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IMMUNOLOGY

The RAG key to vertebrate adaptive immunity descended directly from
a bacterial ancestor
Xin Tao 1,3, Ziwen Huang1, Fan Chen1, Xinli Wang1, Tingting Zheng5, Shaochun Yuan1,4,∗ and
Anlong Xu1,2,∗

The emergence of RAG recombinase
to mediate V(D)J recombination has
been considered an important milestone
in the evolution of adaptive immunity
in jawed vertebrates. In past decades,
hypotheses, including the invasion of
viral or bacterial genes and the trans-
position of mobile elements, have been
proposed to shed light on the origin and
evolution of the RAG genes and V(D)J
recombination. In 2016, our discovery
of the long-sought-after ProtoRAG trans-
poson in the lancelet—a ‘living fossil’
of vertebrates—directly supported the
hypothesis that the RAG recombinase
complex originated from an ancestral
RAG-like (RAGL) transposon [1]. A
typical ProtoRAG contains a pair of
recombination signal sequence (RSS)-
like terminal inverted repeats (TIRs)
and convergently orientated RAG1-like
(RAG1L) andRAG2-like (RAG2L) genes
[1,2]. After the discovery of ProtoRAG,
RAGL transposons were recently found
to be distributed widely in bilaterians
[3,4]. However, the existence of the
RAGL transposon in more primitive
organisms and its continuous evolution
remain to be further elucidated.

After searching forRAG1 orRAG2ho-
mologs in>680 000 assembled genomes
(Supplementary Table S1), 786 RAG1L
and 191RAG2L homologs were found in
173 speciesdistributedbroadly across the
Eukaryota (Supplementary Fig. S1). Al-
though most of the identified sequences
were partial, some complete and po-
tentially active RAGL transposons were

found in some protostomes and cnidar-
ians, as previously reported [3,4]. In
Protostomia, RAGL genes are complete
and tightly linked in several lophotro-
chozoans but are fragmented and un-
coupled in ecdysozoans. A similar ob-
servation was found in the Cnidaria, as
RAGLs are complete and probably ac-
tive in several corals such as Fungia cos-
tulata and Fungia tenuis (Fig. 1a), but
are fragmented and uncoupled in some
other cnidarians.These observations sug-
gest that the RAGL transposon emerged
earlier than the divergence of bilaterians
and non-bilaterians. Importantly, com-
plete and tightly linkedRAG1 andRAG2
homologs were found in the unicellular
microalgae Aureococcus anophagefferens
(Class Pelagophyceae, Phylum Ochro-
phyta, Kingdom Stramenopila). Frag-
ments of RAG1L homologs were also
identified in several other primitive eu-
karyotes (Supplementary Fig. S1), trac-
ing the origin ofRAGLhomologs back to
the early eukaryotes for the first time.

After cloning the ancient AanRAGL
from A. anophagefferens (Fig. 1a), typ-
ical transposon features of AanRAGL
elements were found, including a pair
of asymmetric TIRs and the 5-bp target
site duplications (TSDs). Similar to
the TIRs in ProtoRAG and the RSSs in
V(D)J recombination, the pairedTIRs of
AanRAGL are characterized by two con-
served elements, a 13-bp element (CA-
CACCCAAACCT) and a 10-bp element
(CCTCAA[C/T]A[C/T]G), which are
separated by a pair of 4/13-bp space se-

quences (Fig. 1b). Bracketed by the pair
of TIRs, two single-exon encoded genes
similar to RAG1 andRAG2 were identi-
fied. However, unlike the other identified
RAGL transposons,AanRAG2L is located
upstream of AanRAG1L and transcribed
toward AanRAG1L in the same direction
(Fig. 1a). To reveal the transpositional
activity of AanRAGL in vivo, flanking
sequences of AanRAGL were cloned
from the genome of the NCMA culture
(CCMP 1984, source of the reference
genome) using the splinkerette-PCR
method. AanRAGL was found to have
been polymorphically inserted into the
host genome, which was shown in both
the electrophoresis and the alignment of
various flanking sequences (Fig. 1c and
Supplementary Fig. S2). Among these
polymorphic insertions, two paired flank-
ing sequences were seamlessly joined in
the reference genome, revealing a recent
transposition event in the genome of our
NCMA cultures but not in the reference
genome (Fig. 1d, upper). This insertion
was confirmed by cloning the intact
RAGL transposon from the NCMA
culture but not from another Institute
of Oceanology Chinese Academy of
Sciences culture (Fig. 1e). Moreover, an-
other pair of flanking sequences without
TIRs and TSDs can be well aligned to
the reference genome (Fig. 1d, lower),
indicating the loss of some AanRAGL
copies in the reference genome due to
transpositional activity. Thus, as early
as the unicellular eukaryotes (median
origin time 1552Myr) [5], active RAGL
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Figure 1. Evolution of the RAG1 and Transib homologs. (a) Schematic diagram showing the genomic organization of RAG-like (RAGL) ho-
mologs in Aureococcus anophagefferens (pelagophyte), Fungia costulata (stony coral), Branchiostoma belcheri (lancelet) andMus musculus (mouse).
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Figure 1. (Continued.) The diagram is not scaled to sequence length. Species names are abbreviated using three letters as shown, which was also
applied in the following context. 5’-/3’-untranslated region (UTR), transcription start site (TSS), exons, Poly(A) sites, 5’-/3’-terminal inverted repeat
(TIR) and target site duplication (TSD) are shown as indicated. The 5’-/3’-UTRs and coding sequences of FcoRAGL were predicted using FGENESH.
(b) The consensus sequences of mouse RSSs and RAGL TIRs are shown in a weblogo diagram through an unspaced alignment. The spaced sequence
alignment of TIRs from RAGL transposons and mouse RSSs show a common bipartite conserved structure among them. The conserved elements in TIRs
are shaded using different colors. The highly conserved nucleotides are colored yellow. Pmi, Patiria miniata; Pfl, Ptychodera flava; Nge, Notospermus
geniculatus. (c) Detection of 5’-terminal and 3’-terminal flanking sequences of AanRAGL in the A. anophagefferens using agarose gel electrophoresis.
The flanking sequences were cloned using the splinkerette-PCR method (primers are listed in Supplementary Table S2) and the original genomic DNA
was extracted from the CCMP 1984 strain of A. anophagefferens (NCMA cultures). (d) Schematic diagram of two AanRAGL loci identified from the
splinkerette-PCR assays. The identical regions between the loci and the reference genome are shown by the dash lines. (e) Detection of the AanRAGL
insertion in Scaffold 5 from two strains of A. anophagefferens. g1: CCMP1984 strain from National Center for Marine Algae andMicrobiota (NCMA); g2:
A. anophagefferens from Institute of Oceanology Chinese Academy of Sciences (IOCAS). (f) Phylogenetic analysis of RAG1 and Transib homologs. The
maximum-likelihood phylogenetic tree was constructed using IQ-TREE based on the core region of RAG1 and Transib homologs. The optimum LG+F+R6
model was tested and selected, and the ultrafast bootstrap (%) support is shown near the branches. The newly identified Transib proteins are marked
using a prefix composed of a three-letter abbreviation of the species name, like those of RAG1 homologs. The primary diversification of protein domains
is shown near the branches of the protein clans. The Transib family was subdivided into two subgroups according to phylogenetic relationships of Transib
proteins. Osp, Ophiothrix spiculata; Rro, Rhizophlyctis rosea; Mle, Mnemiopsis leidyi; Pba, Pleurobrachia bachei; Jsi, Juglans sigillata; Cch, Capsicum
chinense; Cli, Corrigiola litoralis; Hov, Hordeum vulgare; Hvu, Hydra vulgaris; Sla, Silene latifolia; Aps, Austropuccinia psidii; Epu, Erysiphe pulchra; Mpl,
Massospora platypediae; Cth, Candidatus thioglobus. The complete phylogenetic tree is shown in Supplementary Fig. S3b. The complete list of species
abbreviations is shown in Supplementary Table S3. (g) Sequence alignment of the spaced TIRs from Subgroup I and Subgroup II Transibs. The conserved
elements in TIRs are shaded using different colors. The highly conserved nucleotides are colored yellow. Species abbreviation as shown in Fig. 1f.
(h) Multiple sequence alignment of representative RAG1 and Transib homologs showing the domain diversification. The Transib subgroups are as
defined in Fig. 1g and the conserved amino acids in three types of CTT domains are shaded in color. Mmu, MmuRAG1; Hsa, HsaRAG1; Bbe, BbeRAG1L;
Nge, NgeRAG1L 3820; Fco, FcoRAG1L; Rro, RroRAG1L 0490; Aan, AanRAG1L; Mle, MleTransib 3931; Hm9, HvuTransib-9 HMp; Pba, PbaTransib 8175;
Cth, CthTransib 0091; Hze, HzeTransib; Hm7, HvuTransib-7 HMp; Cch, CchTransib 3309; Epu, EpuTransib 3173; Eba, EbaTransib 0044. CTT, C-terminal
tail; CTT1, type I C-terminal tail; CTT2, type II C-terminal tail. The complete sequence alignment is shown in Supplementary Fig. S5. (i) Model on the
origin and evolution of RAG and Transib. The RAG1 and Transib homologs were proposed to have descended from a common bacterial Transib ancestor.
After descending from the bacterial Transib ancestor, descendants in Subgroup II experienced complex domain loss and acquisition and spread broadly in
different hosts through HGT (horizontal gene transfer) (indicated using red dashed lines). However, descendants in Subgroup I inherited many ancestral
characteristics, such as the α11–α12 region, the CTT1 domain and the asymmetric TIRs. At the early times of eukaryotes, one member of the Subgroup
I Transibs acquired RAG2L to generate the ancient RAGL transposon. This ancient RAGL then underwent host domestication events in a vertical manner,
such as gene duplication [3], transposon fossilization, loss of CTT1, selection of R848 in RAG1 and gain of hinge region in RAG2 [9]. The vertebrate
type of RAGLs were generated after duplication and divergence of the primitive RAGLs, which are distinguished using two different blue colors. The
fossilized RAGL transposons in Echinoderms are indicated by gray TIRs. The evolution of RAG and Transib after splitting from the common bacterial
ancestor are independently shown in the upper and lower parts, respectively, but this does not mean that their host species were separately evolved.

transposons have appeared and pre-
served many conserved characteristics
of RAG homologs. The divergent gene
direction of the AanRAGL1/2 and
some single RAG1L fragments in other
primitive eukaryotes imply that the
original RAGL transposons may have
experienced gene insertion or inversion.

Before the discovery of ProtoRAG
in lancelets, Transibs were found to be
widely distributed in protostomes and
cnidarians, and RAGL transposons were
thought to be derived from a Transib
transposon by acquisition of a RAG2L
gene [6–10]. The recent identification
of RAGL transposons in protostomes
and cnidarians suggests another possi-
bility: that Transib arose from a RAGL
transposon by loss of RAG2L [4]. To
conclusively clarify the evolutionary
relationship between RAGL and Transib
transposons, we searched for Transib
homologs as performed in RAGL and

identified dozens of potential Transib-
like proteins in bacteria (42), fungi (20),
plants (39), and ctenophores (6), and
hundreds in other metazoans. Analysis of
theTransib andRAG1Lproteins showed
that the average protein identities among
RAG1Lcore, Transib, combinedRAG1L
core and Transib were 36.75%, 34.28%
and 26.22%, respectively (Supplemen-
tary Fig. S3a). RAG1L and Transib pro-
teinswere phylogenetically clustered into
two separate clans after setting the root
ahead of the bacterial Transib branch
(Fig. 1f and Supplementary Fig. S3b).
The pelagophyte AanRAG1L was in the
root of the RAG1 clan and the phylo-
genetic relationship of RAG1 homologs
was generally consistent with their host
species (Fig. 1f and Supplementary
Fig. S4a). In addition, RAG1Ls were
expanded into several diverged copies
in some protostomes, echinoderms and
hemichordates, and appeared to evolve

slowly in chordates. Similar observations
were obtained from the analyses of
RAG2 homologs (Supplementary Fig.
S4b). These results suggest that the
evolution of the RAGL transposons was
mainly in a vertical manner and probably
accompanied by limited HGT.

For the Transib clan, two major
subgroups were gathered and de-
fined as Subgroups I and II (Fig. 1f
and Supplementary Fig. S3b). The
Subgroup I Transib transposons all
contain a pair of asymmetric TIRs
and show a closer relationship with
RAG1L than those of Subgroup II (Fig.
1f and g). However, the Subgroup II
Transib transposons, which include
most of the previously identified se-
quences, contain both asymmetric and
symmetric TIRs (Fig. 1f and g). Unlike
the vertical evolution of theRAGL trans-
posons, the Transib transposons may
have experienced massive HGT events,
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as the phylogenetic relationships of
Transib transposases were not consistent
with that of their host species.

Close to the root of the phylogenetic
tree, RAG1L and Transib superfamilies
share a common ancestor that may have
descended from bacterial Transib. Anal-
yses of the composed domains in these
ancientRAG1LandTransib proteins fur-
ther reveal their conservation and di-
versification during evolution. First, the
RAG2-binding region in the zinc-binding
domain (ZnB) of RAG1L (α11–α12 in
RAG1core)waspreviously found tohave
been lost in Transibs [10]. Here, we
found that the ancient bacterial and Sub-
group I Transibs but not Subgroup II
Transibs harbored an equivalent α11–
α12 region (Fig. 1h), suggesting that the
RAG2-binding region in ZnB was a con-
stitutive region in the Transib ancestor
but was exclusively lost in Subgroup II
Transibs. Second, bothRAG1L and Sub-
group I Transibs contain the CTT1 do-
main (previously called CTT∗, type I C-
terminal tail), whereas a structurally dif-
ferent CTT domain (CTT2, type II C-
terminal tail) was found in Subgroup II
Transibs (Fig. 1h).TheCTT1domainhas
been shown to be critical for the lancelet
RAGL complex to interact with its intact
TIRs [2,9], whereas the CTT2 domain
may be important for the interactionwith
the ZnB domain of Transibs [10]. Thus,
the CTT1 in RAG1Ls should be inher-
ited from a constitutive region in Tran-
sib ancestors, whereas the divergedCTT2
in Subgroup II Transibs may be an adap-
tation to the loss of the α11–α12 region
in their ZnB domain. Third, similar to
the diverged NBD∗ in RAG1L proteins,
an equivalent nonamer binding domain
(NBD) with several conserved positions
(GRP in RAG1 NBD, Supplementary
Fig. S5) was found in both Subgroup I
and II Transibs, suggesting an equivalent
NBD domain in the ancestors ofRAG1L
and Transib. In addition to these do-
mains, several short regions in RAG1Ls
and Transibs also experienced specific
gain or loss, such as the gain of the loop
region between β1–β3 in the pre-RNase
H(PreRNH)domainofRAG1Lsand the
loss of partial α1 and α17 in Subgroup II
Transibs (Supplementary Fig. S5). Over-
all, Subgroup I Transibs preserved some

ancestral regions shared by RAG1Ls,
which were exclusively lost or diverged in
Subgroup II Transibs. Subgroup I Tran-
sibs may represent intermediates in the
early evolution of Transib andRAG1L.

Finally, we proposed an updated
evolutionary model to elucidate the
origin and evolution of the RAGL and
Transib transposons (Fig. 1i). After de-
scending directly from a bacterialTransib
ancestor, the vertebrate RAG genes and
their homologs mostly evolved in a
vertical manner beginning in eukaryotes,
whereas the Transibs experienced mas-
sive HGT. As intermediates for the early
evolution of Transib and RAG1L, one of
the Subgroup ITransibs acquiredRAG2L
early in the eukaryotes to generate the
ancient RAGL transposon. This ancient
RAGL then underwent host domesti-
cation in a vertical manner, including
domain gain and loss, gene duplication,
transposon fossilization and key amino
acid adaptation, to finally shape theRAG
machinery in vertebrates.
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