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There is a strong relationship between metabolism and immunity, which can become deleterious under conditions of metabolic
stress. Obesity, considered a chronic inflammatory disease, is one example of this link. Chronic inflammation is increasingly being
recognized as an etiology in several cancers, particularly those of epithelial origin, and therefore a potential link between obesity
and cancer. In this review, the connection between the different factors that can lead to the chronic inflammatory state in the obese
individual, as well as their effect in tumorigenesis, is addressed. Furthermore, the association between obesity, inflammation, and
esophageal, liver, colon, postmenopausal breast, and endometrial cancers is discussed.

1. Introduction

Cancer development is complex and involves different phases
commonly referred to as initiation, promotion, and pro-
gression [1]. It is believed that during the initiation phase,
geneticmutations accumulate that lead to irreversible cellular
changes. Some of the most significant changes during this
phase include activation of protooncogenes (e.g., ras, bcl2,
myc, abl) and inactivation of tumor suppressor genes (e.g.,
p53, Rb) [1]. These genome-level events give a selective
growth or survival advantage to the cell, which confer on
cancer cells their intrinsic properties, including self-sufficient
proliferation, insensitivity to antiproliferative signals, evasion
of apoptosis, limitless replicative potential, sustained angio-
genesis, invasion, and metastasis [2]. Tumor development is
promoted by the clonal expansion of these changed cells, and
it is followed by the progression phase, which involves tumor
growth and metastasis [3].

Determining what causes a particular cancer is a complex
task. Many things are known to increase the risk of cancer,
including environmental pollutants [4–6], certain infections
[7, 8], certain metabolic disorders [9, 10], and so forth. For
example, skin cancer has been linked to radiation therapy;
viral infections such as the human papilloma virus; exposure
to UV radiation; aging; skin color; diet; smoking (reviewed in
[11]).

Cancer cell initiation, promotion, and progression are
also intimately linked to their microenvironment. The envi-
ronment of the cells can directly affect their genetic make-up
or, combined with genetic predisposition, help in the cancer
development. The tumor infiltrate, composed of angiogenic
vascular cells, lymphatic endothelial cells, cancer-associated
fibroblastic cells, and immune cells, have been shown to
contribute actively to tumorigenesis [12].

The contribution of immune cells in tumorigenesis was
first addressed by Virchow in the middle of the 19th century
[13]. His conclusions were based on the fact that tumors
developed in the setting of chronic inflammation and that
inflammatory cells were present in tumor biopsy specimens
[14]. Today, chronic inflammation is increasingly being
recognized as an etiology in several cancers [13, 15] (see
Table 1), and most of the resulting tumors are of epithelial
origin (carcinomas) [1]. Recent epidemiological data indi-
cate that over 25% of all cancers are related to chronic
inflammation [16] and it is estimated that 15% of cancer
deaths are inflammation associated [17]. Some of the evidence
to support this belief is the fact that some inflammatory
diseases have been associated with increased risk of cancer
development. For example, there is an estimate that about
15% of all malignancies worldwide are due to infections [17],
and one of the mechanisms by which infectious agents may
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Table 1: Examples of inflammation-associated cancers.

Inflammatory source Cancer Reference
Environmental

Tobacco Mouth, lung [26–28]
Asbestos Mesothelioma [4]
Alcohol Liver [29]

Infectious agent
Schistosoma Colorectal, bladder [30]
Epstein-Barr virus Hodgkin disease [31]
Helicobacter pylori Stomach [32]
Hepatitis B and C Liver [8]

Physiological/metabolic conditions
Hashimoto thyroiditis Papilloma thyroid cancer [33]
Gastroesophageal reflux disease Esophageal [34]
Chronic prostatitis Prostate [35]
Obesity Breast, liver, prostate, colon, esophageal [36]

induce carcinogenesis is the production of chronic inflam-
mation [17]. Moreover, chronic overexpression of inflam-
matory mediators in the cell microenvironment can lead
to increased tumor initiation, promotion, and progression
[18, 19]. For example, cyclooxygenase enzymes are required
for the conversion of arachidonic acid to prostaglandins.
COX-2 mediates the inflammatory effects of COX activ-
ity and is induced by a wide spectrum of growth factors
and proinflammatory cytokines. COX-2 is overexpressed in
numerous premalignant and malignant lesions, including
colorectal cancer [20]. It has also been shown that inhibition
of inflammatory mediators with anti-inflammatory drugs
decreases cancer incidence and progression in patients with
cancer [21–25].

The origin of the inflammatory tumormicroenvironment
is not currently clear. Two pathways have been postulated:
(a) an intrinsic pathway where the source is the genetic
alterations within the cancer cells and (b) an extrinsic path-
waywhere the source could be a chronic infection, an autoim-
mune disease, chronic exposure to an irritant [37], or any
other chronic comorbidity associated with an inflammatory
process.

Metabolism and immunity are linked inmany ways.They
share many bioactive molecules that have both metabolic
and immune functions, like bioactive lipids, cytokines, and
others. The link between metabolism and immunity, which
during homeostasis is beneficial to an individual’s health, can
become deleterious under conditions of metabolic stress, as
exemplified by the obesity-linked inflammatory diseases like
diabetes, atherosclerosis [38], and cancer.

Obesity, an abnormal or excessive fat accumulation in
adipose tissues, is considered a chronic inflammatory disease
[38]. The prevalence of obesity has increased dramatically
over the past 30 years due to genetic, metabolic, behavioral,
and environmental factors [39]. Approximately 35% of adults
and 20% of children in the US are currently obese [40]. A
great majority of obese individuals meet the criteria for the
metabolic syndrome: (a) increased waist circumference, (b)
insulin resistance, (c) hyperglycemia, (d) hypertension, and

(e) hypertriglyceridemia [41]. Obesity in turn increases risk
for a number of chronic diseases including type 2 diabetes,
cardiovascular disease, fatty liver disease, and some forms
of cancer [39]. An estimated 15%–30% of cancer deaths
in the US population are attributed to excess weight [40].
Evidence has accumulated that links obesity to endometrial
cancer, postmenopausal breast cancer, colon cancer, renal cell
carcinoma of the kidney, liver, gallbladder, esophageal, and
pancreatic cancer, with some evidence for cervical, ovarian,
prostate (prognosis), and stomach cancer [40]. Recent evi-
dence has strengthened the proposed relationship between
obesity-related insulin resistance and/or diabetes mellitus
and cancer. Although the precise mechanisms and path-
ways are uncertain, hyperinsulinemia and possibly sustained
hyperglycemia are important regulators of the development
of cancer [10], but there is more to this association than
meets the eye. The mechanisms by which inflammation is
triggered in obesity/metabolic syndrome and how that can
modify the tumor microenvironment are questions that have
no clear answers. This review focuses on the inflammatory
process and its impact in the tumor microenvironment as
potential mechanisms underlying the association between
obesity/metabolic syndrome and cancer development.

2. Chronic Inflammation and Obesity

Acute inflammation, a physiological process generated by the
body in response to injury, infection, or irritation, is vital to
healing; however, when this process becomes chronic it may
contribute to a variety of diseases, including cancer.

In response to injury, infection, or irritation, the body
initiates a network of chemical signals to heal the affected
tissue. The inflammatory process involves activation and
directed migration of leukocytes (neutrophils, monocytes,
and eosinophils) from the vasculature to the site of injury.
During this stage (a) adhesion molecules (L-, P-, and E-
selectin) are activated that facilitate the rolling along the
vascular endothelium; (b) integrins in leukocytes are acti-
vated and upregulated facilitating the immobilization of
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neutrophils on the surface of the vascular endothelium
by tight adhesions; and (c) transmigration through the
endothelium to sites of injury is facilitated by extracellular
proteases, such as metalloproteinases (MMPs) [15]. The
migration of leukocytes to the site of injury is orchestrated
by a family of chemotactic cytokines, named chemokines.
Neutrophils (or eosinophils) are the first to be recruited to
the site of injury, followed by monocytes, which differentiate
into macrophages. Once activated, macrophages are the
main source of growth factors and cytokines which affect
the local microenvironment. Mast cells also contribute to
inflammatory mediators, such as histamine, cytokines, and
proteases, as well as lipid mediators [15]. Many of the same
molecular mediators are generated in both acute and chronic
inflammations [1].

Obesity is associated with a low-grade chronic inflam-
mation, characterized by increased circulating fatty acids,
and chemoattraction of immune cells that contribute to
the inflammatory condition [42]. Although the features of
chronic inflammation in obese adipose tissue are clearly
defined, the signals and mechanisms that trigger chronic
inflammation are not well understood.

3. Adipose Tissue

Adipose tissue cells are embedded in a connective tissue
matrix and contain a vast variety of cell types including
preadipocytes, adipocytes, immune cells, and endothelial
cells [43]. There are two types of adipose tissue: the brown
adipose tissue (BAT) and the white adipose tissue (WAT).
In humans, BAT is mainly an infancy-associated fat that
specializes in generating heat. In adults, it has been located
around the neck and large blood vessels of the thorax [43].
WAT, on the other hand, is the main source of energy
reserves and the most common adipose tissue in adults.
WAT constitutes the major source of fatty acids in the body,
used as energy substrate for the generation of adenosine
triphosphate (ATP) through oxidative phosphorylation [44].
WAT seems to have few key functions including the control
of the metabolism through energy homeostasis, adipocyte
differentiation, and insulin sensitivity [45, 46]. In healthy,
nonoverweight humans, white adipose tissue composes as
much as 20% of the body weight in men and 25% of the
body weight in women. Adipose tissue can be classified as
subcutaneous and as visceral adipose tissue. The first is not
related to many of the classic obesity-related pathologies,
such as heart disease, cancer, and stroke, and some evidence
even suggests that it might be protective around internal
organs [47]. The visceral adipose tissue, on the other hand,
is more predictive of obesity-associated comorbidity and
mortality [42]. The adipocyte secretome and receptors are
expressed differently in different adipose tissues.

4. The Adipocyte

The WAT’s adipocyte or fat cell main function is lipid
storage. In order to accommodate the lipids, adipocytes,
which vary in size (20–200𝜇m in diameter), are capable of

changing their diameter 20-fold and their volume by several-
thousand-fold [48]. More recently, adipocytes have recently
been implicated in themodulation of a range of physiological
responses, including lipid metabolism, glucose homeostasis,
inflammation, angiogenesis, hemostasis, and blood pressure.

4.1. Adipogenesis. Adipocyte precursor cells emerge from
mesenchymal stem cells. The pluripotent MSCs receive
extracellular signals that lead to the determination of the
preadipocyte linage. Adipogenic differentiation is charac-
terized by arrested growth of proliferating preadipocyte
and the increase expression of key adipocyte markers
such as fatty acid-binding proteins, lipoprotein lipase,
CCAAT/enhancer binding protein alpha (C/EBP𝛼), and
peroxisome proliferator-activated receptor gamma (PPAR𝛾)
[49].The later phase of adipogenesis is referred to as terminal
differentiation.

It has long been proposed that new adipocytes arise solely
from resident preadipocytes progenitors, but accumulating
evidence points toward a contribution from outside sources,
in particular the bone marrow [50, 51].

4.2. Fat Storage and Release. The adipocyte stores triacyl-
glicerides (TAGs). Approximately 90% of the adipocyte is a
lipid droplet, and the remaining 10% consist of cytoplasm,
mitochondria, nucleus, and other organelles (Figure 1). The
steps for lipid storage and release depend on several critical
molecules. The adipocyte releases lipoprotein lipase (LPL)
to the environment to break down triglyceride molecules
presented by two lipid transport molecules, the chylomicrons
and the very low density lipoprotein (VLDL) into glycerol
and free fatty acids. The free fatty acids enter the cell and are
reformed into TAGs. Lipid release from the adipocyte was
believed to be triggered via hormonal activation of hormone-
sensitive lipase (HSL). However, recent studies on HSL-
null mice have challenged this concept [52]. Although HSL-
mediated lipolysis is a significant contributor to free fatty
acid liberation from the adipocyte, other TAG lipases have
been identified including desnutrin/ATGL [52]. Lipolysis is
under tight hormonal regulation, with insulin as an inhibitor
and catecholamines, as well as potentially other factors, as
stimulants of lipolysis in the adipocyte [52].

Other molecules of importance during fat uptake and
release by the adipocyte are the lipid droplet-associated
protein Perilipin, which restricts access of TAG lipases
during the unstimulated state [53]; the adipose fatty acid
binding protein (aFABP), a carrier protein for free fatty acids,
eicosanoids, and retinoids, thought to facilitate the transfer
of fatty acids between extra- and intracellular membranes
[54, 55] and lipophilicmolecules fromouter cellmembrane to
intracellular receptors such as PPAR [56]; aquaporin 7 which
exports the glycerol molecule released from TAGs [57]; and
CD36 which facilitates free fatty acid transport through the
plasma membrane [58] (see Figure 2).

4.3. The WAT’s Adipocyte Secretome and Receptors. The first
signalingmolecule found to originate from the adipocyte was
Leptin in 1994 [59–64]. Since then, a vast array of signaling
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Figure 1: The WAT’s adipocyte cell storage triglycerides (TAGs). Approximately 90% of the adipocyte is a lipid droplet. The steps for lipid
storage. (a) The adipocyte releases lipoprotein lipase (LPL) to the environment to break down triglyceride molecules presented by the
chylomicrons and the very low density lipoprotein (VLDL) into glycerol and free fatty acids.The free fatty acids enter the cell and are reformed
into TAGs.

molecules has been added to that list (Figure 3). Similarly,
the adipocyte expresses plasma membrane receptors that
include the hormone-cytokine receptor, thyroid-stimulating
hormone, glucagon, IL-6, TNF𝛼, gastrin/cholecystokinin-
B, neuropeptide Y-Y1, atrial natriuretic peptide, epider-
mal growth factor, platelet-derived growth factor, fibrob-
last growth factor, gastrin inhibitory peptide, glucagon like
peptide-1, angiotensin II, leptin (OB-R), growth hormone,
prostaglandin, adenosine, lipoprotein lipase and insulin;
the lipoprotein receptor, very low density lipoprotein,
low-density lipoprotein, and high-density lipoprotein; the
catecholamine-nervous system receptors, 𝛽1, 𝛽2, 𝛽3, 𝛼1, 𝛼2;
and the nuclear receptors, peroxisome proliferator-activated
receptor gamma (PPAR𝛾), retinoic acid receptors (RAR and
RXR), estrogen, androgen, vitamin D, thyroid hormone,
progesterone, and glucocorticoids (summarized in [48]).

5. Obesity

Obesity, a medical condition in which people’s body mass
index (BMI) exceeds 30 kg/m2, is the sixth most impor-
tant risk factor contributing to the overall burden of dis-
ease worldwide [65]. Obesity is associated with a chronic
state of inflammation, but the causes and mechanisms
involved in obesity-induced inflammation are not fully
understood. Accumulating evidence indicates that obesity-
induced inflammation can be in part attributed to increased
fatty acids; inflammatory cytokine production of the expand-
ing adipose tissue; the influx of immune cells that add to the
production of inflammatory mediators [42].

Under normal conditions, adipocytes store lipids and
regulate metabolic homeostasis. Under these conditions,
resident tissue macrophages present a predominant po-
larization of M2 type, release mainly anti-inflammatory
cytokines [66, 67] like IL-10, IL-1R𝛼, and the enzyme
arginase, involved in the inhibition of nitric oxide synthase
(iNOS) [66, 68]. Normal WAT potentially contributes to
this anti-inflammatory environment through peroxisome
proliferator-activated receptors (PPARs) and liver X receptor

(LXR) cell signaling [69, 70]. In obesity, WAT becomes an
inflammatory source and the change in the cytokine profile
induces the resident macrophages to a more activated M1
type (CD11 c+) [66, 68, 71, 72]. M1macrophages release iNOS
and proinflammatory cytokines [72]. However, macrophage
subsets in WAT show no strict M1 or M2 subtypes [66,
73]. Beside the resident macrophages, an increased influx of
macrophages occurs in WAT during obesity, which exacer-
bates the inflammatory state [74, 75]. The obesity-induced
inflammatory cytokines seem to be responsible for the
activation of adhesion molecules in endothelial cells and the
recruitment of monocytes andmacrophages [76]. In addition
to macrophages, other immune cells localized to adipose
tissue in obesity include neutrophils, mast cells, natural
killer T cells, and lymphocytes. Whether the infiltration
of these other immune cells is causal to, or result of, an
increased inflammatory environment seen in obesity is not
known [77]. Adipocytes from visceral body depots show a
more inflammatory profile than those from subcutaneous
fat [78]. As the demand for fat storage increases, obesity
brings about hyperplasia aswell as hypertrophy of the adipose
tissue [73, 79, 80]. Adipocyte hypertrophy is induced by two
factors: increased fat storage in differentiated adipocytes and
increased expression of proinflammatory mediators [80, 81].
As the process from lean to the obese state occurs, radical
changes happen in the adipocyte microenvironment, as well
as the intracellular adipocyte state, including hypoxia, endo-
plasmic reticulum stress, and mitochondrial stress that result
in insulin resistance, changes in the adipocyte secretome, free
fatty acid dysregulation, and chronic inflammation.

5.1. Adipocyte Microenvironment. As the adipose tissue
expands, a partial break down of the extracellular matrix
(ECM) is required in order to prevent the extracellularmatrix
from restraining the expanding adipocytes. Failure to do so
could result in problems such as ectopic lipid deposition
and lipotoxic effects in organs like the liver, muscle, and
pancreas [82]. Key extracellular components during these
changes are, among others, those associated with fibronectin
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Figure 2: Important molecules during fat release by the WAT’s adipocyte. Lipid release from the adipocyte is in part triggered via (a)
hormonal activation of hormone-sensitive lipase (HSL); (b) the adipose fatty acid binding protein (aFABP), a carrier protein for free fatty
acids, eicosanoids, and retinoids, thought to facilitate the transfer of fatty acids between extra- and intracellular membranes, and lipophilic
molecules from outer cell membrane to intracellular receptors such as PPAR; (c) aquaporin 7 which exports the glycerol molecule released
from TAGs; and (d) CD36 which facilitates free fatty acid transport through the plasma membrane.
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Figure 3: Signals emanating from thewhite adipose tissue. ASP: acylation-stimulating protein; aP2: activating protein 2; apoE: apolipoprotein
E; RBP4: retinol binding protein 4; RAS: rennin-angiotensin system; NO synthase: nitric oxide synthase; IGF-1: insulin-like growth factor
1; FGF: fibroblast growth factor; HGF: hepatocyte growth factor; NGF: nerve growth factor; VEGF: vascular endothelial growth factor;
TGF𝛽: transforming growth factor beta; TF: tissue factor; SDF-1: stromal derived factor; PGF: placental growth factor; VCAM-1: vascular
cell adhesion molecule 1; ICAM-1: intracellular adhesion molecule 1; MMPs: matrix metalloproteinase proteins; TIMPs: tissue inhibitor
of metalloproteinase; IL: interleukin; TNF𝛼: tumor necrosis factor alpha; MIF: macrophage migrating inhibitor factor; MCP-1: monocyte
chemotactic protein-1; MIP-1𝛼: macrophage inflammatory protein 1; RANTES: Regulated on Activation, Normal T cell Expressed and
Secreted; CRP: C-reactive protein; SAA3: serum amyloid A3; PAI-1: plasminogen activator-1.
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in the ECM. Cathepsin S, an adipokine and cysteine protease
involved in the degradation of fibronectin, is upregulated in
the obese state and is involved in the differentiation of human
preadipocytes [83]. Another upregulated protease, Cathepsin
K, can degrade collagens and is required for the induction
of lipid storage program during 3T3-L1 differentiation [84].
Some matrix metalloproteases (MMPs) and their control
regulatory protein, the tissue inhibitory of matrix metallo-
proteinases (TIMPs), are also secreted by the adipocyte and
dysregulated in the obese state, although the role of these
proteases and protease- inhibitors in obesity is not clear [43].

5.2. Hypoxia. In order for growing fat mass to sustain its
growth, ongoing neovascularization is also required. New
endothelium can be made of endothelial cells already present
in the adipocyte microenvironment or by the maturation of
new endothelial cells fromcirculating endothelial progenitors
[85, 86]. Strong evidence on the effect of angiogenesis on
adipose tissue expansion comes from studies where the use
of angiogenesis inhibitors triggered a reduction in fat mass
[87–89]. The adipocyte secretes a vast array of factors that
modulate angiogenesis (see Figure 3). Nevertheless, a rapidly
expanding fat mass still experiences hypoxia [90–92]. During
hypoxia a large amount of proangiogenic molecules are
secreted by the adipocyte [93, 94] and the macrophages in its
microenvironment [91, 95]. Macrophages have a very active
role in angiogenesis under normoxic condition but become
even more active during hypoxia. Recently it has been
observed that obesity induces a phenotypic switch from the
M2 phenotype involved in tissue remodeling, angiogenesis,
and a type 2 inflammatory response to the M1, a phenotype
involved in the killing of intracellular parasites and type 1
inflammatory response, thereby decreasing the angiogenic
potential of the macrophages in adipose tissue [96].

The role of hypoxia in chronic inflammation in adipose
tissue was first proposed by Trayhurn andWood [97]. Recent
studies have provided consistent evidence that adipose tissue
hypoxia exists and that it contributes to initiation of chronic
inflammation and inhibition of adiponectin expression in the
white adipose tissue [90–92, 98–100].

5.3. Reactive Oxygen Species (ROS). Oxidative stress is caused
by an imbalance between increased production of reactive
oxygen species (ROS) and reduced antioxidant activity,
leading to oxidative damage to cells [101]. It is well known
that oxidative stress is involved in the pathology of several
diseases, including cancer, diabetes mellitus, hypertension,
and cardiovascular diseases [101, 102]. Several studies have
suggested that obesity is associated with increased oxida-
tive stress [103–107] and inversely correlated to antioxidant
capacity [108, 109]. Some of the potential mechanisms of
obesity-associated oxidative stress are, among others, the
adipose tissue itself. An inflammatory process, especially in
visceral obesity, is observed as WAT mass increases. This
inflammatory process is activated in the WAT itself, liver,
and immune cells [71, 74, 110, 111]. This response deter-
mines an increase in circulating levels of proinflammatory
cytokines, hormone-like molecules, and other inflammatory

markers [71].These adipokines in turn are stimulators for the
production of reactive oxygen species and nitrogen species
by macrophages and monocytes [112, 113]. Adipose tissue
also produces angiotensin II, which stimulates nicotinamide
adenine dinucleotide phosphate (NADPH oxidase) activity,
one of the major sources for ROS production in adipocyte
[102, 114]. Also, free fatty acids can contribute to oxidative
stress, as described in the next section. Several studies have
demonstrated that obesity could also deplete antioxidant
sources, decreasing the activity of enzymes such as super-
oxide dismutase (SOD), glutathione peroxidase (GPx), and
catalase (CAT) [113].

5.4. Free Fatty Acids. WAT is a major source of nonesterified
fatty acids, also called free fatty acids (FFAs), used as energy
substrate for the generation of ATP after oxidative phospho-
rylation. Adipocytes of obese people have reduced insulin
receptors and an increase in beta-3 adrenergic receptors,
which contribute to the increase in lipolysis rate [113].
Hyperlipidemia leads to increased uptake of fatty acids by
skeletalmuscle, liver, heart, and pancreatic𝛽-cells [115].These
nonadipose tissues are less capable of storing lipids than the
adipocyteswhich increase the accumulation of toxic fatty acid
metabolites that stimulate inflammation and inhibit insulin
signaling [116]. Excessive fat accumulation can also cause
cellular damage, as in nonalcoholic steatohepatitis [113]. The
cellular damage leads to production of cytokines such as
TNF𝛼, which in turn generates ROS in the tissues, increasing
the lipid peroxidation rate [117].

Mitochondrial and peroxisomal oxidation of fatty acids is
capable of producing free radicals in cells, which could result
in mitochondrial alterations. The mitochondrial function is
key for the proper maintenance of energy homeostasis. Even
small changes in the level of mitochondrial function have a
dramatic effect on production and release of adipokines in
the adipocytes, particularly adiponectin [118], an adipokine
involved in anti-inflammatory, antioxidant, and other pro-
cesses [71].

Lipids can also be anti-inflammatory. Ligands of the
LXR and PPAR families of nuclear hormone receptors are
oxysterols and fatty acids, respectively, and activation of these
transcription factors inhibits inflammatory gene expression
in adipocytes and macrophages, largely through suppression
of NF𝜅B [69, 70, 119, 120].

An example of inflammatory fatty acids is arachi-
donic acid (n-6 fatty acid), a precursor of immune-active
mediator known as eicosanoids (lipoxins, leukotrienes, and
prostaglandins) (reviewed in [121]). On the other hand,
n-3 fatty acids and some of its derivatives, including
resolvins (generated from n-3 fatty acids docosahexaenoic
acid (DHA) and eicosapentaenoic acid (EPA)), have potent
anti-inflammatory and immunoregulatory actions. In the
case of resolvins, they can prevent neutrophil entry to inflam-
mation sites and cytokine production [122]. Some studies
demonstrate an increase in resolving D1 and 17-hydroxy-
DHA, a marker of resolving synthesis, in adipose tissue of
obese-diabetic mice fed with n-3 fatty acids [123]. Other n-3
fatty acid-derived lipid mediators like protectin D1 and other
aspirin-triggered lipoxins are produced after acetylation of
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COX-2 by aspirin and help in the anti-inflammatory process
by inhibition of neutrophils tissue infiltration and stimulation
of macrophage phagocytosis of apoptotic neutrophils [124].

The role of lipids in inflammation depends on the location
in the body, the composition of the microenvironment, and
their coupling to target signaling pathways [38].

5.5. Endothelial Reticulum Stress (ER). The ER, an organelle
in which proteins are synthesized, folded, and matured [125],
is responsive to cellular nutrient and energy status [77].
Recent studies have suggested that ER stress and the unfolded
protein response (UPR), a system that mitigates ER stress,
are activated under obese conditions [38, 126–129]. Three
major transducers of the UPR have been identified, including
PKR-like ER kinase (PERK), part of the family of eIF2𝛼
kinaseswhose activation results in expression of proapoptotic
transcriptional factors CCAAT/enhancer binding protein
(C/EBP), homologous protein (CHOP), and growth arrest
and DNA damage-inducible protein 34 (Gadd 34) [130, 131];
inositol-required enzyme 1 (IRE1), involved in splicing of
X-box binding protein-1 (XBP-1) mRNA, and translation of
the spliced form, which in turn regulates the expression of
ER chaperons and proteins involved in ER-associated degra-
dation [132]; and activating transcription factor 6 (ATF6),
that translocates to the Golgi Apparatus in response to ER
stress where it is cleaved. The N-terminal fraction regulates
ER chaperone expression [133]. These factors in turn activate
three pathways: (a) suppression of protein translation, (b)
induction of genes encoding ER molecular chaperons (BiP
(GRP78), ORP150 (oxygen regulated protein 150), calnexin,
calreticulin, and so forth) to facilitate protein folding, and
(c) ER-associated degradation to reduce unfolded protein
accumulation in the ER [134]. UPR failure induces apoptosis
in cells [134]. Studies have demonstrated that FFAs have
the potential to induce ER stress in adipocytes [135, 136]
and the use of chemical chaperones, that alleviate ER stress,
suppressed the inflammatory response and improved insulin
resistance in adipose tissue [136].

ER stress and all three arms of the UPR are linked to
major inflammatory and stress-signaling pathways, including
the activation of JNK-AP-1 and IKB kinase nuclear factor kB
(IKK- NF𝜅B) and the production of ROS which are pathways
that play a central role in obesity-induced inflammation [128,
137, 138] and probably other pathways as well [77].

6. Obesity, Chronic Inflammation, and Cancer

Worldwide there are 1.1 billion overweight people with a
BMI between 25 kg/m2 and 30 kg/m2 and 312 million with
a BMI > 30 kg/m2 [65]. The American Cancer Society cal-
culates that currently new cancer cases are in the order of
1.5 million with 0.5 million cancer deaths per year, nearly 1
in 5 due to obesity [139]. A large number of epidemiological
studies link obesity/metabolic syndrome/diabetes-associated
diseases to an increased risk for the development of several
types of cancer, particularly gastrointestinal, glandular, and
reproductive tract cancers [140, 141]. In addition, obesity can

lead to poorer treatment outcomes, worsened prognosis, and
mortality [142–146].

A comprehensive systematic review of the evidence by
the World Cancer Research Fund (ECRF) and the American
Institute for Cancer Research (AICR) concluded that obesity
is an established risk factor for several cancers [141]. In
a standardized meta-analysis of prospective observational
studies by Renehan et al., 2008 (1966–2007: 221 datasets; 282,
137 incident cases; 20 cancer types), quantifying associations
between a 5 kg/m2 increase in BMI and risk of incident
cancer, showed that, in men, the increase was associated with
(a) oesophageal adenocarcinoma (RR 1.52, 𝑃 < 0.0001); (b)
thyroid (1.33, 𝑃 = 0.02); (c) colon (1.24, 𝑃 < 0.0001); and (d)
renal (1.24, 𝑃 < 0.0001) cancers. In women, the association
was found for (a) endometrial (1.59, 𝑃 < 0.0001); (b)
gallbladder (1.59, 𝑃 = 0.04); (c) oesophageal adenocarcinoma
(1.51, 𝑃 < 0.0001); and (d) renal (1.34, 𝑃 < 0.0001) cancers.
Weaker positive associations (RR < 1.20) were found in men
with rectal cancer and malignant melanoma and in women
with postmenopausal breast, pancreatic, thyroid, and colon
cancers. They also found an association for both sexes with
leukemia, multiple myeloma, and non-Hodgkin lymphoma.
The associations were generally similar in studies fromNorth
America, Europe, and Australia, as well as the Asia-Pacific
region [147]. Studies with long-term followup of patients
undergoing bariatric surgery for morbid obesity showed a
reduction in cancer incidence in women associated with
sustainedweight loss supporting a causal association between
obesity and cancer risk [148, 149].

One of the major challenges in the association of obesity
and cancer has been linking the epidemiology with the
biological basis. Biological mechanisms underlying the rela-
tionship between obesity and cancer are poorly understood.
Of the most studied candidates for this association are
the energy balance-associated factors (adipokines, growth
factors, hormones, and their cell signaling pathways) [141],
and other emerging candidates include obesity-associated
hypoxia, genetic susceptibility, adipose stromal cells, and
inflammatory processes [150].

7. Energy Balance-Associated Factors

Several energy balance-related factors are known to influ-
ence tumor progression and these have been implicated as
contributors to the effects of obesity on cancer outcome.
These factors include leptin, adiponectin, steroid hormones,
insulin, insulin-like growth factor-1, and sirtuins [151, 152].

7.1. Leptin. A peptide hormone is encoded by the ob
gene, which is produced primarily by WAT, but it can
also be secreted by cells of the placenta, ovaries, mammary
epithelium, brown adipose tissue, skeletal muscles, the fundal
glands of the stomach, bone marrow, pituitary, and the liver
[153]. Leptin signals through the leptin receptor (LEPR),
encoded by the db gene, and different variants are produced
through alternative splicing of the gene. The long form
of the receptor, LEPR-B, has a cytoplasmic domain that
transduces the leptin-mediated signaling [154]. Leptin is
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involved in hypothalamic regulation of body weight and
energy balance by promoting a sensation of satiety [40].
Genetic loss-of-function mutants for leptin or its receptor
in mouse models (i.e., ob/ob or db/db mice) develop sys-
temic metabolic abnormalities that include obesity, diabetes,
infertility, and immune defects [155]. In the obese state,
leptin is overproduced and leptin resistance usually develops
[40, 156]. Increased concentrations of leptin in the obese
are associated with greater amounts of adipose tissue [157,
158] that in turn affect immune function, cytokine pro-
duction, angiogenesis, carcinogenesis, and other processes
[159]. Leptin has been extensively studied as a potential
mediator of obesity-associated cancer [160]. Leptin signaling
plays an important role in tumor cell growth and survival
that may be mediated through a set of responses of LEPR-
positive tumor cells [154] including cancer stem cells [161].
It is activated by insulin, glucocorticoids, tumor necrosis
factor-alpha (TNF𝛼), and estrogens [159] and induces cancer
progression by activation of the JAK2/STAT3 [162], PI3K, and
MAPK pathways [163–166] through LEPR-B. A number of
studies indicate that LEPR are overexpressed in many tumor
tissues and that there are leptin-responsive tumors including
mammary carcinomas, pancreatic, esophageal, gastric, and
colon tumors [167–170]. Leptin triggers cell proliferation,
migration, and invasion in different cell types [154, 171],
antiapoptotic and proangiogenic effects, alone or in synergy
with vascular endothelial growth factor (VEGF) [172, 173],
and is a proinflammatory agent [150], inducing T helper
1 cells and potentially contributing to the progression of
autoimmune responses [174].

7.2. Adiponectin. A peptide hormone, secreted mostly from
visceral adipose tissue, is involved in energy homeostasis,
carbohydrates, and lipidmetabolism [175, 176].This hormone
is present in plasma as two epimers: low molecular weight
(LMW) and high molecular weight (HMW) [177, 178]. The
HMW forms of adiponectin predominate in the serum of
healthy individuals and are normally decreased in obesity
[139, 179, 180]. Furthermore, high levels of adiponectin have
been associated with low body fat [181, 182]. Adiponectin
improves fatty acid catabolism [183]; increases insulin sen-
sitivity, possibly as a result of its role in lipid peroxida-
tion, improvement of insulin signaling, inhibition of TNF𝛼,
or/and inhibition of gluconeogenesis [184]; and exhibits anti-
inflammatory characteristics, possibly by suppressing the
migration of anti-inflammatory mediators such as mono-
cytes and macrophages [184]. Adiponectin may exert part
of its anticancer effects by (1) decreasing insulin/insulin-
like growth factor-1 (IGF-1) secretion, (2) modulating
mTOR signaling by activating AMP-activated protein kinase
(AMPK) and peroxisome proliferator-activated receptor
PPAR𝛾 metabolic pathways, leading to an increase in fatty
acid oxidation, glucose uptake, and a decreased rate of
gluconeogenesis, thus enhancing insulin sensitivity, and
(3) exerting anti-inflammatory action via the inhibition of
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-𝜅B) [185]. Activation of NF-𝜅B is a potential mechanism
through which inflammation may stimulate cancer develop-
ment [42, 152]. Several studies have suggested that higher

levels of adiponectin are associated with higher levels of high
density lipoproteins (HDL) and lower levels of low density
lipoprotein (LDL), triglycerides (TGs), and total cholesterol
[186]. Dyslipidemias, like low HDL, high LDL, and high
TGs levels, are associated with some cancers including lung,
non-Hodgkin lymphoma and have been suggested to be a
marker for increased breast cancer risk, since theymay reflect
unfavorable hormonal profile with increased estrogen levels
in obese women [187–190]. High serum levels of cholesterol
and TGs raise the risk of prostate cancer and postmenopausal
breast cancer [191, 192]. Furthermore, adiponectin plays a role
in the secretion of estrogen [193] and estrogen plays a role in
cancer development, as discussed later.

In population-based studies, it has been found that
adiponectin levels are inversely associated with increased risk
of cancer, including endometrial, breast (postmenopausal),
colon, esophageal, prostate cancers, and pancreatic cancer in
men [177, 194–200]. Most studies suggest that adiponectin
may have protective effects against the development of cancer,
and that the association is correlated with estrogen, IGF,
obesity, and insulin resistance. Further investigations are
needed to clarify these associations.

7.3. Steroid Hormones. Steroid hormones, including adrenal
steroids, androgen, progesterone, and estrogen, are associated
with energy balance and obesity-associated progression of
several cancers [201]. Adipose tissue can produce estrogens in
men, postmenopausal or ovarian-hormone-deficientwomen,
via aromatase-catalyzed conversion of gonadal and adrenal
androgens [141, 202].Obesity also increases the bioavailability
of estradiol by reducing the production of sex hormones-
binding globulin (SHBG) [139, 202], raising the risk of post-
menopausal breast, endometrial, and colon cancers [202].
In support of this, data from the Endogenous Hormones
and Breast Cancer Collaborative Group (EHBCCG) [203], a
pooled analysis of nine prospective studies and the European
Prospective Investigation into Cancer and Nutrition (EPIC)
study [204], demonstrate that postmenopausal breast cancer
risk is increased amongwomenwith higher concentrations of
circulating sex steroids and lower levels of SHBG. Adiposity
has been inversely related to testosterone concentrations in
men [205] but positively related in women [203]. However,
the experimental evidence in women is conflicting [150].
Similar to breast cancer, epidemiological studies have shown
that higher levels of estrone and estradiol are associated with
increased endometrial cancer risk in postmenopausal women
[202]. Androgenic and estrogenic steroids have also been
identified as key risk factors in the etiology of colorectal
cancer (CRC). In population studies, women taking hormone
replacement therapy have been found to have a reduced
colorectal cancer risk [206, 207]. Furthermore, genetic poly-
morphisms in both androgen and estrogen receptors are
associated with altered CRC risk [208].

The role of estrogen in inflammation is complex. On one
hand, studies have observed suppression of inflammation
with increased estrogen in several animal models of chronic
inflammatory diseases. On the other hand, there is evidence
of proinflammatory effects in some chronic autoimmune
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diseases in humans [209]. The effects of estrogens are depen-
dent on criteria such as (1) the immune stimulus (foreign
antigens or auto antigens); (2) the cell types involved during
different phases of the disease; (3) the target organ with its
specific microenvironment; (4) the reproductive status of a
woman; (5) the concentration of estrogens; (6) the variability
in expression of estrogen receptor 𝛼 and 𝛽 depending on
the microenvironment and the cell type; and (7) intracellular
metabolism of estrogens leading to important biologically
active metabolites with quite different anti- and proinflam-
matory functions (reviewed in [209]).The concept that estro-
gens have anti-inflammatory, but also proinflammatory roles,
depending on afore-mentioned criteria, makes it difficult
to elaborate on its effect in obesity-associated cancers. It
is known that estrogen represses IL-6, a proinflammatory
and anti-inflammatory cytokine, through an ER-dependent
mechanism, and that serum levels of IL-6 increase following
menopause, in healthy women, and with age in bothmen and
women [210, 211].

7.4. Insulin and Insulin-Growth Factor-1. Insulin is a peptide
hormone produced by the beta cells of the pancreas and
released in response to elevated blood glucose. In the obese
state, blood glucose levels increase and trigger the pancreas
to increase insulin production, resulting in hyperinsulinemia,
hyperglycemia, and insulin resistance [212–214]. The devel-
opment of insulin resistance is linked to chronic inflamma-
tion and the production of adiponectin and IGF-1 [215–217].
The insulin growth factor-1 system comprises three peptides,
insulin, IGF-1, IGF-2 and each of its receptors (IR, IGF-1R,
IGF-2R), aswell as at least six IGF-binding proteins (IGFBPs).
IGF-2 is a fetal growth factor [218]while IGF-1 stimulates fetal
as well as postnatal growth [139]. IGF-1 is a peptide growth
factor that shares approximately 50% sequence homology
with insulin and is produced primarily by the liver following
stimulation mainly by growth hormone, as well as hyperin-
sulinemia and hyperglycemia [40]. IGF-1 circulates bound to
IGFBPs, and when free, binds to its IGF-1R, eliciting growth
and survival signaling [219]. The growth promoting effects of
IGF-1 include proliferation, differentiation, protein synthesis,
modulation of cyclins and cyclin-dependent kinase inhibitors
[220], proangiogenic action [221], and inhibition of apoptosis
[139, 222]. Similar to insulin, levels of IGF-1 correspond to
energy status and are often elevated in obesity [145, 223],
possibly via hyperglycemia-induced suppression of IGFBPs
synthesis and/or growth hormone receptor expression and
IGF-1 synthesis [219, 224]. However, the relationship between
BMI and circulating IGF-1 and IGFBPs is complex and
nonlinear [225]. Hyperinsulinemia increases the risk for col-
orectal, kidney, breast, endometrial, and pancreatic cancers
[226–229]. The proliferative effects of insulin are believed to
be an indirect effect through increasing levels of bioavailable
IGF-1 [42, 230], and the role of IGF-1 as a risk factor for cancer
has been well established [231–234].

The signaling processes downstream of IGF-1R acti-
vation are similar to those of insulin and involve two
major signaling pathways, the mitogenic extracellular signal-
regulated kinase (ERK) and the metabolic and antiapoptotic
phosphatidylinositol-3-kinase (PI3K) pathways, important

to the modulation of transcription factors that control
gene expression related to cancer development [42, 235].
Activation of the insulin receptor (IR) and the IGF-1R
stimulate PI3K, which in turn activates Akt, a regulator
of the mammalian target of rampamycin (mTOR). mTOR
activation results in protein synthesis, preparation of mitosis
through S6k1 and 4E-BP-1, and cell growth, all processes
that support tumor growth [236]. mTOR is inhibited by two
tumor suppressors, phosphatase and tensin homolog (PTEN)
and tuberous sclerosis (TSC) [237], and by increased AMP-
activated kinase (AMPK) under low nutrient conditions and
hypoxia [238]. PTEN is one of the most commonly mutated
tumor suppressor genes in human cancer. The loss of this
tumor suppressor results in an increased signaling of IGF-2
through IGF-1R and IR-A [239]. IGF-1 also mediates its effect
through theMEK-ERKpathway. It is conceivable that in some
cell types it might be necessary to activate multiple signaling
pathways at once to avoid apoptosis, and that the signals
activated depend on the specific cell type [222]. Estrogen
is another factor that can activate the MEK-ERK pathway.
Estrogen was demonstrated to induce the expression of IGF-
1R as well as the insulin receptor substrates IRS-1 and IRS-2 in
breast tumor cells. This leads to the activation of MAPK after
IGF-1 stimulation [240].

7.5. Sirtuins. Lysine acetylation/deacetylation has been rec-
ognized as an important posttranslational modification,
regulating numerous cellular processes. Sirtuins, NAD-
dependent lysine-deacetylases, have recently been associated
with the regulation of lifespan in lower organisms and
their capacity to interfere with cell growth, proliferation,
and survival in response to stress [241]. Their requirement
for NAD suggests that these enzymes may represent an
important molecular link between metabolism and several
human disorders such as diabetes and cancer [241]. Sirtuins
have been associated with regulation of aging, endocrine
signaling, transcription, and metabolic changes associated
with obesity [152]. In mammals, sirtuin 1 (SIRT1) promotes
long-term survival of cells [242]. SIRT1 is a nicotinamide
adenine dinucleotide-dependent deacetylase that acts on
Ku70, which in turn sequesters the proapoptotic factor
Bax from the mitochondria, thus inhibiting stress-induced
apoptosis [242]. Sirtuins have been shown to regulate several
obesity-associated metabolic changes including regulation
of adiponectin secretion [243, 244], insulin secretion and
sensitivity, plasma glucose levels [245, 246], regulation of
oxygen consumption, and mitochondrial capacity [247, 248].
Conflicting results exist as whether SIRT1 is a tumor sup-
pressor gene or an oncogene [249]. SIRT1 is upregulated in
several tumor types and can inhibit apoptosis and downreg-
ulate the expression of tumor suppressor genes to impact
epithelial cancer cells [250]. Preclinical studies suggest that
activation of SIRT1 could be a cancer prevention strategy
[251]. In general, sirtuins play key roles in tumourigenesis, as
some have tumor-suppressor functions and others influence
tumors through their control of the metabolic state of the
cell [252]. Cancers associatedwith Sirtuins are, among others,
SIRT1 with acute myeloid leukemia, colon, bladder, prostate,
ovarian and glioma cancers; SIRT2 with glioma; SIRT3 and
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SIRT4 with breast cancer; SIRT 5 with pancreatic and breast
cancers; SIRT6with colon and breast cancers, and SIRT7with
breast cancer [252].

Recently, the identification of several transcription fac-
tors, known to play a role in the immune system, as sirtuin
substrates, has suggested that this family of enzymesmay also
play an important role in the regulation of inflammation, a
pathological situation with clear links to metabolism. SIRT1
deacetylation of p65 lysine 310 can inhibit the recruitment of
the bromodomain-containing coactivator Brd4. Lack of Brd4
recruitment is thought to impair the binding of CDK9 and
the recruitment and phosphorylation of RNA polymerase II
(PolII), leading to reduced transcription of several proinflam-
matorymediators such as interleukin IL-1𝛽, IL-2, IL-6, TNF𝛼,
and MMP9 [241].

8. Obesity-Associated Hypoxia

Recent studies support a hypoxia response in the adipose
tissue in obese animals [91]. Adipose tissue hypoxia (ATH)
may provide cellular mechanisms for the development of
insulin resistance, chronic inflammation, macrophage infil-
tration, adiponectin reduction, leptin elevation, adipocytes
death, ER stress, and mitochondrial dysfunction in white
adipose tissue in obesity [100, 150, 253]. Therefore, ATH
might contribute to cancer risk in the obese population.
Hypoxia-inducible factor 1 alpha (HIF-1𝛼), the most impor-
tant transcription factor regulated by hypoxia, leads to an
elevation of vascularization in tumors [139]. In normoxia,
levels are regulated by ubiquitination and subsequent degra-
dation in the proteosome. H1F-1𝛼 upregulation results from
decreased ubiquitination induced by EGF, insulin, and IGFs
through their PI3K/Akt and MAPK pathways [100]. H1F-
1𝛼 regulates the transcription of genes that are involved in
different aspects of cancer biology, including angiogenesis,
cell survival, glucosemetabolism, and invasion [254], and has
been associated with increased patient mortality [254], poor
prognosis, and increasedmetastasis [255]. Furthermore,HIF-
1𝛼 inhibitionmight improve sensitivity of tumors to radiation
[256]. In 2005, HIF-1𝛼 was shown to be increased in adipose
tissue of obese patient and its expression was reduced after
surgery-induced weight loss [257]. The increase in HIF-1𝛼
expression was confirmed in adipose tissue and adipocytes
[91, 99, 258].

HIF-1𝛼 pathways interact with the NF-𝜅B pathway,
linking hypoxia to inflammation [256], and activation of
NF-𝜅B complex is a potential mechanism through which
inflammation may stimulate cancer development [42, 152].

9. Genetic Susceptibility

Are genetic factors that predispose to obesity related to
the same factors that predispose to certain tumors? Recent
studies have made progress mapping obesity-linked genes
[259]with those of cancer [260–262]. A fewpotential overlaps
have been found for breast cancer on chromosomes 11p and
16q and for colorectal cancer on 18q [150]. A recent Scottish
case-control study addressing the latter found no association
[263], but more studies are required to prove or disprove this
hypothesis.

10. Adipose Stromal Cells

As tumors develop, they require the development of new
vasculature that supplies them with nutrients and oxygen.
Mesenchymal stromal cells might be a potential source for
the formation of this neovasculature. Bone marrow has been
thought to be the main source of circulating progenitor cells,
but recent evidence points towards the belief thatWAT could
be another source [264]. Adipose tissue contains a population
of tumor-tropic mesenchymal progenitors, termed adipose
stromal cells (ASCs), which engraft in neighboring tumors
to form supportive tumor stroma [265]. Abdominal visceral
adipose tissue, particularly, may contain a uniquely tumor-
promoting population of ASC [265]. When transplanted into
mice, adipose stromal cells (ASCs) can serve as vascular
adipocyte progenitors that promote tumor growth, perhaps
helping explain the obesity-cancer link [266]. ASCs are
expanded in obesity and theymigrate from endogenousWAT
to tumors in several mouse models of cancer [266]. Evidence
is starting to accumulate that links ASCs recruited from
endogenous adipose tissue by obesity-associated hypoxia and
inflammation with tumor growth and development [150] to
contribute to tumor growth and development.

11. Obesity-Related Inflammation

The links between obesity and inflammation and between
chronic inflammation and cancer suggest that inflammation
might be important in the obesity-cancer link [146]. In
the obese state, adipose tissue is in a chronic state of
inflammation. This chronic inflammation is implicated in
the emergence of insulin resistance, dyslipidemia, and type
2 diabetes (T2D), as well as comorbidities, including car-
diovascular disease and cancer [146, 267, 268]. This inflam-
mation is characterized by increased serum concentrations
of C-reactive protein (CRP) [217], interleukin 6 (IL-6), IL-
8, monocyte chemotactic protein-1 (MCP-1), and tumor
necrosis factor alpha (TNF𝛼) in patients and different animal
models of obesity [216, 269–271]. Interestingly, part of the
adult obese population remains relatively healthy despite
obesity [272–274]. The protective mechanism is attributable
in part to a reduced inflammatory signaling and profile [274–
276]. Brd2 hypomorph mouse studies show that blocking
inflammatory signal transduction protects extremely obese
animals from insulin resistance, T2D, as well as from cancer
[275]. The molecular mechanisms by which obesity-induced
chronic inflammationmight influence tumorigenesis include
increased production of proinflammatory mediators, such
as cytokines, chemokines, and reactive oxygen interme-
diates; increased expression of oncogenes, COX-2 (cyclo-
oxygenase-2), 5-LOX (5-lipoxygenase), and MMPs (matrix
metalloproteinases); and proinflammatory transcription fac-
tors such as NF-𝜅B, STAT3 (signal transducer and activator
of transcription 3), AP-1 (activator protein 1), andHIF-1𝛼 that
mediate tumor cell proliferation, transformation, metastasis,
survival, invasion, angiogenesis, chemo resistance, and radio
resistance [277].

11.1. CRP. CRP is an acute-phase protein secreted mainly
by the liver and an unspecific marker for inflammation,
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infection, and tissue injury. Given that adipose tissue secretes
proinflammatory mediators, it is not surprising that CRP
levels correlate with the amount of adipose tissue. It has
been observed that 35% of obese men and 60% of obese
women with a BMI > 30 kg/m2 have increased levels of CRP
[278]. Moreover, expression of CRP was found in human and
animal adipose tissue, showing a twofold increase in obese
animals, compared to lean controls [279]. CRP was reported
to predict the development of diabetes in both obesemen and
women [280, 281]. CRP is also associated with an increased
risk to develop colorectal, cervical, and ovarian cancer [282],
which are cancers that have been associated with obesity.
A recent study on obesity and survival after colon cancer
(388 colon cancer patients) found that patients who had
the highest amounts of serum CRP were significantly more
likely to die of colon cancer (𝑃 ≤ 0.001). The CRP
levels were inversely associated with survival in American
Joint Committee on Cancer stage II patients (𝑃 = 0.038),
suggesting that CRP could be used to support treatment
decisions in this subgroup. They concluded that it is obesity-
related inflammation, rather than obesity itself, that is, linked
with poorer survival after a colon cancer diagnosis [283]. All
together, these data suggest a potential link between obesity,
inflammation and cancer.

11.2. IL-6. IL-6 is a cytokine produced by many tissues
in the body, but adipose tissue contributes up to 35% of
the circulating levels of IL-6 [284]. Levels of IL-6 correlate
with weight, BMI, waist/hip circumference, waist/hip ratio,
and CRP concentration [285] implicating this cytokine in
obesity-associated inflammation. IL-6 signaling starts with
the IL-6 receptor and subsequent phosphorylation of tumor-
promoting transcription factor STAT3, proteins that directly
bind to target genes, affecting translation. There is evi-
dence implicating IL-6 in cancer tumorigenesis through the
STAT3 pathway [286–288]. IL-6 has been found elevated
in several cancers and cancer cell lines including colon,
breast, gastrointestinal tract, lymph nodes, skin, lung, ovary,
pancreas, prostate, and kidney [289–298], and it is known
to promote angiogenesis [173]. One of the most compelling
effects of obesity on cancer risk has been on hepatocellular
carcinoma or HCC. Park et al. [299] found that obesity
enhanced the development of HCC by stimulating the
production of tumor-promoting cytokines IL-6 and TNF
that also cause chronic inflammation. Production of these
signaling molecules, which are elevated in obese mice and
in humans, causes inflammation of the liver and activation
of STAT3. This protein in turn activates the formation and
growth of liver cancer. STAT3 activation in hepatocytes is
essential for DEN-induced HCC development [300] and
for obesity-stimulated tumor growth [299]. Ablation of IL-
6 or TNFR1 blocked obesity-promoted hepatocarcinogenesis
[301]. Recently IL-6 has been shown to contribute to systemic
insulin resistance [302]. Several cytokines have strong influ-
ence on the regulation of insulin resistance in the context of
hepatic inflammation. A recent study has shown that IL-6
can inhibit insulin signaling in hepatocytes [303], and insulin
resistance is a potential link between obesity and cancer
development.

11.3. TNF𝛼. Tumor necrosis factor alpha is a cytokine
involved in systemic inflammation and is a member of a
group of cytokines that stimulate the acute phase reaction.
Themost abundant cellular sources of TNF𝛼 are macrophage
andmonocyte [304], but it is produced also by a broad variety
of cell types, including lymphoid cells, mast cells, endothelial
cells, cardiac myocytes, fibroblast, neurons, and adipose
tissue [305, 306]. Obesity leads to infiltration of adipose tissue
by macrophages and increased levels in proinflammatory
cytokines. The first indication for increased cytokine release
in obesity was provided by the identification of increased
expression of TNF𝛼 in the adipose tissue of obese mice in
the early 1990s [307]. TNF𝛼 is expressed in and secreted
by adipose tissue, its levels correlating with the degree of
adiposity [307]. In response to inflammatory stimulation,
macrophage or monocyte secretes TNF𝛼 that can induce
apoptotic or necrotic cell death of certain tumor cell lines
[306]. In addition, TNF𝛼 is also capable of inducing cell
proliferation and differentiation in many types of cells under
certain circumstances [308, 309].The increased expression of
TNF𝛼 in adipose tissue was considered to be responsible for
the development of obesity or diabetes due to the induction
of insulin resistance [310] through downregulation of insulin
receptors and glucose transporters [42]. TNF𝛼 was found
to phosphorylate IRS-1 and IRS-2 and therefore interfere
in the signaling of the tyrosine kinase of the IR which
might also contribute to insulin resistance [139]. To further
support this view, studies using mice lacking TNF𝛼 function
showed protection from obesity-induced insulin resistance
[311]. All of previous functional characteristics of TNF𝛼 are
executed through specific members of the TNF receptor
(TNFR) superfamily, mainly TNFR1, the primary receptor
for soluble TNF𝛼, and TNFR2, the predominant receptor
for membrane-associated TNF𝛼. These receptors trigger
several intracellular signaling pathways, most importantly,
the IkB kinase (IKK) and mitogen-activated protein kinase
(MAPK) cascades, which govern gene expression through
NF𝜅B and AP-1 transcription factors, respectively (reviewed
in [306]). These signaling pathways, in turn, regulate cell
survival, proliferation, or death. Complicated roles for TNF𝛼
in cancer have emerged. On the one hand, its anticancer
property is mainly through inducing cancer cell death, a
process that could be used for cancer therapy. On the other
hand, TNF stimulates proliferation, survival, migration, and
angiogenesis in most cancer cells that are resistant to TNF-
induced cytotoxicity, resulting in tumor promotion. Thus,
TNF is a double-edged sword that could be either pro- or
antitumorigenic [312].

12. Obesity, Inflammation, and
Esophageal Cancer

A marked change has been observed in the last decade in
esophageal epidemiology. Whereas the incidence rates of
esophageal adenocarcinoma have risen in recent decades,
they remained stable for esophageal squamous cell carcinoma
[313]. This rise in incidence has partly been attributed to the
rise in the prevalence of obesity. Some evidence from cohorts
and meta-analysis has recently confirmed the association
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between obesity and risk of esophageal adenocarcinoma
[147, 314, 315]. Frequent gastroesophageal reflux (GER),
central obesity, H. pylori eradication, and male gender have
been identified as risk factors for Barrett’s esophagus (BE),
consistently found to be a strong risk factor for esophageal
adenocarcinoma (EA) [316].The best available evidence from
population-based analysis suggests that the prevalence of
Barrett’s is 1.6% [317]. In addition, nearly half of the patients
with Barrett’s are asymptomatic [317]. The precise incidence
of progression from Barrett’s to esophageal adenocarcinoma
is not known.The present hypothesis is that obesity promotes
reflux, causing chronic inflammation and BE, predisposing
to adenocarcinoma [318].The degree of dysplasia is currently
used as a marker for risk of progression to cancer. Intensive
acid-suppression and COX-2 inhibition are potential strate-
gies to reduce the risk of progression [317].

13. Obesity, Inflammation, and Liver Cancer

Obesity often causes a number of comorbidities, including
T2D, nonalcoholic fatty liver disease (NAFLD), and the
more severe non-alcoholic steatohepatitis (NASH). Recently,
obesity was recognized as a major risk factor for several
common types of cancer, of which liver cancer shows a large
increase in risk [65]. Several epidemiological and clinical
studies have confirmed the importance of obesity as an
independent risk factor for hepatocellular carcinoma (HCC),
the most common form of liver cancer [319, 320]. Liver
inflammation has been shown to be associated with obesity-
induced NAFLD, NASH, fibrosis, and cirrhosis, resulting in
elevated production of various cytokines and adipokines,
which have been implicated in hepatocarcinogenesis [301].

14. Obesity, Inflammation, and Colon Cancer

Obesity has been associated with higher risk of colorectal
cancer. The association between BMI and risk for colon
cancer is positive in men, RR = 1.24, but somehow weaker in
women, RR = 1.09 [230]. The difference could be expected,
since abdominal obesity, more common in men, has been
shown to be more strongly associated with metabolic abnor-
malities than gluteofemoral obesity [321].This hypothesis has
been supported by epidemiological evidence that associates
increased waist circumference or increased waist-hip ratio
with colon cancer risk in men and women, whereas body
weight and BMI are associated with colon cancer risk in men
but not in women [322]. These epidemiological data also
support insulin resistance and subsequent hyperinsulinemia
as risk factors for colon cancer [323]. Increased levels of
bioavailable insulin-like growth factor- (IGF-) 1, which is
known to have cancer promoting effects, are related to
hyperinsulinemia [324–326].

In experimental studies, colon cancer has also been
associated with several adipokines. For example, leptin, a
proinflammatory agent, directly associated with the amount
of adipose tissue, is related to insulin resistance and pro-
gression of colon cancer in experimental studies [324, 327–
329]. This observation is supported by population-based

studies [329, 330] that demonstrated significant associations
of leptin with colon cancer risk. By contrast, adiponectin,
an anti-inflammatory agent, amount is decreased in obesity
and is inversely associated with the development of insulin
resistance [331]. There are controversial data relating low
plasma adiponectin levels with higher risk of colorectal
cancer in men [332, 333]. Moreover, McMillan et al. [334]
reported that preoperative CRP above 10mg/L was signifi-
cantly associated with overall mortality (HR = 2.63; 95% CI,
1.42–4.88) and disease-specific mortality (HR = 3.47; 95% CI,
1.59–7.60). Several independent studies have demonstrated
that CRP is an independent predictor of colorectal cancer
survival [335–340]. The Glasgow Prognostic Score (GPS)
is a combined score of elevated CRP (>10mg/L) and low
albumin (<35 g/L) and has been demonstrated as a predictive
test for poor outcomes in a variety of cancers [341–343].
Increased GPS was significantly associated with reduced
survival time of colorectal cancer patients [337, 344, 345].
Furthermore, in a recent study, regular aspirin (a nonsteroidal
anti-inflammatory drug) use after diagnosis independently
reduced overall mortality (HR = 0.79; 95%CI, 0.65–0.97) and
colorectal cancer-specificmortality (HR= 0.71; 95%CI, 0.53–
0.95) [346].

15. Obesity, Inflammation, and Breast Cancer

There is evidence that the association between obesity and
breast cancer risk is dependent on the menopausal status,
with stronger evidence for postmenopausal women [347].
The association of BMI with postmenopausal breast cancer
risk is particularly linked to elevated blood levels of estradiol
[348]. Elevated blood concentrations of androgens are also
associated with increased risk of breast cancer in both pre-
and postmenopausal women, and thus androgens may be
potential candidates linking obesity and breast cancer [347].
In contrast to men, testosterone concentrations are positively
related with obesity in women [348]. In premenopausal
women, the main site of synthesis of estrogen is the ovary.
In postmenopausal women, adipose tissue is the main source
of the circulating estrogens. Adipose tissue produces the
enzymes aromatase. Therefore, in obese women, there is
an increased conversion of the androgens androstenedione
and testosterone into the estrogens oestrone and oestradiol,
respectively, by aromatase.

Another potential link is that obesity, being associated
with metabolic syndrome, results in increased circulating
levels of insulin and insulin-like growth factor (IGF), which
are associated to carcinogenesis. Several studies have shown
the association between hyperinsulinemia, measured as high
circulating levels of serum C-peptide, with elevated risk of
postmenopausal breast cancer [349–352]. In addition, insulin
resistance is an adverse prognostic factor for breast cancer
[353].

Adipokines might also be important contributors to
the association between obesity and breast cancer risk.
Women with breast cancer have higher leptin plasma levels
and mRNA expression in adipose tissue as compared to
healthy subjects, and the blood levels of estradiol increase
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proportional to those of leptin [354]. Recent studies have
demonstrated that leptin can modulate the activators of
STAT3, AP-1, extracellular signal regulated kinase-2 (ERK2),
and MAPK, all involved in the regulation of proliferation
and survival mechanisms, as well as aromatase expression,
estrogen synthesis, and ER activation [355, 356]. Further-
more, leptin interferes with insulin signaling, and plasma
levels of leptin directly correlate with the degree of insulin
resistance in patients with T2D [357], whose association
with breast carcinoma has been well studied. Adiponectin,
on the other hand, has opposite function to leptin. For
example, adiponectin inhibits the leptin-induced production
of macrophage TNF𝛼 [358]. Studies confirm a significant
inverse correlation between serum adiponectin levels, breast
cancer risk, and poor prognosis, independently from hor-
mone receptor status [359]. Adiponectin inhibits the pro-
liferation of several cell types and is a negative regulator
of angiogenesis [360]. Furthermore, it has been shown
that adiponectin activates the PPAR𝛾 pathway, previously
demonstrated to be important in the expression of BRCA1, a
DNA damage repair protein [361]. Among the adipokines, an
emerging central role in the breast cancer pathogenesis and
prognosis has been recently attributed to the inflammatory
mediators TNF𝛼 and IL-6. TNF𝛼 regulates IL-6 synthesis and
aromatase expression in the adipose tissue [362], and it has
been implicated in the development of insulin resistance, all
potential promoters of breast tumorigenesis. Adipose tissue
contributes up to 35% of the circulating levels of IL-6 [284].
One of the impacts of high IL-6 levels is an increase in serum
CRP, an indicator of inflammation. IL-6 increases following
menopause in healthy women [211]. A study by Slattery et
al. found a significant association between high waist-to-hip
ratio, a specific IL-6 genotype, and an increased risk of breast
cancer in postmenopausal women [363]. In a recent study,
adipocytes isolated from breast tumor samples overexpressed
IL-6 and this was associated with tumors of larger size and
with lymph-node involvement [364], implicating its potential
role in invasion and metastasis. Moreover, systemic chronic
inflammation mediated by IL-6 may increase the risk of
breast cancer recurrence and affect its prognosis [365].

16. Obesity, Inflammation, and
Endometrial Cancer

There is a very strong association, 2.5–3.0-fold increase in
risk, between obesity and endometrial carcinoma [225, 314].
Similar to breast cancer, estrogen plays an important role
in this association. Several epidemiological studies have
shown a link between high levels of plasma estrone and
estradiol and risk for endometrial cancer in postmenopausal
women [347]. Furthermore, besides a rise in estrogens and
androgens, excess weight leads to a decrease in plasma sex
hormone-binding globulin [202]. In a multicenter prospec-
tive study in postmenopausal women [366], circulating estro-
gens and androgens were found to be positively associated
with endometrial cancer risk, and an inverse association
was reported for sex hormone-binding globulin. Moreover,
inflammatory markers known to play an important role in

the development of insulin resistance, hyperglycemia, and
T2D [367] are risk factors for endometrial cancer [202]. For
example, increased IL-6 concentrations have been reported
in patients with endometrial carcinoma [368–371], and more
recently, IL-6, CRP, and IL1Ra were reported to be signifi-
cantly associated with endometrial cancer risk in a prospec-
tive study [372]. Furthermore, NF-𝜅B, transcription factor
involved in the immune and inflammatory response, is aber-
rantly expressed in a majority of endometrial cancer tumors
[373, 374]. One mechanism for the inflammation-mediated
association between obesity and endometrial cancer could be
the modulation of aromatase activity by cytokines within the
adipose tissue [375].

17. Conclusions

The links between obesity and inflammation and between
chronic inflammation and cancer suggest that inflammation
might be important in the obesity-cancer link. Changes in the
adipose tissue during the process of going from lean to obese,
including modulation of adipokine levels, hypoxia, ROS,
FFA, and ER stress, might lead to a chronic state of inflam-
mation in the obese individual.The increased risk of obesity-
related cancers could be mediated in part by these changes
in the adipose tissue. Some of the most important elements
of this association are, among others, insulin resistance;
overexpression of leptin, inflammatory cytokines, sex hor-
mones, transcriptions factors like NF-𝜅B, AP-1, STAT3, and
oxidative stress; and downregulation of the expression of anti-
inflammatory factors like adiponectin and PPAR𝛾, which
disrupt the balance between cell proliferation and apoptosis.
Accumulating evidence indicates that chronic inflammatory
states in the obese might be associated with esophageal, liver,
colon, postmenopausal breast, and endometrial cancers. The
association between obesity, inflammation, and other cancers
like prostate, renal, gastric, pancreatic, and gallbladder has
been addressed in other papers. As more data accumulates
and themolecularmechanisms between some of these factors
and carcinogenesis start to unravel, the prospect of anti-
inflammatory cancer prevention becomes an important goal
in research.

References

[1] E. Shacter and S. A. Weitzman, “Chronic inflammation and
cancer,” Oncology, vol. 16, no. 2, pp. 217–232, 2002.

[2] D.Hanahan andR.A.Weinberg, “Thehallmarks of cancer,”Cell,
vol. 100, no. 1, pp. 57–70, 2000.

[3] S. Rakoff-Nahoum, “Why cancer and inflammation?” Yale
Journal of Biology and Medicine, vol. 79, no. 3-4, pp. 123–130,
2006.

[4] M. E. Ramos-Nino, J. R. Testa, D. A. Altomare et al., “Cellular
andmolecular parameters of mesothelioma,” Journal of Cellular
Biochemistry, vol. 98, no. 4, pp. 723–734, 2006.

[5] C. D. Woodworth, B. T. Mossman, and J. E. Craighead, “Squa-
mous metaplasia of the respiratory tract. Possible pathogenic
role in asbestos-associated bronchogenic carcinoma,” Labora-
tory Investigation, vol. 48, no. 5, pp. 578–584, 1983.



14 ISRN Oncology

[6] P. T. Scheepers and R. C. Vermeulen, “Diesel engine exhaust
classified as a human lung carcinogen. How will this affect
occupational exposures?” Occupational and Environmental
Medicine, vol. 69, no. 10, pp. 691–693, 2012.

[7] D. P. Zandberg, R. Bhargava, S. Badin, and K. J. Cullen, “The
role of human papillomavirus in nongenital cancers,” A Cancer
Journal for Clinicians, vol. 63, no. 1, pp. 57–81, 2013.
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colorectal cancer risk: a prospective study inNorthern Sweden,”
Oncology Reports, vol. 10, no. 6, pp. 2015–2021, 2003.

[331] C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J.
Tabak, and K. M. Flegal, “Prevalence of overweight and obesity
in the United States, 1999–2004,” Journal of the American
Medical Association, vol. 295, no. 13, pp. 1549–1555, 2006.

[332] E. K. Wei, E. Giovannucci, C. S. Fuchs, W. C. Willett, and
C. S. Mantzoros, “Low plasma adiponectin levels and risk of
colorectal cancer in men: a prospective study,” Journal of the
National Cancer Institute, vol. 97, no. 22, pp. 1688–1694, 2005.
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