohen, 2001; Tulving, 2002; Boy-
den et al., 2004; Colombo, 2004; Yin and Knowlton,
2006; Fuster, 2009; Kesner, 2009). To address the issue of
how these memory systems work together to provide
what appear to be unitary control over behaviors, the fol-
lowing first presents an organizational scheme for mem-
ory processing in the brain that includes decision neural
circuitry (Schultz and Dickinson, 2000; Hikosaka et al.,
2008). Then we discuss how the different mnemonic
brain regions may be dynamically regulated via a
homeostatic-like mechanism that insures the continuous
generation of adaptive decisions.

MULTIPLE PROCESSORS OF
MNEMONIC INFORMATION

From the early reports of memory problems of brain
damaged amnesic patients came the view that different
brain areas are responsible for distinct types of memories.
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Decades of experimental research supported this view since targeted
lesions in animals produced memory dissociations that were compa-
rable to those observed clinically. For example, hippocampal dam-
age produced episodic (including event or spatial) memory deficits
that were not shown by animals with striatal lesions; the latter
instead showed habit learning deficits. The accumulation of similar
anatomically defined distinctions led to the commonly held view
that hippocampus mediates episodic or event-related memory and
the striatum mediates habit or procedural memories (Sherry and
Schachter, 1987; Packard et al., 1989; Knowlton et al., 1996; Squire
and Zola, 1996; White and McDonald, 2002). Additional research
identified roles for other brain structures in specialized memory
functions: the amygdala is considered important for learning and
remembering emotionally relevant information (Kim and Jung,
2006; Johansen et al., 2011), the prefrontal cortex preferentially
mediates working memory (e.g. Jacobsen, 1936; Fuster, 2006,
2009), and sensory and motor memories are thought to involve
parietal cortex, medial temporal cortex, and cerebellum (e.g. Duha-
mel et al., 1992; Bisley et al., 2004, Taylor and Ivry, 2012; Ito,
2013; Rochefort et al., 2013). Figure 1A provides a schematic of
these memory systems, illustrating the parsimonious view that each
separately contributes to a single decision or action selection process.
It is often suggested that the differential strengths and efficiencies of
the memory processing centers of the brain control behaviors
according to task demands (Packard and McGaugh, 1996; Miziu-
mori et al., 2004; Fig. 1B). In fact numerous physiological and theo-
retical models describe mechanisms, from broad neural systems to
cellular perspectives, by which these brain structures enable efficient
and accurate mnemonic functions. By comparison, little is known
about how these multiple processors of mnemonic information
work interactively to result in continuously adaptive, experience-
dependent behaviors and choices in a complex natural world.

By definition, all memory systems have a common purpose,
and that is to remember information. However, all memory sys-
tems do not play equal roles in determining the impact of experi-
ence on particular decisions or actions. What accounts for this
difference? Abundant evidence from primate and rodent studies
show that (internal and external) sensory, behavioral, task rule
and reward information are often represented experientially in
brain areas thought to mediate different forms of memory (e.g.,
Wiener et al., 1993; Lavoie and Mizumori, 1994; Wiener, 1996;
Pratt and Mizumori, 2001; Yeshenko et al., 2004, Barnes et al.,
2005; Smith and Mizumori, 2006; Puryear et al., 2010). Thus,
the nature of the represented information per se cannot explain
the unique mnemonic contributions of different brain areas.
Rather their unique mnemonic contributions are likely to be
more strongly determined by brain area-specific computational
network architectures, and their afferent and efferent connections.

HIPPOCAMPUS AND CONTEXT ANALYSIS

There is substantial evidence to support the view that hippo-
campus is essential for the processing of context information
(Hirsh, 1974; Myers and Gluck, 1994; Anagnostaras et al.,
2001; Maren, 2001; Fanselow and Poulos, 2005; Bouton et al.,

2006). For example conditioned fear responses to contextual
stimuli are eliminated with hippocampal lesions even though
responses to discrete conditional stimuli remain intact (Kim
and Fanselow, 1992; Phillips and LeDoux, 1992).

FIGURE 1. A: Different types of memory are shown to con-
tribute to the determination of decisions and actions. The efficien-
cies of each of these memory systems can be regulated by
neuromodulators such as dopamine (DA), serotonin, acetylcholine,
norepinephrine, or a variety of stress or reproductive hormones. B:
Memory systems are often considered to compete for the control
of behaviors, depending on the situation. For simplicity, the rela-
tive contributions of only three memory systems are shown. (left)
When context or reward prediction errors occur, hippocampal
(HPC) output may exert greater control over (thick arrow) deci-
sions and actions relative to output from the striatal (STR) habit
system (thin arrow). Since the prefrontal cortex (PFC) receives the
HPC error messages, it should also increase control over behaviors
(moderate arrow) as it seeks to resolve the uncertainty caused by
the prediction error in HPC (center). After the prediction errors
have been resolved, behavior may be driven by learned sensory-
motor associations (i.e., habits). In this case, behaviors are con-
trolled primarily by the STR habit system. (right) If, on the other
hand, no prediction errors are detected during context processing,
the HPC likely maintains a moderate increase in activity (e.g. rela-
tive to the activity level during habit based behaviors) since it
would be most adaptive if it remained keenly tuned to possible
context prediction errors. Almost by definition, the monitoring of
errors in context-based predictions involves more levels of compar-
isons than the habit system, and thus the PFC should become
more engaged. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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In these earlier experiments, the term “context” was used to
refer to only the external sensory environment. However,
more recently, it has become evident that the type of context
processing carried out by hippocampus is more complex, and
that it includes sensory (external and internal), behavioral,
and motivational information that characterizes and defines a
specific situation or event (Nadel and Wilner, 1980; Mizu-
mori et al., 1999; Nadel and Payne, 2002; Jeffery et al.,
2004; Smith and Mizumori, 2006; Mizumori, 2008a; Penner
and Mizumori, 2012a,b). The firing patterns of individual
hippocampal neurons change when any aspect of a familiar
situation changes, including internal and external sensory
information, the behavior and cognitive requirements to
achieve a desired goal, one’s motivational state, and one’s
expectations for a particular reward value (e.g., Markus et al
1994; Wood et al., 2000; Jeffery et al., 2004; Yeshenko et al.,
2004; Ferbinteneau and Shapiro, 2006; Smith and Mizumori,
2006; Leutgeb et al., 2007). These place field changes have
been described as being of one of two types: “global
remapping” in which the location of the field is altered, and
“rate remapping” in which the in-field firing rates is altered
but not the absolute field location (e.g., Leutgeb et al., 2004).
The former is thought to reflect switches between episodic
memories or maps, while the latter is considered to reflect
changes in a familiar memory, or map. In both cases place
fields are thought to represent sensory, behavioral or cognitive
features of a context, as well as the learned value (i.e., eco-
nomic utility; Penner and Mizumori, 2012a,b), or salience, of
each context defining feature. An example is the learned prob-
ability of obtaining a reward when a particular choice is made
in a particular location. Evidence is indeed beginning to
emerge to support this view as place fields have been observed
to change according to the probability of expected reward val-
ues (Hollup et al., 2001; Lenck-Santini et al., 2001, 2002;
Lee et al., 2012; Penner et al., 2012). Also, recent neuroimag-
ing studies with humans show that HPC becomes selectively
active during value-based decision making (Wimmer and
Shohamy, 2012), perhaps to generate prediction error signals
during learning (Kumaran and Maguire, 2007; Kuhl et al.,
2010; Chen et al., 2011; Dickerson et al, 2011; Foerde and
Shohamy, 2011; Duncan et al., 2012a,b).

In freely-navigating animals, hippocampal context infor-
mation is represented within a spatial framework (Nadel and
Wilner, 1980; Mizumori et al., 1999, 2000; Nadel and
Payne, 2002; Mizumori et al., 2007; Mizumori, 2008a,b). A
spatial bias to hippocampal neural representations has been
described as location- and=or directionally selective firing in
mice, rats, bats, birds, and monkeys (O’Keefe, 1976; Rolls
et al., 1989; Nakazawa et al., 2002; Hough and Bingman,
2004; Yartsev and Ulanovsky, 2013). Human hippocampal
neurons also show spatially organized representations as sub-
jects solve virtual spatial navigation tasks (e.g. Maguire et al.,
1998; Burgess and O’Keefe, 2003; Etchamendy et al., 2012).
It is possible, then, that the imposition of a spatial organiza-
tion on context information is a fundamental process that
facilitates hippocampal mnemonic operations, and as such, it

is prominent and commonly found across species. In this
case, hippocampus can be thought of as representing the
value of sensory, behavioral, and cognitive information rela-
tive to one’s motivation and spatial experiences in a given
environment.

The multifaceted neural code that is associated with
unique contexts provides hippocampus with appropriately
detailed information to strategically guide future decisions,
behaviors, and memories based on event-specific informa-
tion. Events are distinguished not only by their sensory and
behavioral significance, but also the variation of the signifi-
cance across time. Thus an important function of hippocam-
pus may be to identify when one significant event ends and
the next begins (Smith and Mizumori, 2006). One way to
make such identifications is to signal when expectations are,
or are not, met. Of interest in this regard, there is growing
evidence that an important hippocampal algorithm is to
identify times when actual experiences vary from those
expected based on past experiences. It is worth noting that
the same basic algorithm can be applied in novel situations
and when familiar conditions change (Fig. 2). Many labora-
tories have shown that hippocampal place fields change char-
acteristics (i.e. remap) during initial exposures to novel
situations (e.g. Frank et al., 2006; Roth et al., 2012) but
that with continued exposure the same place fields stabilize
(i.e. they do not continue to remap). The degree of stability
is related to the amount of direct experience that an animal
has with a particular environment (Rowland et al., 2011). In
novel situations, any “expectation” would probably not
match actual experiences since by definition there is no prior
knowledge from which to form accurate expectations. Thus,
all input should initially generate a mismatch signal, and
these should subside with experience. After familiarity is
established, hippocampal neural activity shows sensitivity to
changes in familiar environments, or contexts: significant
alterations in hippocampal neural representations are
observed when subjects are exposed to unexpected (i.e. mis-
match) conditions (e.g. Mizumori et al., 1999; 2000;
Kumaran and Maguire, 2007; Mizumori, 2008a,b; Chen
et al., 2011; Duncan et al., 2012b; Penner and Mizumori,
2012a).

A general function of the hippocampus, then, may be to
detect mismatches between the expected and actual contex-
tual features of a task so that “context prediction error”
(CPE, Fig. 2) signals can be forwarded to efferent systems
for subsequent evaluation of the significance of the change.
In this way CPEs can ultimately be used to define contexts
associated with specific outcomes or intentions. This ability
to discriminate contexts has been proposed to reflect a funda-
mental computation that defines and predicts events, or
meaningful episodes (O’Keefe and Nadel, 1978; Cohen and
Eichenbaum, 1993; Dusek and Eichenbaum, 1998; Redish,
1999; Smith and Mizumori, 2006; Lisman and Redish,
2009; Gill et al., 2011; Penner and Mizumori, 2012a), a
function that makes hippocampus essential for normal epi-
sodic memory.
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STRIATAL EVALUATION OF RESPONSE
OUTCOMES

Analogous to hippocampus, the midbrain dopaminergic sys-
tem may also generate prediction error signals but in this case
the focus is on whether the outcome of goal-directed behaviors
occurs as predicted based on past experience (Hollerman and
Schultz, 1998; Hollerman et al., 1998; Bayer and Glimcher,
2005; Mizumori et al., 2009; Stalnaker et al., 2012). In partic-
ular, it is thought that dopamine neurons transmit information
about the subjective value of rewards in terms of reward pre-
diction error signals (RPEs; Fig. 2). RPEs are thought to initi-
ate three distinct and parallel loops of information processing
between striatum and neocortex as new associations become
learned sufficiently to habitually drive behaviors (e.g.,
Alexander et al., 1986; Alexander and Crutcher, 1990; Haber,
2003). Penner and Mizumori (2012b) recently summarized

this vast literature starting with the limbic loop through which
information flows between ventromedial prefrontal cortex with
the ventral striatum (Alexander and Crutcher,1990; Graybiel
et al., 1994; Voorn et al., 2004; Yin and Knowlton, 2006;
Graybiel, 2008; Pennartz et al., 2009) to mediate learning
about the significance of previously neutral stimuli (i.e. as
occurs in Pavlovian learning). The associative loop involves the
medial prefrontal cortex and the dorsomedial striatum to sup-
port action-outcome learning. The sensorimotor loop involves
transmission between somatosensory and motor cortical areas
with the dorsolateral striatum. The latter loop is suited for
incremental sensory-motor learning as happens when new pro-
cedural memories are formed. It is hypothesized that the trans-
formation of newly learned behaviors to habits occurs as a
result of multiple iterations of information flow through these
three information loops starting with the limbic loop, the asso-
ciative loop, and then finally the sensorimotor loop. Impor-
tantly, information flow through these systems is thought to be
continually informed about the expected values of goals via
dopamine signaling from the ventral tegmental area (VTA)
and=or the substantia nigra (SN; Horvitz, 2002; Nicola et al.,
2004; Schultz, 2010). Thus, when performing learned habits,
the striatum is particularly suitable to rapidly control behavior
or to provide feedback about behaviors that led to prediction
errors (Stalnaker et al., 2012) because of its rather unique pat-
tern of reciprocal connections with sensory and motor cortical
regions (Alexander and Crutcher, 1990; Groenewegen et al.,
1999; Haber, 2003), and because striatum can receive immedi-
ate feedback when goal outcomes are not what was expected.
In this way, midbrain signals of errors in predicting rewards
may initiate adjustments to future planned behaviors (Penner
and Mizumori, 2012b).

Sensory and motor predictions: In addition to hippocampus
and striatum, various sensory and motor cortical and cerebellar
areas have been reported to generate prediction errors when
expected sensory or motor-related input does not match
expectations (e.g. Tanaka et al., 2009; Scheidt et al., 2012).
This sort of feedback permits temporally and spatially precise
behavior adjustments based on past outcomes. Also, informa-
tion about expected sensory and motor events can be used to
plan future sensory expectations and specific anticipatory move-
ments (e.g. Duhamel et al., 1992). Such prediction error mech-
anisms are thought to fine tune actions to optimize the chances
of securing a desired goal.

ERROR SIGNALING IN THE BRAIN: IMPACT ON
MEMORY PROCESSING

Converging evidence indicates that (at least) hippocampal,
striatal, neocortical, and cerebellar neural responses signal occa-
sions when actual events or information do not match those
expected based on past experiences. Such error signals allow
organisms to appropriately refine movements and choices

FIGURE 2. A: Schematic illustration of the feedback loops
involved in the analysis of context-based predictions. One’s expect-
ations (yellow highlight) about the contextual features of a partic-
ular situation are based on past experiences. These expectations
are compared against features that are actually experienced, and a
match or mismatch is determined. Detected mismatches generate
an error signal that is used to update ones expectations for the
future. Match detections should reinforce or strengthen the memo-
ries that originally generated the most recent expectations. B: The
same logic is applied to our understanding of how mismatches in
expectations about the outcomes of choices (e.g., reward) can also
update future reward expectations or strengthen the memories
used to derive the initial expectations. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

1106 MIZUMORI AND JO

Hippocampus



relative to their perceived utility or value, and thus ultimately
determine future decisions and behavior (e.g. Schultz and
Dickinson, 2000; Doll et al., 2012; Walsh and Anderson,
2012). In fact it has been suggested that the ability to predict
behavioral outcomes has essentially driven the evolution of the
entire brain (Llinas and Roy, 2009). If this is the case, the
underlying organization and detailed neural mechanisms of
predictions are likely foundational for complex cognitive func-
tions like decision making, learning and memory, and thus
likely to be highly conserved across species (Watson and Platt,
2008; Adams et al., 2012).

At a cellular level, prediction error signals may elevate the
level of excitability of efferent neurons such that they become
more responsive to outcome signals. This greater neural
responsiveness may enhance the temporal and spatial resolution
of future neural responses, and this in turn should ultimately
result in improved accuracy of future predictions. For example,
if hippocampus detects a mismatch between expected and
actual contextual features, it may generate an error signal that
“alerts” striatal efferent structures so that they become more
responsive to future rewards (Schultz and Dickinson, 2000;
Mizumori et al., 2000, 2004; Lisman and Grace, 2005;

Mizumori, 2009, Penner and Mizumori, 2012a,b; Fig. 3).
Midbrain-generated reward prediction error signals may desta-
bilize cortical neural (memory) networks so that they become
more readily updated with new information (Mizumori,
2008a; Penner and Mizumori 2012b). The updated memory
information can then be passed on to hippocampus in the
form of the most up-to-date context expectations (Fig 3). This
view of how error signals can inform future processing in other
prediction regions of the brain suggests a high level of interde-
pendence across mnemonic structures regardless of the task (as
suggested by Yeshenko et al., 2004; Mizumori et al., 2004).

SETTING THE BASELINE FROM WHICH
ERROR SIGNALS EMERGE

Individual neurons face a continual barrage of excitatory inputs
across tens of thousands of synaptic connections. Yet, neurons
cannot maintain high levels of excitability and remain viable in
the long term. Fortunately, individual neurons appear to be able
to naturally and automatically engage mechanisms that control
their level of excitability. This may occur by sensing and control-
ling the flow of various ions across cell membranes (e.g., Turri-
giano, et al., 1998; Burrone et al., 2002; Turrigiano, 2008; see
more detailed description below). Optimal levels of neuronal
activity can be maintained also by achieving a relatively constant
balance of excitatory and inhibitory synaptic input (e.g. Burrone
et al., 2002). Together these factors define the baseline level of
tonic activity against which phasic error signals are imposed.
Interestingly, the tonic level of cell excitability can be set accord-
ing to the motivational state of an animal (Fig. 4; Pecina et al.,
2003; Cagniard et al., 2006; Puryear et al., 2010). In this way,
ones motivational state may play a significant role in determining
the threshold for phasic neural and behavioral responding.

Motivational state information (e.g. signals of hunger or
thirst) may arrive in prediction error structures such as the hip-
pocampus or striatum via hypothalamic afferent systems. For
example, lateral hypothalamus signals of hunger that reach
brain areas that evaluate predictions may increase subsequent
reward-responsiveness of efferent target neurons. Elevated
responses to reward could presumably reflect higher subjective
values of the reward, and this interpretation is consistent with
the biological needs of an animal. The amygdala, on the other
hand, is thought to mediate a different motivational variable,
and that is the emotional state of animals (Johansen et al.,
2011). A message reflecting the current emotional state may
emerge from the amygdala’s role in associating cues with their
aversive consequences (e.g. Chau and Galvez, 2012; Paz and
Pare, 2013). One scenario is that the amygdala may alter its
neural activity in response to fear (Ciocchi et al., 2010;
Haubensak et al., 2010; Li et al., 2013). Since the amygdala
has direct excitatory effects on substantia nigra or VTA neurons
(Lee et al., 2005; Zahm et al., 2011), fear-induced amygdala
activation may increase the likelihood that dopamine neurons

FIGURE 3. Building on the model shown in Figure 2, here it
is shown that if hippocampal context prediction analysis concludes
that there were NO changes in the context (i.e. a “match”), then
the currently active memory network becomes strengthened to
increase the likelihood that it will be activated the next time that
animals are in the same context. If, on the other hand, the hippo-
campus concludes YES there was a context change (i.e. a
“mismatch”), then the prediction error signal that is transmitted
to the midbrain-striatal system begins an evaluation of the signifi-
cance of the change. The midbrain-striatal system should then
determine whether the value of the outcome occurred as expected
originally. If the answer is NO, then the memory network that
generated the initial expectation should be strengthened since it
still produced the desired goal. If, on the other hand, it was deter-
mined that YES, the outcome is different from what was expected,
then the memory network should be updated accordingly. At other
times, there may be an unexpected change in reward outcome, and
this should initiate a prediction error signal at the level of the
midbrain-striatum. This YES conclusion should lead to a memory
update that the expected context did not result in rewards as pre-
dicted, and this in turn would be reflected in the future expecta-
tion information provided to the hippocampus. From this point, a
similar context comparison will be carried out as described above.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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transition to a more excitable “up-state” (Wilson, 1993; Wilson
and Kawaguchi, 1996) when hippocampal messages arrive (Fig.
4). In this way, in urgent situations, animals can more readily
assess the value of a changed context since transitioning to an
“up-state” could make the dopamine cells respond more
quickly to an input. This could be adaptive since responses can
be implemented more quickly,

In addition to generally biasing the levels of neural excitabil-
ity (which may translate to biasing the threshold for prediction
error signaling), the amygdala may modulate prediction error-
based learning efficiency on a trial by trial basis. For example,
it is known that there is increased attention to cues or rewards
that are unexpected or surprising based on past experiences
(Rescorla and Wagner, 1972; Pearce and Hall, 1980). The

FIGURE 4. (top) The prediction analysis described in Figures
2 and 3 is illustrated for times when animals perform a familiar
task when prediction errors and associated stress and arousal
should be minimal. (middle) One’s motivation can dramatically
alter the profile of activity of the prediction error areas of the
brain. In particular, when emotions are elevated, amygdala will
increase activity, and this may in turn elevate the activity level
more generally across prediction areas of the brain. Shown here is
elevated activity (shown by the larger circles relative to top) in the
midbrain-striatum (which generates reward prediction errors, or
RPE, signals) and hippocampus (which generates context predic-

tion errors, or CPE, signals). This elevated neural activity should
result in stronger input to action and decision areas of brain
(thicker arrows). (bottom) When flexible processing of error sig-
nals is needed, the prefrontal cortex may elevate the activity gener-
ally across all prediction centers so that they can generate the
most adaptive behavioral response to future detected mismatches.
The need to resolve the uncertainty that results from prediction
errors is postulated to engage working memory operations in the
prefrontal cortex (see text for further discussion). [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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dopamine system clearly plays a role in surprise-induced
enhancement of learning (e.g. Schultz et al., 1997; Schultz and
Dickinson, 2000), and this may relate to an influence of the
amygdala on dopamine neurons since this prediction error-
based learning effect is abolished in rats with amygdala disrup-
tion (Holland and Gallagher, 2006) with no effects on the sub-
sequent expression of surprise-induced enhanced learning (Lee
et al., 2008). The amygdala and hypothalamus, then, may
orchestrate information processing circuits=systems by
ultimately setting the threshold for future error detection via
direct connections to prediction error structures such as the
hippocampus, striatum, sensory and motor cortex, and the
cerebellum.

The prefrontal cortex can also be thought of as playing a
modulatory role in the processing of prediction errors but for
reasons that are different than the amygdala. The prefrontal
cortex is commonly thought to be important for holding infor-
mation on-line in a working memory buffer (e.g., Fuster,
2008; Arnsten et al., 2012). This function is considered essen-
tial to be able to select appropriate responses and=or for
switching behavioral strategies (Ragozzino et al., 1999a,b;
Young and Shapiro, 2009), and this interpretation is consistent
with findings that transient functional connections exist
between the prefrontal cortex and the hippocampus or striatum
especially when working memory is helpful for optimal behav-
iors. For example hippocampal and prefrontal theta become
co-modulated at times when animals make choices (e.g.,

Hyman et al., 2005; Shirvalkar et al., 2010) but not at other
times during task performance. Co-activation of striatal and
prefrontal activity has also been observed when working mem-
ory is required for accurate response selection (Levy et al.,
1997; Scimeca and Badre, 2012). Thus, the functional connec-
tions between striatum and prefrontal cortex, or between hip-
pocampus and prefrontal cortex, can vary in strength and
impact depending on the current task demands (Fig. 4). Pre-
sumably this variation reflects the phasic task-dependent coor-
dination of patterns of excitation and inhibition between
prefrontal cortex and its efferent targets. Since the prefrontal
cortex is thought to play a role in prediction analysis (e.g.
Holyroyd et al., 2002), we suggest the possibility that the coor-
dination across prediction areas is at least in part regulated by
prefrontal cortex via regulation of its inhibitory and excitatory
projections to multiple types of neurons (i.e. both interneurons
and projection neurons) in efferent prediction brain areas (as
reviewed in Khan and Muly, 2011; Arnsten et al., 2011,
2012), neurons that then return information back to prefrontal
cortex. Neocortex has indeed been shown to regulate the excit-
ability states of subcortical neurons (e.g. Plenz and Arnsten,
1996; Plenz and Kitai, 1998; Calhoon and O’Donnell, 2013).
Prefrontal cortex in particular may likely continually receive
information about the current level of neural activity in target
regions, and then use these afferent data to determine the
extent and type of excitatory and inhibitory control needed to
achieve optimal tonic activity within each of the multiple

FIGURE 5. A homeostatic model of memory processing posits
that neural systems interactions are driven internally to reduce
uncertainty so that the most adaptive decisions can be made.
According to this model, a key to successful outcomes is the pres-
ence of a number of brain systems that detect whether expected
events (either input or outcomes) occur as predicted. Shown here
are the striatum (reward prediction error, or RPE), hippocampus
(context prediction error, or CPE), sensory cortex (sensory predic-
tion error, or SPE), and the motor cortex (motor prediction
errors, or MPE). There are others as well (area X. . .; X prediction
error, or XPE). These prediction error areas connect with each
other, and they have reciprocal connections to the prefrontal cor-
tex. Messages from the prediction brain areas relay activity state
information to the prefrontal cortex. It is proposed that in a
familiar situation (i.e. when there are no prediction errors) the
prefrontal cortex is continually driven to maintain afferent neural
activity to a set point via a complex pattern of excitatory (1) and

inhibitory (-) efferent connections to the brain areas that sent state
information to the prefrontal cortex previously. In this way, the
prediction neuronal networks will be prepared to generate tempo-
rally and spatially accurate error signals when needed. After pre-
diction errors are detected, error messages are sent to other
prediction centers and to prefrontal cortex. The latter may coordi-
nate the efficiencies of the different prediction centers based on
recent outcomes of behaviors. This heightened coordinated activity
could result in transient co-modulation across brain structures,
and it could effectively extend working memory operations beyond
the prefrontal cortex. Motivation may tune the efficiency of the
prediction analysis system by raising or lowering prediction
thresholds across multiple brain areas. Motivational influences
likely arrive from structures such as the amygdala and hypothala-
mus. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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efferent prediction error systems (Fig. 5). When the tonic activ-
ity level is low, for example at times when there are no predic-
tion error signals, prefrontal cortex may elevate the stae of
neural excitability so that the afferent cells are more responsive
to future error signals (Fig. 6), a feature that should increase
the speed and accuracy of the error signaling. If, on the other
hand, the baseline of a target region is higher than is optimal
for the detection of prediction errors, further increasing the
excitability of the cells may be detrimental for the cell’s health
and ability to produce clear error signals. In this case, it would

be most adaptive if the prefrontal cortex lowered the level of
excitability of its target cells so that optimal responsivity can be
restored in the target region.

Recurrent neurocircuitry within the prefrontal cortex is
thought to contribute to its working memory capacity (e.g.
Arnsten et al., 2012), and as such this circuit is a clear candidate
system to not only integrate error signals arriving from the dif-
ferent prediction error brain regions, but to also bias the thresh-
olds and strengths of subsequent error-related signals from the
brain regions that originally produced the error signal. The par-
ticular constellation of excitatory and inhibitory biases presum-
ably will result in the most desired behavioral outcome.

In summary, at specific times when working memory is
needed, the intrinsic recurrent neural cirtuits of the prefrontal
cortex (Arnsten et al., 2012) may selectively and strategically
exploit (differentially or in concert) its rich array of excitatory
and inhibitory efferent connections to regulate firing rates in dif-
ferent prediction areas of the brain. In this way, the prefrontal
cortex may regulate the relative responsiveness of different pre-
diction brain regions in task-dependent ways. When prediction
errors are detected and firing rates change, the prefrontal cortex
may not only integrate the signal within its recurrent (working
memory) intrinsic circuitry, but it may have a key restorative
function in efferent structures such that the firing rates return to
a baseline tonic level that optimizes subsequent responsiveness to
input. Thus, the prefrontal cortex may bias efferent neurons’
ability to engage in, or efficiently use, prediction error analysis
and hence their ability to adaptively guide future behaviors.

A PREDICTION MODEL OF MEMORY
ORGANIZATION

The brain contains a dynamic and interactive architecture by
which memories of past experiences can continually and adap-
tively guide choices and behaviors. The fundamental elements of
such an adaptive memory system necessarily include a) mecha-
nisms for detecting errors in predictions about sensory, motor,
decision and event outcomes (e.g. Yiv and Schoenbaum, 2008),
b) the computational architecture to then coordinate different
sorts of mismatches or errors between memory-based predictions
and actual events with the goal of selecting adaptive decisions or
actions, c) mechanisms for selecting and predicting the future
outcomes of the chosen decision or action, and d) the ability to
quickly and strategically restore baseline activity levels in such a
way that the outcomes of future predictions can be rapidly and
optimally assessed. This sort of adaptive memory system is made
possible by natural neural regulatory systems that are driven to
resolve uncertainties that result from failed predictions (Fig. 6;
e.g. Dayan, 2012). Indeed, brain mechanisms have been identi-
fied that respond to outcomes only (or primarily) under uncer-
tain conditions (Fiorillo et al., 2003, 2008). An inability to
accurately resolve uncertainties will preclude the ability to cor-
rectly predict the outcomes of responses or significant events,
and this in turn will result in maladaptive decisions and actions.

FIGURE 6. A: A homeostatic model of memory processing
suggests that the primary goal of prefrontal cortex interactions
with prediction centers of the brain (e.g., hippocampus and the
midbrain-striatal area) is to maintain the baseline (tonic) firing
rate of neurons within these centers at a set point level that is
optimal for detecting future prediction errors. Modulating factors
such as one’s motivation or emotional state can elevate or reduce
the baseline firing rates. According to Figure 5, the prefrontal cor-
tex continually receives information from the prediction areas
regarding the current population firing rates. If the baseline rates
become elevated (e.g., due to stress) the prefrontal cortex is
equipped to anatomically and physiologically restore firing rates
(red straight arrows) to their optimal (baseline) levels. If the rates
become too low (e.g., in depression), the prefrontal cortex should
engage mechanisms to elevate firing to optimal levels over time.
When a prediction error signal arrives in, or is generated by, a
given prediction structure, firing rates can increase (in cases when
prediction errors are positive) or decrease (when prediction errors
are negative). The degree of rate increases or decreases scales to
the degree of mismatch that is detected, and the slope of the
increase or decrease in firing may vary between individuals and=or
as a function of experience (blue arrow). B. The prefrontal cortex
is responsible for restoring the firing rates back to optimal levels
and this reduces the uncertainty that was generated by the predic-
tion error signals. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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The fundamental elements of the proposaed prediction model of
memory include the following:

DETECTING ERRORS IN PREDICTIONS ABOUT
SENSORY, MOTOR, DECISION, AND EVENT

OUTCOMES

It was emphasized above that most of the brain areas that
traditionally have been ascribed to have specific memory func-
tions (e.g. hippocampus, striatum, amygdala, sensory and
motor cortex, cerebellum) engage in match-mismatch opera-
tions for the purpose of detecting prediction errors. The spe-
cific types of information that are evaluated vary across brain
areas as this is determined by their different constellation of
inputs. We suggest that these error detection systems have in
common output that effectively alerts other prediction error
systems (either directly or via prefrontal cortex regulation, Fig.
5) so that memories can be updated (and behaviors imple-
mented) as quickly and accurately as possible.

COORDINATING DIFFERENT SORTS OF
MISMATCHES OR ERRORS IN PREDICTION

By virtue of its unique and sophisticated pattern of connec-
tions with prediction areas of the brain, as well as its capacity to
retain information within an internal recurrent collateral system,
the prefrontal cortex is strategically situated to receive and inte-
grate prediction error messages simultaneously from the various
memory regions of the brain via both inhibitory and excitatory
mechanisms. It is proposed that much of the coordination is
driven by natural and automatic tendencies to maintain neural
networks in stable states. This also just happens to be the state
where the neural sensitivity to prediction errors is maximal. That
the brain is driven to resolve uncertainties that arise with predic-
tion errors (Fiorillo et al., 2003; Knill and Pouget, 2004; Doya,
2008; Schultz et al., 2011; Bach and Dolan, 2012; Dayan, 2012)
should ensure adaptive and predictable outcomes. Given the role
for neighboring orbital frontal cortex in risky or probabilistic
decision making (e.g. O’Neill and Schultz, 2010; Roitman and
Roitman, 2010; Schultz et al., 2011), it is likely that the orbital
frontal and prefrontal cortex normally work together to result in
the most accurate decisions that reduce uncertainty (Rushworth
and Behrens, 2008; O’Neill and Schultz, 2010). Future work
aimed at understanding in more detail the relationship between
the orbital and prefrontal cortices should shed new light on the
mechanisms of the frontal cortical response to uncertainty and
prediction errors. Also, since one’s past experiences can bias one’s
interpretation of prediction errors and outcome values, prefrontal
cortex coordination of prediction-based brain areas should also be
impacted by expectancy information provided by existing long-
term memories.

When no prediction errors are present (i.e., when working
memory is not needed for successful performance of a task),

the prefrontal cortex may continue to automatically monitor
(and then maintain) a level of neural activity that is optimal
for detecting future errors of prediction. This ability to con-
stantly check for possible errors in prediction seems necessary
to optimally execute adaptive behaviors.

If prefrontal cortex has an active role in coordinating activity
within and across prediction centers of the brain, organisms
would be endowed with a high degree of behavioral flexibility
at precisely the times when multiple factors need to be consid-
ered simultaneously to make a choice or decision. This type of
processing is consistent with a common definition of (prefron-
tal-mediated) working memory in which a working memory
“buffer” allows information to be manipulated. However, anal-
ogous to an alternative view of prefrontal function proposed by
Fuster (2006, 2009), it is suggested here that managing the
network activity between the prefrontal cortex and connected
prediction areas of the brain is what produces working memory
capacity. If this is the case, the critical role of the prefrontal
cortex in adaptive behaviors should be most obvious when
multiple prediction errors need to be processed simultaneously.
Indeed, combinations of prefrontal cortex and connected pre-
diction areas appear co-activated during “working memory”
function (e.g. Levy et al., 1997). Prefrontal coordination of
prediction centers may be continuous even in situations that
do not require working memory, thereby enabling organisms
able to rapidly change behaviors as needed by changing envi-
ronmental conditions. With prefrontal cortex damage, then,
one may not observe behavioral deficits unless conditions
change and prediction errors need to be detected in order to
make accurate choices. The continuous and automatic func-
tioning of memory regions of the brain has been postulated by
a number of investigators (e.g. Mizumori et al., 2004; Tse
et al., 2007). Prefrontal cortex damaged that results in ineffi-
cient behaviors could be due to an impaired ability of error
detection systems to guide adaptive behaviors and=or relatively
ineffective compensatory mechanisms that were engaged
(Ragozzino et al., 1999a).

In summary, working memory may be possible because it is
involved in (or in this case controls) organized exchanges across
widely distributed networks across the brain (Fuster, 2006,
2009). An important implication is that prefrontal cortex does
not by itself make executive decisions but rather it has the highly
influential role of biasing the impact of one or a combination of
prediction error analyses depending on the successes and failures
of recent predicted outcomes. In this way, prefrontal cortex ulti-
mately determines which behavior should next be implemented.

SELECTING FUTURE BEHAVIORS AND
PLANNED OUTCOMES

The circuit described thus far accounts for animals’ ability to
correct behaviors based on past outcomes. What happens when
there is more than one option for a decision or action? In
order to make that decision, one needs to look ahead in time
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to determine the expected outcomes one, two, or more choices
down the road, then select the option that will eventually lead
to the most desired outcome. If one can determine that the
ultimate goal can be achieved by going down path A but not
B, greater certainty could be associated with choice A. While it
is not known how such prospective analysis takes place in the
brain, recent data reveal that neurons in at least the hippocam-
pus have the capacity to prospectively and retrospectively code
spatial context information (e.g. Wilson and McNaughton,
1994; Buzsaki, 1989; Frank et al., 2000; Ferbinteanu and
Shapiro, 2003; Gupta et al., 2012). It is possible, then that
when animals are faced with choice points, the hippocampus
guides the prefrontal cortex analysis into the future by provid-
ing it with a sequence of information that does not reflect the
current location of the animals, but rather the expected loca-
tions and their significance. When prefrontal cortex receives
“expected” location information, it may naturally retrieve the
relevant information from long term memory about the associ-
ated expected outcomes. Indeed patients with hippocampal
damage lose the ability to plan for the future (Hassabis et al.,
2007; Schacter and Addis, 2007), a finding consistent with evi-
dence that rodent hippocampus can construct experienced and
never-before-experienced paths (Gupta et al., 2010).

RESTORING BASELINE ACTIVITY LEVELS

As elaborated above, the prefrontal cortex is thought to con-
tinually monitor the tonic activity levels of connected predic-
tion areas of the brain to ensure an optimal threshold for
detection of prediction errors. This is the case regardless of
whether prediction errors are detected or not. In this way
prediction-relevant neural networks are driven to reduce uncer-
tainty so that future predictions are accurate and so that
desired goals are achieved in the most efficient way.

IMPLICATIONS FOR THEORIES ON THE
ORGANIZATION OF MEMORY IN THE BRAIN

The proposed prediction model of memory asserts that dif-
ferent brain areas to mediate different forms of memory
because they support different type of prediction analysis. The
hippocampus evaluates the extent to which contextual features
have changed, while the midbrain-striatum evaluates whether
responses resulted in the expected goal outcomes. Sensory
regions of brain determine whether expected sensory events
occurred as predicted, and motor cortex and cerebellum signal
whether a specific behavioral act resulted in a specific outcome.
These different prediction analyzers interact to inform each
other if prediction errors occur, and this may have the effect of
altering future prediction thresholds across the brain. As an
example, errors of one type (e.g. episodic memory) may
increase the bias to use other (e.g. response) strategies to solve

a task by lowering the threshold for detecting a prediction
error.

A coordinated and goal-directed set of responses to predic-
tion errors is needed when multiple error messages are gener-
ated. The prefrontal cortex is suggested to coordinate the
thresholds for prediction detection across many brain areas in
order for the animal to produce the most adaptive responses to
unexpected events. Similar to the suggestion by Fuster (2009),
working memory reflects not just processing internal to pre-
frontal cortex, but this function emerges from the diverse and
simultaneous interactions of the prefrontal cortex with predic-
tion centers. In this case, prefrontal cortex’s control may be
defined by the nature of its feedback messages in response to
changes in the activity level in the connected prediction areas.
The prefrontal cortex may seek to maintain optimal (stable)
activity levels in the prediction centers so that they are maxi-
mally prepared for meaningful responses when needed. Pre-
frontal cortex, then, could be thought of as effectively
regulating the balance between stable and flexible neural proc-
essing in connected brain areas. By this logic, the prediction
model of memory views the vertebrate brain as having a single
memory system that is continuously integrating different sorts
of prediction analyses. The pattern of differential biases of con-
trolled neural activity by the prefrontal cortex determines the
selection of a particular adaptive behavior or choice. Decisions,
then, reflect the relative weighting of signals across brain areas
that generate prediction error signals. The clear benefit of this
type of system is that when one type of prediction analysis
fails, others may ramp up their influence over future decisions
and actions without having to “learn from scratch”.

The effectiveness of the regulation of prediction centers by
prefrontal cortex likely reflects modulating influences from
motivation and=or emotion processing areas such as the amyg-
dala. Such modulation reflects the current (or expected) emo-
tional or motivational state, and this regulation is manifested
by changing baseline firing rates in prediction brain areas
(Fig. 6). If the baseline remains too high (e.g., in states of high
arousal) or low (e.g., in states of depression), prefrontal cortex
should receive feedback about these changes in firing rates and
then implement mechanisms to restore neural activity to nor-
mal levels via its bidirectional-regulatory system. If prefrontal
cortex is damaged, then neural activity levels may remain
exceptionally high or low, resulting in poor choices, decisions,
and behavioral adaptation. If one of the prediction centers is
damaged (and this results in abnormal activity levels) then it
would be expected that prefrontal cortex will not be able to
restore optimal activity levels. If baseline activity in an intact
brain is restored after the onset of an arousing incident, one
should become able to analyze a situation by coordinating the
normal prediction-error based analysis that leads to adaptive
decisions and behavior selections. Supporting this view are
reports that altered emotional states (e.g., depression) are corre-
lated with changes in prefrontal cortex function (Baxter et al.,
1989; Mayberg et al., 1999). The connection between the pre-
frontal cortex and the amygdala provides reciprocal functional
regulation since targeted disruption of prefrontal cortex results
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in clear changes in affective states (e.g., Covington et al., 2010;
Hamani et al., 2010).

SCENARIO 1

As an example of the interactive nature of the different pre-
diction error regions of the brain, let’s consider the case when
an error signal is initially generated from the midbrain system
(e.g., when an expected reward does not occur). The error sig-
nal is transmitted to the prefrontal cortex (to activate working

memory processes) or directly to other prediction areas of the
brain (Fig. 7B1; so that they become more responsive to subse-
quent incoming information). The prefrontal cortex in turn
informs hippocampus about the reward prediction error (Fig.
7B2). Hippocampus may show elevated firing (Fig. 7B3), indi-
cating that it is receptive to processing new information that
will eventually reduce the uncertainty that arose after the stria-
tal prediction error message. If a context prediction error is
generated, this will be signaled to ventral striatum and the
midbrain dopamine regions (Fig. 7B3) where continued reward
prediction analysis should be encouraged (Fig. 7B4). A decline
in prediction error signals from hippocampus (indicating

FIGURE 7. Schematic illustration of the activation patterns of
amongst context prediction error (CPE) and reward prediction
error (RPE) systems, and their coordination permitted by working
memory (WM). Activated systems are circled in red, and thicker
lines reflect increase information transfer. A: When there are no
prediction errors, neural systems are stable and there is little or no
uncertainty in terms of outcome expectations. Arrows reflect the
baseline levels of reciprocal information exchange between RPE,
CPE and WM systems. B: (1) An error signal is initially generated
from the midbrain system (e.g., when an expected reward does not
occur), then transmitted to the prefrontal cortex (to activate work-
ing memory processes) or directly to other prediction areas of the
brain. (2) Using its working memory circuitry, the prefrontal cor-
tex then informs hippocampus about the reward prediction error.
3: Hippocampus becomes activated so that it is better prepared to
detect context prediction errors. 4: If a context prediction error is
generated, this will be signaled to striatum where continued

reward prediction analysis should be encouraged. A decline in pre-
diction error signals should be observed as memories are formed
and expectations match actual experiences. C: After learning, neu-
ral states restore to baseline levels. D: 1: If there is a change in a
familiar context a prediction error signal is generated initially in
hippocampus, and this message will be sent to both striatum. 2:
The signal to the reward and response system of the striatum facil-
itates transition to an “up” state so that it is better prepared to
respond to outcome information, and working memory processes
become engaged. In this example, a reward prediction error is
detected. (3) Prefrontal cortex then informs the CPE system of the
reward prediction error, and this state of uncertainty elevates neu-
ral activity in the hippocampus. (4) As context match signals
decline, prefrontal cortex may down-regulate the excitatory drive
that it was imposing on striatum when the mismatch signals first
occurred. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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reduced uncertainty) reflects the fact that long terms memories
have been updated, i.e. expectancies now match one’s
experiences.

Initially, after the first prediction error signal from the stria-
tum, the currently active memory network will be made more
labile so that new information can eventually be incorporated
into the memory network (Fig. 3). According to theoretical
models of cortical memory systems (e.g. McClelland et al.,
1995), this updating process should occur slowly to avoid cata-
strophic effects on existing memories. As long term memories
become updated, information about one’s expectations for a
given situation or context should also be update, and this
information will be fed forward to hippocampus to be used in
subsequent prediction analyses. As an example of the above
process, let’s say that on the next trial, an expected reward
again does not occur. As long term memories become updated
with this information, expectations for a reward will decline,
and this will result in an eventual “match” signal by hippocam-
pus. This will reduce signals to striatum to be responsive to
rewards. Indeed, this pattern of reduced responses to reward
has been observed empirically after learning is complete (Fig.
7C; Schultz et al., 1997; Puryear et al., 2010).

SCENARIO 2

A different example of interactions amongst prediction error
and general modulatory centers of the brain considers the case
when the first prediction error signal is generated by hippo-
campus, e.g. after an unexpected change in a familiar context
(Fig. 7D1). A context prediction error signal will be sent to
both striatum and prefrontal cortex to facilitate subsequent
reward valuation of the context change (striatum) and to
inform other prediction error brain regions (e.g. via prefrontal
cortex). The signal to the reward and response system of the
striatum may facilitate transition to an “up” state from a
“down” state (Fig. 7D2; Wilson, 1993; Wilson and Kawagu-
chi, 1996) for striatal and dopamine neurons so that they are
better prepared to respond to outcome information. Subse-
quently, prefrontal cortex may enhance the responsiveness of
multiple prediction monitoring brain systems to facilitate the
rapid analysis of changed conditions so that future behaviors
and decisions are flexible (Fig. 7D3). Since the ventral striatal
system will receive input from both the hippocampus and pre-
frontal cortex it may be particularly sensitive to response and
reward value outcome information. If the value of the reward
is deemed to have changed significantly (either higher or lower
than expected), then long term memories should begin to be
updated according in terms of the actual context in which the
response that generated the changed reward value was made
(Fig. 4). Again, the memory updating process may be incre-
mental, and thus appear slow. If the changed reward value con-
tinues to be experienced in the new context, eventually
hippocampus will no longer generate error signals since the
memory that defines the expected context features will be

updated to match the actual context. As more context match
signals are generated by hippocampus, prefrontal cortex may
down-regulate the excitatory drive that it was imposing on
striatum when the mismatch signals first occurred (Fig. 7D4).

COMPETITION OR COOPERATION BETWEEN
PREDICTION CENTERS

Many have described interactions amongst memory systems
as reflecting a type of competition and=or cooperation for the
control of behavior (Poldrack et al., 2001; Colombo, 2004;
Gold, 2004; Mizumori et al., 2004, Lee et al., 2008; Gruber
and McDonald, 2012). What are the mechanisms of this com-
petition or cooperation? Our prediction model of memory sys-
tems offers some new insights.

Evidence for competition or cooperation amongst memory
systems comes primarily from the result of studies of the effects
of reducing the functional capacity of one brain area (e.g. by
lesions or hormone treatment, McDonald and White, 1993;
McElroy and Korol, 2005; Gruber and McDonald, 2012)
while observing subjects’ performance on tasks that require
normal function of other intact memory areas. With this para-
digm, it was shown that hippocampal lesioned rats showed
faster learning of response or cue tasks that are usually consid-
ered to be mediated by the striatum (McElroy and Korol,
2005). It was reasonably concluded that there is a natural com-
petition between striatum and hippocampus that disappeared
after the lesion, and this enabled striatum to function more
effectively. A prediction model of memory provides additional
insight. According to this view, both striatal and hippocampal
prediction systems should be operational simultaneously during
baseline states regardless of the task at hand. In this way, stria-
tum can continually evaluate whether actions result in the
expected rewards and hippocampus continually assesses the
extent to which the context-defining features of current situa-
tion match those expected based on past experience. Indeed,
both the striatum and hippocampus contain spatial, reward,
and behavioral representations that respond to different types
of errors in prediction regardless of whether the task is spatially
or response based (e.g., Yeshenko et al., 2004; Eschenko et al.,
2007; Mizumori et al., 2004).

If the hippocampus become dysfunction (e.g., after a lesion)
it should still be possible to learn according to prediction errors
generated by the remaining systems. For example, striatum
should still be able to generate prediction error signals that
underlie response or cue learning, and thus rats will tend to
switch to a response strategy after a hippocampal lesion (e.g.
Packard and McGaugh, 1996). The prediction model of mem-
ory interprets this finding as a demonstration that hippocampal
prediction error messages that normally arrive in striatum
increase the analysis load on striatal prediction analysis net-
works. When the hippocampal input is removed, the process-
ing load is lessened and striatum is now able to more
effectively evaluate whether reward outcomes occurred as
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predicted by a specific behavioral sequence of the animal.
According to this explanation, striatum and hippocampus do
not directly compete for control of a behavior per se but
rather they effectively compete for access to the outcome val-
uation process. Another implication is that habit learning
may not by itself be incremental and slow as is commonly
thought. Rather, in intact animals, habit learning may appear
slow because of a prioritization for valuation of hippocampal
context prediction error signals relative to reward prediction
error signals. Indeed rats seem to have a predisposition to
learn tasks using context cues rather than response informa-
tion when the solution to a problem is ambiguous (Packard
and McGaugh, 1996). This prioritization may reflect a natu-
ral and innate hierarchy of processing priorities for decisions
making systems based on the adaptive value of one strategy
or algorithm or another. Context processing may confer
greater adaptive flexibility than learning only by habits. One
prediction, then, is that striatal-dependent learning may be
found to be rapid if learning explicitly did not involve con-
text processing (e.g., aversive conditioning).

In the event that striatum is impaired, hippocampal-based
behaviors should remain at least initially intact since the reward
prediction neural circuitry includes key structures afferent to
the striatum (i.e., within the network that includes the
habenula-ventral tegmental (dopamine) circuit, Hikosaka et al.,
2008). Thus it is possible that reward prediction error signals
can continue to influence hippocampus prediction analyses,
albeit perhaps less efficiently. However, an important part of
especially navigation-based learning is to understand the rela-
tionship between sequences of actions and a desired outcome.
Therefore, it is predicted that if striatal-lesioned subjects are
challenged with complex spatial navigation problems, or com-
plex econometric analysis, deficits will emerge because rats will
have difficulty learning the expected consequences of multiple,
flexible behavioral trajectories. Such a result would imply that
optimal continued performance on a complex navigation-based
task requires the maximum types of behavioral flexibility that
is normally supported by the collection of prediction error
mnemonic processors.

The intrinsic regulation attributed to the components of a
prediction model of memory is remarkably analogous to the
homeostatic regulatory system that has been shown to operate
at the synaptic level (Turrigiano, 1999; Marder and Goaillard,
2006; Turrigiano, 2011). In what follows we explore the possi-
bility that principles that guide homeostatic neural plasticity at
the synaptic level also apply at the neural systems level to
account for the self-regulatory and interactive capacity of the
many memory processors of the brain. First, we briefly describe
a model for the self-regulation of synaptic efficiency (Marder
and Goaillard, 2006; Turrigiano, 2011). This neuroregulatory
perspective is then compared to the interactive prediction
model of memory in an attempt to not only account for the
remarkable and precise coordination of memory processing in
the brain but to also further illustrate how memory and deci-
sion making brain circuitry are so intimately tied together that
one cannot function without the other.

HOMEOSTATIC REGULATION OF MEMORY
PROCESSING SYSTEMS

Since the early 1930s scientists have described the remark-
able ability of the body to maintain optimal function despite
perturbations of the surrounding environment (e.g., Cannon,
1932). This adaptive process, termed homeostasis, includes sen-
sors that detect deviations in physiological states relative to a
previously defined optimal state (or set point). Errors or devia-
tions detected by the sensors inform a controller to up or
down regulate mechanisms that can bring the current physio-
logical state closer in line with the set point. Principles of
homeostasis can account for self-regulatory synaptic mecha-
nisms (e.g., Turrigiano, 1999; Marder and Prinz, 2003; Turri-
giano and Nelson, 2004; Turrigiano, 2008, 2011) and this has
led to the view that neural circuits are also subject to homeo-
static regulation (Turrigiano, 1999; Marder and Goaillard,
2006; Turrigiano, 2011). Thus, homeostatic regulation could
be a key mechanism that maintains the balance between stabil-
ity and flexibility that neural networks needed to support
dynamic and adaptive responses.

At the synaptic level, homeostatic regulation is possible
because a form of calcium-mediated plasticity allows neurons
or neural networks to maintain a key physiological parameter
(firing rate), within an optimal range, or set point, despite new
excitatory and=or inhibitory inputs. Such homeostatic plasticity
helps to insure that cells do not, for example, suffer cata-
strophic effects of overexcitation when constant and strong
excitatory inputs arrive (as in the case of LTP). Upon arrival of
strong excitatory input, self-regulation of firing rates is evident
by the fact that the synaptic strengths of all synapses of the
stimulated cell are reduced while maintaining the relative dis-
tribution of synaptic weights across the cell. This “scaling” pro-
cess makes it possible to retain new information while still
allowing for future plastic changes (Turrigiano, 1999; Turri-
giano et al., 1998).

Marder and Goaillard (2006) suggested that homeostatic
plasticity may be nested: calcium sensors may monitor neural
firing rates, then up or down regulate the availability of gluta-
mate receptors to ramp up or down firing rates. Groups of
neurons or neural networks may sense changes in firing collec-
tively to regulate population activity levels and patterns of acti-
vation. In this way homeostatic plasticity enables groups of
neural circuits to find a balance between flexible and stable
processing as needed to learn from experiences, and to be
responsive to future changed inputs. The specific details of
how neural networks engage in homeostatic regulation remain
to be discovered. Nevertheless, it is worth noting that homeo-
static regulation at the neural systems level clearly occurs as evi-
denced by studies of brain development, as well as from
studies of reactive or compensatory neuroplasticity mechanisms
that occur in response to experience (e.g. sensorimotor learn-
ing; Froemke et al., 2007) or brain injury (e.g. brain trauma or
addiction; Robinson and Kolb, 2004; Nudo, 2011). While
homeostatic neural plasticity mechanisms have not been used
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to account for complex learning, current theories of reinforce-
ment- and context-based learning and memory commonly
posit that the outcome of behaviors and choices feed back to
update relevant memories and future decision (as described
above).

To conclude that fundamental operating principles of a
homeostatic system can be used to enhance our understanding
of the interactions between memory processing centers of the
brain, we must first determine if the elements of a homeostatic
system can be identified as part of memory processing. Key
components of any homeostatic model include a variable that
is being monitored by a sensor and then regulated by a control-
ler. Given the complexity of memory processing, we start by
assuming that the relevant homeostatic neuroregulatory mecha-
nisms are likely nested (Marder and Boaillard, 2006). The ulti-
mate regulated variable is a decision or action (also see Kurth-
Nelson and Redish, 2009). The outcomes of decisions and
behaviors are monitored via a number of sensors, i.e. neural
circuits that monitor the accuracy of predicted information. If
sensors detect deviations (i.e. prediction errors), a controller (or
regulatory system) must be engaged in order to restore accurate
predictions.

At a more cellular level of the “nested” system, specific neu-
ral variables need to be monitored in order to identify the cur-
rent system state. Since the firing rates of neurons are a
homeostatically regulated variable that is regulated to achieve a
balance between synaptic stability and flexibility (Marder and
Goaillard, 2006; Turrigiano et al., 1998; Turrigiano, 2011), a
key neural variable may be the optimal level of excitability of
neurons in prediction areas of the brain. In this case, changes
in calcium flux may be an important part of the sensing system
as it reflects the current level of neural activity. When firing
rates become higher or lower than the optimal level, this could
be taken as an indicator of a mismatch between optimal and
actual rates, and a controller mechanism should be engaged to
bring the firing rates back to the optimal levels so that cells are
prepared to respond to subsequent input. However, merely up
or down regulating firing rates is a short term response to
altered firing induced by uncertain or unexpected situations.
Long term adjustments necessarily include the regulation of
decisions and behaviors that resolve uncertainty or errors in
prediction. Given that prediction error brain areas are highly
interconnected with the prefrontal cortex, a likely candidate
structure that serves as the main controller for prediction error-
based memory systems is prefrontal cortex. In this case, firing
rates of cells within the prediction error processing areas of
brain may be “sensed” by the prefrontal cortex via direct affer-
ent fibers. If the baseline rates are too high or too low relative
to the optimal state needed for detecting future prediction
errors, then prefrontal cortex may engage mechanisms to
restore the firing rate to a predetermined “set point”.

According to the model in Figures 5 and 6, the detection of
a prediction error, or mismatch, should produce significant
deviations from the firing rate set point, and this error message
could impact prediction error processing in other brain areas as
well as the controller function of the prefrontal cortex. Prefron-

tal cortex, in turn, should orchestrate the information flow to
and from all prediction error brain areas according to homeo-
static principles. With the goal of ultimately restoring the set
point of neural activity in prediction error brain regions (i.e.,
reduce error signals to restore a stable neural state that reflects
greater certainty about outcomes of decisions and actions), pre-
frontal cortex should continually and automatically receive
feedback about the current excitatory state, and then strategi-
cally up or down regulate the excitability of different processing
systems depending on the past outcomes of behaviors (Fig. 6).
Part of this process is to incorporate information (presumably
from the striatum) about the successes of recent behaviors so
that the same or different behaviors can be next selected. The
intrinsic recurrent circuitry of the prefrontal cortex may serve
this function well (Arnsten et al., 2012).

With regard to the impact of homeostatic regulation of predic-
tion centers on established memories, it would be expected that
the outcome of the prediction analysis (which includes error
detection and controller functions) should guide the updating of
memories with information about the success (or failures) of
responses as an animal attempts to achieve a desired goal. In this
way, the next time a particular memory is retrieved, the most
recent and accurate information can be used to generate the next
set of expectations. A memory of an event, then, should include
not only the defining cues and outcomes, but also the emotional
tone (since the amygdala is postulated to contribute to the
threshold for detecting prediction errors), the context-specific
behavioral actions that led to decisions, and the strategy associ-
ated with the reconciliation of error messages.

It should be noted that while the prefrontal cortex may be a
major controller of the impact of prediction error signaling in
the brain, other sources of varying degrees of control may arise
from the any of the brain regions that analyze prediction out-
comes given that they are interconnected. For example, a pre-
diction error from the hippocampus could be transmitted to
midbrain-striatal neurons along pathways that do not initially
include the prefrontal cortex. Indirect support for this idea
comes from observations that conditions that produce error
messages in the hippocampus change reward responses of dopa-
mine neurons (Puryear et al., 2010; Jo et al., 2013), and phasic
theta comodulation is observed between hippocampus and
striatum (DeCouteau et al., 2007) during decision tasks.

In sum, homeostatic regulatory processes may account for
the automatic and continuous self-regulatory nature of predic-
tion error analysis, decision making, learning and memory.
Such a natural and adaptive mechanism optimizes the contri-
bution of different types of prediction error signals to future
decisions and actions according to the pattern of recent suc-
cesses and failures in prediction. This more dynamic view of
the interactions between adaptive memory and decision making
circuitry has important implications for the development of
more efficient and long lasting cognitive and behavioral inter-
vention methods for not only amnesic patients but also for dis-
orders characterized by suboptimal decision processing such as
addiction, autism, and schizophrenia. Therefore, the remainder
of this article evaluates the extent to which the current
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literature validates key premises of a homeostatic view of mem-
ory and decision systems interactions. This discussion also
highlights future directions for research that test the prediction
model of memory.

PREMISE 1

There is a fundamental and common currency of informa-
tion representation across prediction centers of the brain. A
common currency should facilitate information exchange and
regulation across brain regions. Also, if identified, one would
be able to use the same neurometric to directly compare
regional differences in aspects of decision and=or memory
processing. A search for a common currency of representation
has not been systematically carried out since a multitude of dif-
ferent behavioral or cognitive tasks are used in studies of neural
representations. There is initial evidence, however, that support
Premise-1 since strikingly similar types of neural representation
are found across many memory processing regions of brain
when rats perform appetitive tasks on open elevated mazes
such as the plus maze or radial arm maze. The common cur-
rency includes representations of rewards, the spatial features or
requirements of a task, task phase, and egocentric movement.
Of these neural correlates, egocentric movement (in particular
velocity or acceleration of translational movement across the
maze) has been the most common and robust (as described in
Penner and Mizumori, 2012b). In the future, these correlates
of connected brain areas should be recorded simultaneously so
that their temporal relations can be identified. Although not
systematically assessed to date, one would expect to find com-
mon codes for econometric information regarding the salience
of the common currency units.

PREMISE 2

The content of stored memories (as reflected in representa-
tions of expected information) should include not only the
unique sensory and behavioral aspects of events, or contexts,
but also information about the value of the sensory and behav-
ioral information. Specifically, it should be possible to identify
neural representations of learned information that dynamically
vary according to its subjective value. While prediction error
coding has been described in sensory, motor, striatal, midbrain,
and hippocampal areas, a systematic and explicit econometric
analysis of expectancy (i.e. memory) information remains to be
conducted. As an example, it is common to record hippocam-
pal place fields that seem to be driven by a particular constella-
tion of external (usually visual) cues (Mizumori, 2008a), and
prediction error coding is observed when rewards are unexpect-
edly omitted. However, the extent to which place fields incor-
porate the subjective value of the cues has only begun to be
explored. Initial evidence suggests that econometric information

is indeed part of the hippocampal neural (i.e. memory) code:
Lee et al. (2012) and Penner et al. (2012) recently described
place field remapping that depended on the expected probabil-
ity of rewards of large or small magnitude.

PREMISE 3

Mismatch, or prediction error, messages in one brain area
should induce system-wide responses. Based on known patterns
of connectivity between brain regions, and in the interest of
efficient system function, a prediction-based model of memory
hypothesizes that the different prediction processing areas are
interdependent in the sense that generation of error signals in
one system should quickly influence the future firing patterns
of neurons in other prediction areas. Although more direct evi-
dence is needed, it is worth noting that neural responses from
two or more brain areas show that each area generates predic-
tion signals during the performance of the same behavioral task
(e.g. Yeshenko et al., 2004). In these tasks, encounters with
unexpected rewards presumably generated a reward prediction
error signaled by greater dopamine and striatal responding (e.g.
Fig. 7). This in turn should lead to reorganization of the distri-
bution of place fields (i.e. the generation of a new “map” or
memory). Following a context manipulation, one would expect
to see alterations or remapping of place fields, followed by
altered reward value signaling by the dopamine neurons. Sev-
eral studies (e.g. Yeshenko et al., 2004; Smith and Mizumori,
2006; Puryear et al., 2010; Martig and Mizumori, 2011; Smith
et al., 2012; Penner et al., 2012) now show that both hippo-
campal and striatal neural correlates are significantly affected
by changes in context and reward processing during the per-
formance of a maze-based tasks regardless of the optimal strat-
egy needed to solve the task (e.g., place vs. response strategies).

Recordings in hippocampus and striatum have not always
been simultaneous, however, and thus it is not possible to state
with certainty that changes in one area preceded changes in the
other. At this point we can only logically deduce this sequence of
events based on past studies of dopamine and hippocampal
responses to unexpected events, and findings that hippocampal
place fields are severely disrupted when the dopamine system is
not functional (Martig et al., 2011). The future application of
new technologies and approaches (e.g. optogenetics, DREADD,
targeted use of viral vectors, etc.) to studies of the functional con-
nectivity of prediction circuitry in the brain should reveal impor-
tant new information about the spatial and temporal causes of
the changes in firing in one prediction error brain region relative
to changes in firing in connected areas, and then to behavior.

PREMISE 4

Neural codes should become stronger (i.e. more predictive)
when their type of prediction comes to dominate the control
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of actions and decisions. Since a desired outcome of an adapt-
ive decision making system is the accurate prediction of future
consequences, one would expect that as learning progresses, the
certainty and predictability with which desired outcomes occur
will improve. Underlying this change, neural signals should
become more predictive of cues or behaviors that lead to the
desired outcome. Furthermore, neural codes might be expected
to become more information-selective and reliable as these fea-
tures come to reliably predict outcomes. Evidence in support
of Premise-4 is that hippocampal place fields become more
spatially-selective and reliable as hippocampal-dependent spatial
learning progresses, and as animals acquire greater familiarity
with a given environment (Muller and Kubie, 1987; Wilson
and McNaughton, 1993; Markus et al., 1995; O’Keefe and
Burgess, 1996; Hetherington and Shapiro, 1997; Mizumori
and Kalyani, 1997; Lenck-Santini et al., 2001, 2002; Fenton
et al., 2010), but see Jeffrey et al. (2003) and Cooper and Miz-
umori (2001). Also place cells generate different patterns of
place fields when rats need to learn to distinguish the signifi-
cance of different contexts (Smith and Mizumori, 2006). Stria-
tal neural representations of egocentric directional movement
(e.g. turns in a maze) become more prominent as rats learn a
T-Maze task (Barnes et al., 2005). Further, with continued
training and conditioning, dopamine burst firing and release
become associated with cues that predict a reward (Schultz
et al., 1997; Flagel et al., 2011)

PREMISE 5

The generation of more selective and reliable neural codes
during learning should coincide with the evolution of more
precise spatial and temporal coordination of neural activity
within and across the relevant brain structures. When faced
with uncertainty, e.g. usually after the detection of a prediction
error, the working memory function of the prefrontal cortex
should be engaged to simultaneously (although perhaps differ-
entially) elevate the sensitivity of all prediction error brain
structures in an attempt to facilitate the most rapid identifica-
tion of all errors, as well as the determination of their
significance.

While direct evidence that the prefrontal cortex simultane-
ously activates multiple prediction-related structures in a single
task remains to be determined, the prefrontal cortex is consid-
ered to be strategically located to impact multiple memory sys-
tems as well as decision neural circuitry (e.g., see review in
Euston et al. 2012; Hyman et al., 2012). Supporting this view,
lesions or inactivations of the prefrontal cortex disrupts goal-
related neural codes in hippocampus (Kyd and Bilkey, 2003;
Hok et al., 2013) and the VTA (Jo et al., 2013) while rats per-
form a spatial maze task. Also prefrontal cortex damage impairs
a wide range of learning and memory abilities (Fuster, 2008,
2009) presumably because of its widespread control over the
balance of excitation and inhibition in the many prediction

structures of the brain. There is initial evidence that after initial
learning, there is greater coherence and synchrony of low fre-
quency potentials (LFPs) between hippocampus and striatum
(DeCouteau et al., 2007), and between prefrontal cortex and
hippocampus (Hyman et al., 2005; Jones and Wilson,
2005a,2005b; Siapas et al., 2005; Shirvalkar et al., 2010) when
decisions are made. A challenge for future research is to under-
stand the mechanisms and significance of integration across
multiple frequencies of brain rhythms, and between LFPs and
single cell activity, during decision making and different predic-
tion error states (e.g. Hyman et al., 2010; Buzsaki and Wang,
2012; Lisman and Jensen, 2013).

PREMISE 6

Choice outcomes may be more related to neural representa-
tional patterns on subsequent trials than the current trial. As
described earlier, the outcomes of choices should bias the effi-
ciency with which prediction error regions of the brain func-
tion in the future, presumably by giving feedback to prefrontal
cortex, which in turn incorporates the new information in its
subsequent regulation of the excitability state of prediction
memory circuitry. Most single unit studies correlate the speci-
ficity and reliability of characteristics of neural representations
with performance on the trial in which the neural data were
collected. This is indeed a reasonable comparison to make.
However, our prediction-based model of memory makes the
explicit suggestion that the neural correlates should be even
more striking if related to choices made on recent trials, and
perhaps even to specific prior choices of the same trial.

Indirect support of Premise 6 can be found in studies that
show that neural firing is related to past events and choices.
This sort of retrospective coding was illustrated when hippo-
campal place fields were shown to correlate to past behavioral
trajectories of the rat being recorded (Frank et al., 2000; Wood
et al., 2000; Ferbinteanu and Shapiro, 2003; Mizumori et al.,
2004; Lee et al., 2006). Also many laboratories have demon-
strated that neural codes during sleep reflect a temporal organi-
zation of neural firing that was recently experienced (e.g.
Wilson and McNaughton, 1994; Shapiro and Ferbinteanu,
2006; Bender and Wilson, 2012). More direct evidence in sup-
port of Premise 6 was recently reported. Motor cortical and
parietal cortex neurons showed firing rates that vary depending
on the specific outcomes of prior choices (e.g. Marcos et al.,
2013), and it has been shown that rats adjust choices based on
the delay imposed on prior trials (Mazur, 1988; Cardinal et al.,
2002). There is also evidence of prospective coding in that
neural firing correlates with intended behaviors or expected
goal outcomes (e.g. Buzsaki, 1989; Wilson and McNaughton,
1994; Frank et al., 2000; Wood et al., 2000; Louie and Wil-
son, 2001; Lee and Wilson, 2002; Pennartz et al., 2002; Fer-
binteanu and Shapiro, 2003; Yeshenko et al., 2004; Foster and
Wilson, 2006; Gupta et al., 2012). However, the prediction
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error model suggests that the behavioral correlate of cells with
prospective codes should be found to be even more selective if
correlated with performance on the prior trial. Finally, Gupta
et al. (2012) have shown striking forward sweeping of sequen-
tial activation of place fields but the sweep began from a prior
location of the animal. That is, the apparent predictive nature
of prospective codes was based on the results of prior choices.

PREMISE 7

The plasticity of the brain’s memory circuitry is homeostati-
cally and intrinsically regulated to result in the self-regulated
and dynamic coordination of plasticity mechanisms at multiple
levels, from ion channels, synapses, single unit, to local and
extended neural networks. Adaptive interactions between the
modulatory and prediction error components of the brain’s
memory circuitry require coordination across all levels of func-
tion and integration. In this way, not only can a healthy bal-
ance between neural stability and flexibility be achieved, but an
optimal level of stable behavior should maximally prepare ani-
mals to detect the need to engage in behavioral change. Dem-
onstrating this sort of multilevel coordination remains a grand
challenge for it requires technology that monitors multiple lev-
els simultaneously in behaving animals. Although still in its
infancy, Fujisawa and Buzsaki (2011) have demonstrated the
feasibility of this general approach as they recorded simultane-
ously single unit activity and LFP (local field potentials) across
multiple regions of the brain. New forms of neural coordina-
tion were described, as well as new neural phenomenon (a 4
Hz synchronizing rhythm) that could be used to explain how
prefrontal cortex might coordinate neural signals from multiple
brain areas (Penner and Mizumori, 2012b). Additional details
about the functional significance of prefrontal cortex control
over prediction areas is expected to emerge as new technologies
(e.g. optogenetics combined with electrophysiology, Warden
et al., 2012) are applied to the problem of understand the
organization of memory processing in the brain.

CONCLUSIONS

A homeostatic model of memory posits the existence of a
single, self-regulated (Buzsaki, 2013) memory system that
reflects multilevel (from cells to neural system) integration
across different prediction processing areas of the brain. These
different prediction processors have been more commonly
referred to as different memory systems such as the hippocam-
pus (episodic memory) and striatum (response or habit mem-
ory). Significant evidence suggests that these memory systems
have in common output that signals errors in prediction of
events and=or their outcomes, but they differ in terms of the
nature of the prediction generated (e.g. context prediction

errors vs reward=response prediction errors). It is suggested that
the prefrontal cortex plays a critical role in coordinating the
multiple levels (from genes to cells to circuits) of prediction
analysis across multiple prediction centers. From the wide-
spread control and influence of the prefrontal cortex emerges
an essential capacity for the flexible use of information to gen-
erate adaptive behaviors and to predict future outcomes. A
homeostatic function of the prefrontal cortex is suggested to
maintain optimal baseline (tonic) firing rates that ensure appro-
priate sensitivity for the future detection of prediction errors.
That is, analogous to the suggestion by many computational
models, predictive memory systems are driven by mechanisms
that reduce uncertainty, and the prefrontal cortex is ideally situ-
ated to serve as a controller that seeks to resolve uncertainty.
We hypothesize that prefrontal cortex accomplishes this task by
continually engaging corrective mechanisms that restore opti-
mal baseline firing rates after prediction error signals are gener-
ated. Emergent outcomes of this process are flexible and
adaptive behaviors even in the most challenging of situations.
Accordingly, compromise to any of the prediction circuits
should result in less flexible and adaptive behaviors. This
reduction of flexibility and adaptability could result in rigid
and suboptimal decision making, learning, and memory as is
seen in cases of addiction (e.g., Monterosso et al., 2012), and
neurological diseases such as Alzheimer’s and Parkinson’s dis-
ease. The symptoms presented in such extreme cases of malad-
aptative behaviors reflect not only that a particular prediction
processing system has gone awry but also the brain’s attempt to
compensate for the lost function.
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