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Although a variety of imaging modalities are used or currently being investigated for

patients with brain tumors including brainmetastases, clinical image interpretation to date

uses only a fraction of the underlying complex, high-dimensional digital information from

routinely acquired imaging data. The growing availability of high-performance computing

allows the extraction of quantitative imaging features frommedical images that are usually

beyond human perception. Using machine learning techniques and advanced statistical

methods, subsets of such imaging features are used to generate mathematical models

that represent characteristic signatures related to the underlying tumor biology and might

be helpful for the assessment of prognosis or treatment response, or the identification of

molecular markers. The identification of appropriate, characteristic image features as well

as the generation of predictive or prognostic mathematical models is summarized under

the term radiomics. This review summarizes the current status of radiomics in patients

with brain metastases.
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INTRODUCTION

Brain metastases are one of the most common neurological complications of extracranial cancer
and account for more than half of all brain tumors (1). In patients with solid cancers, the risk to
develop brain metastases depends on the type and initial stage of the primary tumor. It is in the
range of 5–20% and may be increasing due to improvements in control of extracerebral disease by
modern systemic treatment and the resulting increasing life expectancy, and technical advances in
medical imaging for the detection of small brain metastases (1–3).

Lung cancer, breast cancer, andmelanoma are themost common primary tumors that lead to the
formation of brain metastases in adults and account for 67–80% of all cancers (1). In about 10% of
patients with brain metastases, the primary tumor is unknown (cancer of unknown primary, CUP)
(1, 4). Standard treatment for patients with oligometastatic brain disease includes surgical resection,
radiotherapy (predominantly stereotactic radiosurgery), and combinations thereof (5). Whole-
brain radiotherapy is frequently used in patients with multiple brain metastases. Furthermore,
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modern systemic treatment options such as immunotherapy
including checkpoint inhibitors and targeted therapy are
increasingly used to control intra- and extracranial disease (6, 7).
Importantly, some molecularly defined subgroups of patients
have been identified which have an improved prognosis (8) and
benefit from these recently developed agents, e.g., combined
BRAF/MEK inhibition using the kinase inhibitors dabrafenib
plus trametinib in patients with BRAF-mutant melanoma brain
metastases (9).

Magnetic resonance imaging (MRI) is the method of choice
to evaluate patients with brain lesions such as primary or
metastatic brain tumors. MRI offers excellent soft tissue contrast
and a high availability, but its specificity is low (10–12).
For example, contrast-enhancing lesions during follow-up and
signal alterations on T2 or fluid attenuated inversion recovery
(FLAIR) MRI may be non-specific and can result from various
causes other than tumor tissue such as infection, demyelination,
inflammation, ischemia, or treatment-related changes after
surgery, radiotherapy, or systemic therapy. Consequently, with
the use of conventional MRI alone, important diagnostic
challenges remain such as the differentiation of local brain
metastasis relapse from radiation injury and the evaluation of
response to treatment that included immunotherapy (13, 14).
The latter may lead to the clinically important phenomenon
of pseudoprogression, which is characterized by worsening
imaging findings on conventional MRI during follow-up caused
by treatment-related changes imitating tumor progression
that spontaneously vanish during further follow-up without
treatment (14). A false diagnosis of pseudoprogression carries the
risk of a premature termination of an effective treatment with
serious consequences for the patients (13–15).

Advanced MRI techniques have been introduced in the last
years to overcome some of the aforementioned limitations
of conventional MRI in patients with brain tumors. The
advanced MRI techniques currently under investigation in
neuro-oncology include, but are not limited to, diffusion-
weighted imaging (DWI), perfusion-weighted imaging (PWI),
and MR spectroscopy (MRS) (16–19). These techniques
might complement conventional MRI by providing insights
into additional tumor characteristics such as perfusion,
angiogenesis, cellularity, pH, or metabolite concentrations
beyond anatomical information.

Another advanced imaging method extensively evaluated in
neuro-oncology is positron emission tomography (PET) with
tracers other than the traditionally used 2-[18F]-fluoro-2-deoxy-
D-glucose (FDG) for the characterization of tumor metabolism.
It has been emphasized by the Response Assessment in Neuro-
Oncology (RANO) working group, the European Association
for Neuro-Oncology (EANO), and the Society for Neuro-
Oncology (SNO) that the additional clinical value of amino
acid PET tracers such as [11C]-methyl-L-methionine (MET),
O-(2-[18F]fluoroethyl)-L-tyrosine (FET), or 3,4-dihydroxy-6-
[18F]-fluoro-L-phenylalanine (FDOPA) in patients with gliomas
(11, 20, 21) and also brain metastases (4, 22) is outstanding and
superior to FDG for various clinical indications.

Although a variety of imaging modalities are used or currently
being investigated for patients with brain tumors including brain

metastases, clinical image interpretation to date uses only a
fraction of the underlying information. Importantly, the images
contain complex, high-dimensional digital information that can
be made accessible by means of advanced image analysis using
machine learning techniques. The growing availability of high-
performance computing allows the extraction of quantitative
imaging features from medical images that are beyond human
perception. Using machine learning techniques and advanced
statistical methods, subsets of these imaging features are used
to generate mathematical models that represent characteristic
signatures related to the underlying tumor biology and might be
helpful for the assessment of prognosis or treatment response,
or the identification of molecular markers. The identification
of appropriate, characteristic image features as well as the
generation of predictive or prognostic mathematical models is
summarized under the term radiomics (23–26).

Radiomics is usually applied in standard-of-care medical
images from any imaging modality (e.g., CT, MRI, PET), thereby
allowing additional data evaluation at low cost. The computed
radiomics features, either predefined (feature-based radiomics)
or generated by supervised learning (deep learning-based
radiomics), are more reliable, robust, and reproducible compared
to the visual interpretation of imaging features, because
radiomics features are computed semi- or fully-automatically.

Another application of radiomics analysis, radiogenomics,
aims at the prediction of molecular biomarkers such as
genetic mutations, chromosome alterations, or methylation
profiles from image data (27). Typically, such biomarkers
require tissue samples obtained by stereotactic biopsy or
tumor resection and are not accessible by conventional,
qualitative image analysis. Consequently, radiogenomics
as a non-invasive method to assess biomarkers in
patients with brain tumors is of great scientific and
clinical interest.

This review summarizes the current status of radiomics in
patients with brain metastases.

RADIOMICS

Basically, radiomics can be subdivided into feature-based and
deep learning-based radiomics. Feature-based radiomics uses
mathematically predefined image features that are extracted and
computed from preprocessed and segmented medical images.
Using machine learning techniques, a subset of these features is
selected for the generation of a predictive or prognostic model
related to the research question.

Deep learning-based radiomics is fundamentally different as
it does not require image segmentation or pre-defined features.
In deep learning, artificial neural networks imitate the function
of the human visual system and automatically extract high-
dimensional features from the original images at different
abstraction levels and such autonomously learn characteristic
patterns and classify them. In the following section, the basic
principles of feature- and deep learning-based radiomics image
analysis are briefly introduced.
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Feature-Based Radiomics
Pre-processing
Radiomics aims at the extraction of quantitative features
from medical images (23–26). Consequently, the imaging data
supposed to be analyzed have to be quantitative or at least semi-
quantitative. In order to allow reproducible and comparable
results, especially if data from different scanners or acquisition
protocols are used, an upfront normalization procedure is
necessary which may include intensity normalizations, spatial
smoothing or re-sampling, other types or image filtering or
corrections of MRI field inhomogeneities (24, 28–30).

Segmentation
For brain metastases, segmentation is usually performed
manually on conventionalMRI or CT. Although brainmetastases
are usually well-circumscribed contrast-enhancing lesions, the
manual, three-dimensional segmentation is time-consuming. To
overcome this issue, machine learning techniques are being
developed for the automated detection and segmentation of brain
metastases using deep learning (31, 32). However, these tools
still have to prove their reliability and added value to ultimately
become part of clinical routine.

Feature Extraction
Different kind of quantitative features can be extracted
from medical images, which are usually grouped into the
following subgroups:

• Shape features: Geometric properties of the segmented region
of interest (ROI) or volume of interest (VOI) such as
compacity, sphericity, volume, or maximum surface can be
described by shape features.

• Histogram-based features (first-order statistics features):
Histograms are used to characterize the distribution of
individual voxel intensity values within the ROI or VOI
without considering their spatial orientation. From the
histogram, measures such as the mean, median, minimum,
maximum, entropy (randomness), uniformity, asymmetry
(skewness), or kurtosis (flatness) can be calculated.

• Textural features (second-order statistics features): The intra-
tumoral heterogeneity can be quantified by means of
textural feature analysis. Textural features represent statistical
relationships between intensity of neighboring voxels and
groups of voxels. Textural features are not directly calculated
from the image, but from special matrices that already
represent a certain aspect of intravoxel relationship; i.e.,
the gray-level co-occurrence matrix (GLCM) represents the
incidence of voxels with the same intensity values at a certain
distance along a fixed direction. Another frequently used
matrix, the gray-level size-zone matrix (GLSZM), represents
the distribution of groups of voxels with the same intensity.
Several other matrices exist from which a number of different
textural features can be calculated (33).

• Higher-order statistics features: Features extracted by
statistical methods after the application of mathematical
transformations (filters) for, e.g., edge enhancement, noise
suppression, or the identification of repeating patterns or

histogram-oriented gradients are considered higher-order
statistics features. Such mathematical transformations or
filters include Laplacian transforms of Gaussian-filtered
images (Laplacian-of-Gaussian, LoG), wavelet transforms,
fractal analysis, or Minkowski functionals.

In this way, hundreds to thousands of quantitative features can
be extracted from a single medical image.

Feature Selection and Model Generation
As mentioned above, hundreds to thousands of features can
be easily extracted from a single medical image, which is why
the relevant parameters from the large number of available
features have to be extracted. This essential step is called feature
selection (26).

Once a subset of important features is identified, a
mathematical model can be generated that predicts the known,
underlying ground truth such as a certain genotype or a
better prognosis. Commonly used machine learning algorithms
for model generation in radiomics are decision trees (e.g.,
random forests), linear or logistic regression, support vector
machines, and k-nearest neighbors. These algorithms are tested
for classification accuracy in a subset of data (training dataset).
Then, in order to assess the robustness of the model, the best-
performing model is applied to another subset of data that were
not used during the process of model generation (validation
dataset). Ideally, the model is finally applied to a third dataset
(test dataset) including imaging data acquired from different
institutions using different scanners and different acquisition
protocols in order to evaluate the generalizability of the model.
However, these steps require large amounts of data (e.g., 70% of
images for training/validation and 30% for testing).

In cases in which the number of patients is small and no
reasonable and balanced data splitting into a training and a test
cohort can be performed prior to model generation, statistical
methods such as cross-validation can be applied to estimate the
model performance without the availability of a test dataset. The
available datasets are partitioned into k subsets of equal size, and
one subset is retained as testing data, while the remaining k-
1 datasets are used as training data. Afterwards, the process is
repeated k-times with each subset used once as testing data. The
model performance estimators from each k iteration can then be
averaged to produce a single estimation of model performance.

Deep Learning-Based Radiomics
Deep learning as another sub-category of machine learning or
artificial intelligence uses artificial neural networks that simulate
the neural structure of the brain for classification of high-
dimensional non-linear data or pattern recognition (34).

Conventional machine learning algorithms require a
workflow involving image preprocessing, segmentation of
the ROI, and definition of the inherent features using feature
selection techniques followed by model generation and
validation. Artificial neural networks automatically extract high-
dimensional features from the original or preprocessed images
at different scaling and abstraction levels, and autonomously
learn the patterns and classify them (35). A cascaded system
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of single layer neural networks is trained to identify and learn
relevant structures within the image data that are useful for
classification without any prior definition or selection. These
complex structures are then combined to generate features with
a higher level of abstraction. The output from the very last layer
of the network is then used to fit a prediction model.

However, artificial neural networks strongly depend on the
input data and usually require large amounts of image for the
identification of robust and representative features which limits
its applicability in neuro-oncological research, where the number
of available datasets usually is small. One technique to overcome
this issue is called transfer learning, wherein an artificial neural
network is utilized that was already trained for a different, but
similar task; e.g., a neural network that has been used for the
classification of glioma subtypes might also be useful for the
classification of brain metastases (36). Thereby, the amount of
data necessary for training the network can be reduced since the
network already has some prior knowledge about brain lesions.

RADIOMICS IN PATIENTS WITH BRAIN
METASTASES

Radiomics in patients with brain metastases is mainly based
on the analysis of conventional MRI data. The majority of
studies investigated the usefulness of radiomics to differentiate
treatment-related changes from brainmetastases recurrence after
radiotherapy, which is one of the most important indications
in the field. Some studies have also evaluated the value
of radiomics for the prediction of brain metastases origin
and the differentiation of brain metastases from glioblastoma.
Furthermore, radiomics in patients with brain metastases was
used for treatment response assessment. In the following, the
key findings of radiomics-based research in patients with brain
metastases are summarized. An overview of the discussed studies
and the main results is provided in Table 1.

Differentiation of Treatment-Related
Changes From Brain Metastases
Recurrence
Patients with brain metastases are increasingly treated with
stereotactic radiosurgery. Not infrequently, radiation injury
(e.g., radiation necrosis) may occur after radiosurgery and is
often indistinguishable from actual tumor progression using
conventional MRI alone.

Peng et al. (37) evaluated the usefulness of MRI radiomics
for this important question. Sixty-six patients with 82 lesions
treated with stereotactic radiosurgery and imaging findings
on contrast-enhanced T1 and FLAIR sequences suspicious for
tumor recurrence were included in the study. Fifty-one radiomics
features (3 shape features, 14 histogram-based features, and 34
textural features) were extracted for each lesion on each MRI
contrast. Models were generated using the IsoSVM algorithm
which performs both feature selection and classification (49). No
separate dataset was available for model testing. However, cross-
validation was performed to assess overall model performance.
The model reached an area under the receiver operating

characteristic curve (AUC) of 0.81 with a specificity of 65% and
a sensitivity of 87%. On the contrary, experienced radiologists
could only classify 73% of the cases with a sensitivity of 97% and
a specificity of only 19%.

Similarly, Zhang et al. (38) used pre- and post-contrast
T1-weighted MR images, T2 and FLAIR from 87 patients to
calculate 285 radiomics features. Interestingly, imaging data
from two time points were available so that the authors also
investigated feature reproducibility to identify a feature subset
with reproducible values. Changes in radiomics features (so-
called “delta radiomics”) from one follow-up time point to the
other were evaluated and used for differentiation of radiation
necrosis and tumor progression. The final model generated by an
ensemble classifier had an overall predictive accuracy of 73% and
an AUC of 0.73 after cross-validation. Again, no separate dataset
for testing was available.

Besides MRI, also amino acid PET images have been used
to evaluate radiomics for the differentiation of treatment-
related changes from brain metastases recurrence. It has
been demonstrated that the evaluation of the time-activity-
curves (TAC) that represent the tracer uptake over time is
helpful for differentiation of treatment-related changes from
brain metastases recurrence (50). However, this requires a
time-consuming dynamic FET PET scan of at least 40min
acquisition time or more. Therefore, Lohmann et al. (39)
calculated 62 textural parameters on static FET PET scans
from 47 patients with MRI findings suspicious for tumor
recurrence after radiosurgery. The goal of the study was to
investigate whether FET PET radiomics in combination with
conventional FET PET parameters could contribute to an
improved diagnosis of recurrent tumor. Parameter combinations
were investigated using ROC analysis without prior feature
selection. The diagnostic accuracy of conventional FET PET
parameters was in the range of 81–83% and could be slightly
increased to 85% when combined with textural features. Such,
FET PET radiomics in combination with conventional PET
parameters may have the potential to increase the diagnostic
accuracy without the need for a more time-consuming, dynamic
FET PET scan. However, no dataset for validation or testing
was available.

In a subsequent study, Lohmann et al. (40) investigated
the value of combining FET PET and MRI radiomics
for the differentiation of treatment-related changes from
brain metastases recurrence. Fifty-two patients with newly
or progressively contrast-enhancing lesions on MRI after
radiotherapy were additionally investigated using FET PET.
Prior to feature extraction, images were filtered using three-
dimensional wavelet transformation and the LoG filter to
enhance edges. Forty-two features were extracted from filtered
and unfiltered MR images as well as from summed FET PET
images (20–40min post injection). After feature selection, logistic
regression models limited to a maximum of five parameters to
avoid over-fitting were generated for the combined PET/MRI
features and for each modality separately and validated using
cross-validation; no test dataset was available. The highest
diagnostic accuracy of 89% (specificity, 96%; sensitivity, 85%)
was achieved by the combination of MRI and FET PET features,
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TABLE 1 | Radiomics based on MRI and/or PET in patients with brain metastases.

Study No. of

patients

(patients/

lesions)

Purpose PET

tracer

MRI contrast(s) Classification method Validation

method

Model applied to a

separate test dataset?

Highest accuracy /Most

important result

Peng et al. (37) 66/82 Differentiation of TRC from

BM recurrence

n.a. T1-CE, FLAIR Support vector machines LOOCV No 0.81 (AUC)

Zhang et al. (38) 87/97 Differentiation of TRC from

BM recurrence by delta

radiomics

n.a. T1, T1-CE, T2, FLAIR Ensemble trees LOOCV No 0.73 (AUC)

Lohmann et al. (39) 47/54 Differentiation of TRC from

BM recurrence

FET n.a. ROC analysis n.a. No 85%

Lohmann et al. (40) 52/52 Differentiation of TRC from

BM recurrence

FET T1-CE, T2, FLAIR Logistic regression 5-fold CV,

10-fold CV,

LOOCV

No 89%

Hotta et al. (41) 41/44 Differentiation of TRC from

BM recurrence

MET n.a. Random forest 10-fold CV No 0.98 (AUC)

Ortiz-Ramon et al. (42) 30/50 Prediction of BM origin n.a. T1 Naive Bayes Nested CV No 0.95 (AUC)

Ortiz-Ramon et al. (43) 38/67 Prediction of BM origin n.a. T1 Random forest Nested CV No 0.96 (AUC)

Kniep et al. (44) 189/658 Prediction of BM origin n.a. T1, T1-CE, FLAIR Random forest Model-

external

5-fold CV

Yes 0.82 (AUC)

Qian et al. (45) 412/412 Differentiation of BM from

GBM

n.a. T1-CE Support vector machines 5-fold CV Yes 0.90 (AUC)

Artzi et al. (46) 439/439 Differentiation of BM from

GBM

n.a. T1-CE Support vector machines 5-fold CV Yes 0.96 (AUC)

Cha et al. (35) 89/110 Prediction of treatment

response to SRS

n.a. CT only Ensemble model (CNN) Validation

dataset

Yes 0.86 (AUC)

Della Seta et al. (47) 48/48 Prediction of treatment

response to SRS

n.a. T1-CE Cox regression n.a. Yes Enhancing tumor volume

associated with a 2.1-fold

longer OS (p = 0.005)

Bhatia et al. (48) 88/196 Prediction of treatment

response to immune

checkpoint inhibitors

n.a. T1-CE Cox regression n.a. Yes Radiomics features

associated with prolonged

OS (p = 0.001)

AUC, area under the receiver operating characteristic (ROC) curve; BM, brain metastasis; CNN, convolutional neural network; CT, computed tomography; CV, cross-validation; FET: O-(2-[18F]fluoroethyl)-L-tyrosine; FLAIR, fluid attenuated

inversion recovery; GBM, glioblastoma; HR, hazard ratio; LOOCV, leave-one-out CV; n.a., not available; OS, overall survival; ROC, receiver operating characteristic; SRS, stereotactic radiosurgery; T1-CE, contrast-enhanced T1-weighted

MRI; TRC, treatment-related changes.
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suggesting that the combined FET PET/MRI radiomics analysis
encodedmore diagnostic information than eithermodality alone.

Hotta et al. (41) developed a random forest classifier to
differentiate recurrent brain tumor from radiation necrosis based
on MET PET in a mixed cohort of 41 patients with brain
metastasis (n = 21) or glioma (n = 20). All patients had been
treated with radiotherapy and presented one or more tumor-like
lesions on MRI. Forty-two features including conventional and
textural features were calculated on summed MET PET images
(20–30min post injection). Afterwards, a random forest classifier
was trained to separate radiation necrosis from recurrent brain
tumor. The results from the optimized classifier were evaluated
using 10-fold cross-validation; no test dataset was available. The
most relevant features for classification were identified by using
the Gini index (51). The highest diagnostic accuracy with an
AUC of 0.98 (specificity, 94%; sensitivity, 90%) was achieved
by the radiomics model and outperformed the conventional
MET PET parameter evaluation (AUC, 0.73; specificity, 73%;
sensitivity, 61%). However, the mixed cohort of gliomas and
brain metastases complicates the interpretation of the results.

Prediction of Brain Metastases Origin
In ∼10% of cases, patients are diagnosed with brain metastases
without knowing the site of the underlying primary tumor.
Conventional MRI usually does not aid the identification of the
primary cancer.

The usefulness of radiomics for the prediction of brain
metastases origin was investigated by Ortiz-Ramon and
colleagues (42). Based on conventional contrast-enhanced
T1-weighted MR images of 30 patients with 50 lesions with
known primary cancer (27 lung cancer; 23 melanoma), a total
of 43 features (3 histogram-based and 40 textural features)
were extracted in 2D and 3D, and five predictive models were
evaluated using a nested cross-validation scheme. Due to the
relatively small number of datasets, no independent test set
was available. The highest diagnostic accuracy with an AUC of
0.95 for the differentiation of brain metastases from lung cancer
and melanoma was achieved using a model generated by the
probabilistic naive Bayes classifier.

In another study of the same group (43), the same question
was addressed with a higher number of patients. Contrast-
enhanced MRI scans from 38 patients with 67 brain metastases
with known primary cancer (27 lung cancer; 23 melanoma; 17
breast cancer) were analyzed. Again, 43 features (3 histogram-
based and 40 textural features) were extracted in 2D and
3D. A z-score normalization was performed prior to feature
selection and a random forest classification within a nested
cross-validation structure was applied. The diagnostic accuracy
for differentiation of the three primary cancer types had an
AUC of 0.87 using 3D texture features. Higher accuracies could
be achieved for a one-by-one classification: AUC, 0.96 (lung
cancer vs. breast cancer); AUC, 0.96 (lung cancer vs. melanoma).
Interestingly, the classification of breast cancer and melanoma
brain metastases was unsatisfactory with an AUC of only 0.61.
The authors concluded that the volumetric (3D) evaluation of
textural features encodes more information and is of higher value

for the identification of the primary cancer than 2D features.
However, no further model validation was performed.

Kniep et al. (44) also addressed the question of predicting the
tumor type in patients with unknown primary lesion at the time
of brain metastases diagnosis usingMRI radiomics. In that study,
658 brain metastases from 189 patients with known primary
cancer were included (151 small cell lung cancer; 225 non-small
cell lung cancer; 50 gastrointestinal cancer; 89 melanoma; 143
breast cancer). Imaging data comprised contrast-enhanced and
native T1-weighted MRI as well as FLAIR images. Of note, the
MR images had been acquired at different MR scanners, thus,
the cohort contained heterogenous imaging data. Basic clinical
data were combined with 1,423 quantitative image features and
evaluated using random forest classification. The final model
was validated with model-external cross-validation using an
independent training and validation dataset. Furthermore, the
results from the classifier were compared with predictions based
on conventional image reading by two radiologists. The final
model accuracy for classification of all five primary cancer types
ranged between an AUC of 0.64 for non-small cell lung cancer
brain metastases and an AUC of 0.82 for melanoma brain
metastases. The prediction performance was superior to the
classification made by two radiologists.

Differentiation of Brain Metastases From
Glioblastoma
Brain metastases and glioblastomas are the two most common
malignant brain tumors in adults (52, 53). Importantly,
glioblastomas and brain metastases often present similar clinical
and imaging characteristics on conventional MRI, resulting in
difficult differential diagnosis based on the clinical presentation
on standard MRI alone.

Qian et al. (45) addressed this important question using
MRI radiomics. A large group of patients (n = 412) with
untreated brain metastases (n = 170) and treatment naive,
newly diagnosed glioblastomas (n = 242) was divided into
a training (n = 227) and a test cohort (n = 180). Tumors
were segmented manually and 1,303 radiomic features were
calculated on contrast-enhanced MR images prior to feature
selection and model generation. The best classifier that showed
a high predictive performance in the test cohort (AUC, 0.90)
was a support vector machine algorithm that used least
absolute shrinkage and selection operator (LASSO) for feature
selection. Also, the classifier showed a better performance than
experienced neuroradiologists.

Artzi et al. (46) extracted 760 radiomics features
from contrast-enhanced MR images of 439 patients with
brain metastases (n = 227) or glioblastoma (n = 212).
After image preprocessing and semi-automatic tumor
segmentation using a region-growing algorithm, feature
selection, and model generation were performed. Prior
to model generation, the datasets were divided into a
training and a test cohort in a ratio of 80/20. Interestingly,
the authors identified the same support vector machine
algorithm as the study by Qian et al. described above, to
have the highest predictive performance in the test cohort
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(AUC, 0.96) for the differentiation of brain metastases
from glioblastoma.

Although these studies demonstrated the model performance
in an independent test cohort, further external validation
is required. However, these two studies nicely demonstrate
that radiomics analyses on routinely acquired imaging
data already allow the differentiation between brain
metastases and glioblastoma with a higher accuracy than
experienced neuroradiologists.

Prediction of Treatment Response
Stereotactic radiosurgery is increasingly used in patients with
a limited number and size of brain metastases. However, the
treatment response may depend not only on the size but also on
the structure of themetastasis whichmay contain tumor cells and
tissue compartments of differing radiosensitivity even within the
same histologic type.

Cha et al. (35) tried to predict the response to stereotactic
radiosurgery in 89 patients with 110 brain metastases using
a deep learning-based radiomics approach by utilizing a
convolutional neural networks ensemble radiomics model
based on planning CT images. Prior to model generation and
evaluation, datasets were randomly assigned to a training,
validation, and test cohort. The convolutional neural network
learned the classification using training images and labels.
The final model was able to predict treatment outcome in
the independent test dataset with a high accuracy (AUC,
0.86). The study demonstrates the feasibility of CT-based
convolutional neural network radiomics models for the
prediction of response to stereotactic radiosurgery also for
smaller patient cohorts.

Della Seta et al. (47) demonstrated that sometimes
complex radiomics models can be outperformed by a
single, conventional imaging feature. Pretreatment contrast-
enhanced MR images of 48 patients with singular brain
metastases treated with stereotactic radiosurgery were
investigated. The subgroup of patients with non-small cell
lung cancer brain metastases (n = 27) was used to find
the ideal cut-off to predict treatment response and the
subgroup of patients with melanoma brain metastases were
used as validation cohort (n = 21). After three-dimensional
segmentation of the lesions, tumor volumes and enhancing
tumor volumes were determined and the percentage of
enhancing tumor volume was calculated. Patients with an
enhancing tumor volume of more than 68.6% survived
significantly longer (4.9 vs. 10.2 months; p = 0.005) and showed
significantly longer progression-free survival rates compared
to patients with a lower proportion of contrast enhancement.
Therefore, the percentage of enhancing tumor volume may
be a prognostic imaging marker in patients with singular
brain metastases.

Besides stereotactic radiosurgery, immunotherapy has
become a valuable treatment option in patients with brain
metastases. For example, the advent of immune checkpoint
inhibition by antibodies against the programmed cell
death protein 1 (PD1; pembrolizumab and nivolumab)
or the cytotoxic T lymphocyte antigen 4 (CTLA-4;

ipilimumab) resulted in an outcome improvement of
patients with melanoma brain metastases. However, there
is a subset of patients that do not respond to the immune
checkpoint inhibitors and have a poor prognosis. To provide
additional diagnostic information over and above what
can be derived from anatomical MRI, further imaging
biomarkers for the early stratification of patients with
melanoma brain metastases according to therapy response
are needed.

Bhatia et al. (48) hypothesized that the radiomics analysis
of MR images could identify imaging features associated
with survival in patients with melanoma brain metastases
treated with immune checkpoint inhibitors. Twenty-one
radiomics features were extracted from contrast-enhanced
MRI scans of 88 patients with 196 melanoma brain metastases.
Following manual segmentation, univariate Cox regression
was performed for each radiomic feature followed by LASSO
regression for dimensionality reduction and multivariate
analysis. Several features were found to be associated with
an increased overall survival and the mean LoG edge feature
best explained the variation in outcome (hazard ratio, 0.68;
p = 0.001). Unfortunately, no further details about overall
survival times were provided. However, no radiomics feature
remained statistically significant in the multivariate analysis.
Surprisingly, the mean LoG edge feature was confirmed to be a
significant predictor of an improved survival in an independent
test dataset.

CONCLUSIONS

Taken together, it has to be emphasized that radiomics should
be considered as an additional tool to complement established
imaging analysis methods and other clinical measures that can
be jointly used to make a treatment decision or a final diagnosis
with maximum confidence. However, although promising results
using radiomics analysis in the field of brain metastases have
already been achieved, most studies lack a further validation
of the initial results. External validation of the generated
models is of high importance and great value to translate
radiomics analyses into clinical routine. Another important
aspect is the need of standardization of radiomics analysis.
In particular, currently self-developed radiomics analysis tools
or highly specialized algorithms are predominantly used that
may prevent other investigators to reproduce the findings and
furthermore limits comparability of the results. In addition,
the influence of different scanners and imaging protocols as
well as the different preprocessing parameters on the radiomics
signatures and the computed models is still not well-understood
and needs more attention in future research in order to
further promote the translation of radiomics analysis into the
clinical workflow.

Notwithstanding, radiomics has a great potential to
add valuable additional diagnostic information to many
clinical important questions in the field of brain cancer. To
overcome the above-mentioned obstacles, respective efforts are
currently ongoing.
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