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Multiple human autism risk genes are predicted to converge on the β-catenin (β-cat)/Wnt
pathway. However, direct tests to link β-cat up- or down-regulation with autism are
largely lacking, and the associated pathophysiological changes are poorly defined.
Here we identify excessive β-cat as a risk factor that causes expression changes in
several genes relevant to human autism. Our studies utilize mouse lines with β-cat
dysregulation in forebrain excitatory neurons, identified as cell types with a convergent
expression of autism-linked genes in both human and mouse brains. We show that
mice expressing excessive β-cat display behavioral and molecular changes, including
decreased social interest, increased repetitive behaviors, reduced parvalbumin and
altered expression levels of additional genes identified as potential risk factors for
human autism. These behavioral and molecular phenotypes are averted by reducing
β-cat in neurons predisposed by gene mutations to express elevated β-cat. Using
next-generation sequencing of the prefrontal cortex (PFC), we identify 87 dysregulated
genes that are shared between mouse lines with excessive β-cat and autism-like
behaviors, but not mouse lines with reduced β-cat and normal social behavior. Our
findings provide critical new insights into β-cat, Wnt pathway dysregulation in the brain
causing behavioral phenotypes relevant to the disease and the molecular etiology which
includes several human autism risk genes.

Keywords: autism (ASD), Wnt, β-catenin (β-catenin), prefronal cortex, parvalbumin

BACKGROUND

Emerging evidence suggests that autism spectrum disorders (ASD) likely stem from combinatorial
molecular changes that ultimately impact synaptic and circuit functions. Although genetic studies
of families with ASD have identified hundreds of risk genes, typically only one mutated gene has
been found per affected individual (O’Roak et al., 2012; Sanders et al., 2015; de la Torre-Ubieta
et al., 2016). This disparity highlights the need for defining the associated molecular changes caused
by ASD-linked risk factors to gain insights into shared pathologies and thereby identify targets
for effective therapeutic intervention. Here, we show that malfunction of β-catenin (β-cat) results
in reduced social and increased repetitive behavioral phenotypes and altered expression levels of
multiple genes whose human orthologs have been implicated in ASD.
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β-cat/Wnt has been defined as one of a small number
of convergent pathways whose malfunction may predispose
neurons to ASD (Gilman et al., 2011; Iossifov et al., 2012;
Neale et al., 2012; O’Roak et al., 2012; Zoghbi and Bear, 2012).
Several ASD-linked human genemutations are predicted to cause
up- or down-regulation of β-cat functions, including ctnnb1
(β-cat) itself (Krumm et al., 2014; Tucci et al., 2014; Krupp
et al., 2017), adenomatous polyposis coli (APC; Zhou et al.,
2007), chd8 (Durak et al., 2016), ank3 (Kloth et al., 2017),
arx (Cho et al., 2017), ube3a (Yi et al., 2017), prickle1 (Todd
and Bassuk, 2018), and wnt1a (Martin et al., 2013). However,
direct tests for linking β-cat malfunction to autism are largely
lacking and the associated pathophysiological changes are poorly
defined. Our study provides new insights into the molecular
etiologies of autism relevant behavioral phenotypes caused by β-
cat dysregulation.

Our previous studies implicate, but do not directly test,
excessive β-cat in excitatory neurons as a risk factor for altered
social and repetitive behaviors and do not elucidate the associated
molecular changes. We have shown that conditional knockout
(cKO) of APC, the major negative regulator of β-cat, in mouse
forebrain excitatory neurons, causes the expected increases in
β-cat and canonical Wnt target gene expression levels, as well
as behavioral phenotypes (reduced social interactions, increased
repetitive behaviors), cognitive impairments and seizures (Mohn
et al., 2014; Pirone et al., 2017) relevant to ASD. However,
beyond regulating β-cat levels, APC has other roles critical for
neuron maturation and function that are potentially relevant to
normal behaviors: including its role in regulating microtubule
and actin cytoskeleton dynamics (Zumbrunn et al., 2001;
Akiyama and Kawasaki, 2006) and as an mRNA binding protein
with several of its targets functioning in brain development
(Preitner et al., 2014).

In the present study, we have used new mouse lines with
direct genetic manipulation of β-cat in the presence and absence
of APC. We show roles of β-cat up- and down-regulation
in the brain in causing vs. averting autism relevant social
and repetitive behavior phenotypes. Importantly, we identify
associated molecular changes, including altered expression levels
of several genes linked to autism in humans. Our findings
provide critical insights into a molecular etiology of impaired
social and repetitive behaviors, with relevance to human
ASD-linked genes predicted to dysregulate the β-cat network.

MATERIALS AND METHODS

Animals
APC cKO (APCfl/fl) mice were generated as previously described
(Mohn et al., 2014). β-cat cOE (ctnnb1fl(ex3)/+; Harada et al.,
1999), β-cat cKO (ctnnb1fl/fl; Wickham et al., 2019), and APC/β-
cat cKOs (APCfl/fl/ctnnb1fl/fl) mice were generated with the
identical CamKIIα-Cre-93 recombinase carrying line (Rios et al.,
2001). For all experiments, 2–3 month-old mice of both sexes
were used. Littermate controls (Cre negative) were pooled
from all lines. Mice of all genotypes were born at Mendelian
ratios and showed no deficits in body weight or survivability
until the age of testing (although 5% of APC/β-cat cKO mice

showed hydrocephaly and were excluded from experiments). All
procedures were approved by the Tufts University Institutional
Animal Care and Use Committee in accordance with National
Institutes of Health guidelines.

Biochemical Experiments
Western blots and quantitative PCR were performed as
previously described (Mohn et al., 2014). Primers for
pvalb qPCR are: (Fwd) ATCAAGAAGGCGATAGGA
GCC (Rev) GGCCAGAAGCGTCTTTGTT. Antibodies
used are anti-β-catenin (mouse, 1:2,000, Invitrogen,
RRID:AB_2533039), anti-APC (rabbit, 1:1,000, Abcam,
RRID:AB_301806), anti-parvalbumin (rabbit, 1:1,000, Swant,
RRID:AB_2631173), anti-HSP90 (rabbit, 1:1,000, Cell Signaling,
RRID:AB_2233331), and anti-GAPDH (mouse, 1:10,000,
Millipore, RRID:AB_2107445).

λ-Phosphatase treatment was performed as previously
described (Humrich et al., 2003). Briefly, β-cat cOE and
littermate control hippocampi were homogenized in λ-
phosphatase buffer containing protease inhibitor cocktail.
λ-phosphatase (10,000 U/ml) and magnesium cocktail was
added to 100 ug of total protein and incubated at 370C for 1 h
(untreated samples did not receive λ-phosphatase but were
prepared in the same fashion). Fifty microgram of protein was
resolved on a 3–8% gel (Invitrogen) and immunoblots used
HSP90 as a loading control.

Behavioral Assays
Mice were housed on a reversed 12-h light/dark cycle, and
handled 5 min daily for a week before behavioral testing. Three
chamber test and marble burying were performed as previously
described (Mohn et al., 2014). For the repetitive circling assay,
mice were removed from their home cage and placed in an
empty shoebox cage containing no nestlet. The mice were
videotaped for 15 min and were scored by a blinded observer.
Criteria for circling behavior was a minimum of two bouts of
at least three consecutive, unidirectional, fast circling motions
within a restricted area (i.e., circling the outside edge of the
cage was not considered circling behavior) during a period
of 15 min.

Spine Density
Fluorescent labeling of neurons for synaptic spine density
was done as previously described (Staffend and Meisel, 2011).
Neurons were imaged by confocal microscopy (Nikon A1R laser
confocal scanning microscope with 63× objective; 3× zoom).
Dendritic spines were reconstructed (Imaris software), and spine
density was calculated.

Next-Generation Sequencing
Library preparation, sequencing, and initial expression analysis
was performed by the Tufts University Core Facility Genomics
lab. Briefly, the quality of input RNA samples was assessed
on Advanced Analytical Fragment Analyzer. RNA samples
that passed the quality check were used as input for RNA-Seq
library preparation using Illumina TruSeq stranded mRNA,
following manufacturer instruction. The resultant library was
then quantified and pooled equal molar and was sequenced
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with paired-end 100 bases format on an Illumina HiSeq
2500 using High Output V4 chemistry. Fastq files were
generated from raw data using bcl2fastq (Illumina). The
fastq files were mapped mouse mm10 reference genome
with Tophat2. Normalized read counts were generated with
Cufflinks2, and differential expression and hierarchical
clustering analyses were performed with Cuffdiff2 and Qlucore
Omics Explorer.

Statistical Analysis
All data are reported as the arithmetic mean ± standard error.
Statistical analysis was done using Graphpad Prism 7 and
the specific statistical test used are reported in the text and
figure legends.

RESULTS

New β-cat cOE and APC/β-cat cKO Mouse
Lines
We have generated two new mutant mouse lines with
dysregulated β-cat during the early postnatal stage of major
synaptic differentiation, a critical window of brain development
relevant to ASD. We have utilized the CamKIIα Cre driver that
is predominantly expressed in forebrain excitatory neurons and
fully activated during the first three postnatal weeks inmice (Rios
et al., 2001; Pirone et al., 2017) equivalent to the developmental
age when glutamatergic neurons exhibit convergent expression
of several ASD linked genes in both the human and mouse
cortex (Parikshak et al., 2013; Willsey et al., 2013). We have
used this CamKIIα-Cre driver to target the same cell types
at the same developmental age in all of our mouse lines,
including the APC cKO and β-cat cKO lines (Mohn et al., 2014;
Wickham et al., 2019).

To upregulate β-cat in the presence of APC, we conditionally
overexpressed (cOE), stabilized, N-terminal truncated β-cat by
deleting the degradation domain. We crossed CamKIIα-Cre
mice with mice expressing loxP sites flanking exon 3 of the
ctnnb1 (β-cat) gene (Harada et al., 1999; Figure 1A). Exon 3 of
ctnnb1 encodes a domain in the β-cat protein that contains
the phosphorylation sites necessary for degradation by the
APC/Axin/GSK3B destruction complex.

In our β-cat cOE mice, heterozygous expression of this
degradation resistant isoform led to β-cat increases, with total β-
cat levels comparable to that of APC cKOs (One-way ANOVA
F(3, 8) = 87.39, p < 0.001; Figure 1B), allowing us to assess the
effects of similarly increased β-cat, in the presence vs. absence
of APC, in causing autism relevant behavioral phenotypes.
Although we observed what appeared to be an increase in APC
in the β-cat cOE cortex by immunoblotting (One-way ANOVA
F(3, 8) = 58.61, p < 0.0001; Figure 1C), the APC signal has
a widespread, and treatment with λ-phosphatase demonstrates
that there is no significant difference in the levels of APC
between β-cat cOE mice and controls (Student’s t-test, p = 0.616;
Figure 1C).

Additionally, we generated the double mutant APC/β-cat
cKO mouse line to prevent the increase in β-cat in the absence
of APC, to test whether the social and repetitive behavioral

phenotypes that we observed in APC cKOs is caused by
elevated β-cat or APC loss. We crossed the CamKIIα Cre
mice with mice expressing loxP sites flanking exon 2 and
exon 6 of the ctnnb1 gene and flanking exon 11 and exon
12 of the APC gene (Brault et al., 2001; Gounari et al.,
2005; Figure 1A). Cre-mediated recombination results in
severely truncated β-cat and APC protein products that are
unstable and rapidly degraded. The APC/β-cat cKO mice show
large reductions in β-cat, compared to littermate controls,
with the slight residual levels most likely due to other cell
types that do not express CamKIIα (β-cat: One-way ANOVA
F(3, 8) = 87.39, p < 0.001; Figure 1B). Similarly, we observe
comparable reductions in APC levels between this new line and
APC cKO mice relative to controls (APC: One-way ANOVA
F(2, 6) = 182.7, p < 0.0001; APC cKO: 0.2273 ± 0.0162,
p < 0.0001 Bonferroni-corrected Student’s t-test; APC/β-
cat cKO: 0.1048 ± 0.0303, p < 0.0001 Bonferroni-corrected
Student’s t-test; Figure 1B). We used these new mouse lines to
test directly whether excessive β-cat can cause aberrant social and
repetitive behavioral phenotypes.

β-cat cOEs Exhibit Phenotypes Relevant to
ASD, But APC/β-cat cKOs Do Not
Using the classic three-chamber assay (Crawley, 2007), we
tested for altered social interactions in the β-cat cOEs (elevated
β-cat, normal APC levels) and APC/β-cat cKOs (reduced
β-cat, reduced APC), compared to their control littermates
and to APC cKOs (elevated β-cat, reduced APC). Relative
to control littermates, β-cat cOEs displayed reduced social
interest, measured as the ratio of time spent interacting with
the novel mouse cage vs. the empty cage (One-way ANOVA,
F(3, 38) = 13.17, p < 0.001; Figures 2A,B). Distance traveled
and velocity was normal (calculated during the habituation
phase), eliminating motor deficits as a potential confound
(One-way ANOVA F(3, 38) = 0.4467, p = 0.7211, data not
shown). The reduced social interactions of β-cat cOEs resembles
that seen in APC cKOs (Figures 2A,B). In contrast, APC/β-
cat cKOs demonstrated normal social interest (Figures 2A,B)
suggesting that the aberrant social behavior of APC cKOs is
averted by preventing elevated β-cat in neurons predisposed
to excessive β-cat by APC loss. Similarly, β-cat cKOs (low β-
cat, normal APC levels) show that β-cat down-regulation in
the excitatory neurons, using the same CamKIIα-Cre driver did
not affect their social behavior, relative to control littermates
(Wickham et al., 2019).

Next, we tested for deficits in social memory using a novel
vs. familiar mouse in the three-chamber paradigm. β-cat cOEs
spent a significantly reduced ratio of time interacting with the
novel mouse cage, relative to the familiar mouse cage, suggesting
reduced social memory (One-way ANOVA F(5, 50) = 4.015,
p = 0.0039; Figures 2A,C). This resembles the deficiencies in the
social memory of APC cKOs (Figures 2A,C). In contrast, APC/β-
cat cKOs displayed increased interactions with the novel mouse
cage, similar to control littermates, averting the reduced social
interest phenotype of APC cKOs alone (Figures 2A,C).

We also tested for repetitive behaviors, using marble burying,
a repetitive digging task (Thomas et al., 2009). Whereas
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FIGURE 1 | Mouse lines comparing β-cat up- or down-dysregulation. (A) Schematic showing the floxed ctnnb1 and adenomatous polyposis coli (APC) genes used
to alter β-catenin levels in mice carrying CamKIIα-Cre recombinase. For excessive levels: β-cat cOE-overexpression of stable N-terminally truncated β-cat by deleting
the degradation domain, and APC conditional knockout (cKO; Mohn et al., 2014)—deletion of the major negative regulator of β-cat; for reduced levels: APC/β-cat
cKO with unstable, rapidly degraded protein products from both genes, and β-cat cKO (Wickham et al., 2019). (B) Immunoblot and quantification of β-cat prefrontal
cortex (PFC) levels. β-cat increase in β-cat cOEs is comparable to that of APC cKOs, relative to control littermates. APC/β-cat cKOs show drastically reduced β-cat,
with residual levels likely from non-CamKIIα expressing cell types (n = 3 per genotype. **p < 0.01, ***p < 0.001 to control, post hoc Bonferroni corrected t-test). As
expected, APC levels in APC cKO and APC/β-cat cKO mice are reduced (n = 3 per genotype, **p < 0.01, ***p < 0.001 to control, post hoc Bonferroni corrected
t-test) and, although we observe a mobility shift on the blot consistent with phosphorylation in β-cat cOEs, we observe no change in total APC levels (C) compared
to control littermates after λ-phosphatase treatment (n = 4 per genotype), n.s., non-significant.

APC cKOs buried significantly more marbles than control
littermates (Figure 2D), the β-cat cOEs buried fewer marbles
than their littermate controls (One-way ANOVA F(3, 34) = 32.43,
p < 0.0001; Figure 2D). Observing their behavior showed that
β-cat cOEs spent much of the time unidirectionally circling in

the marble-containing novel environment, suggesting repetitive
stereotypy behavior (Chi-squared 14.02, df = 3, p = 0.029;
Figure 2E). The APC/β-cat cKOs buried a comparable number of
marbles to control littermates and did not circle, suggesting that
lowering β-cat prevents the autism relevant repetitive behavior
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FIGURE 2 | β-cat increases, but not decreases in excitatory neurons, cause behavioral phenotypes relevant to autism spectrum disorders (ASD). (A) Representative
heat-maps of the mouse models during the habituation, social interaction, and social memory phases of the three-chambered test. (B) Both β-cat cOEs and APC
cKOs spend a significantly reduced ratio of time interacting with the social cage vs. the empty cage, compared to controls. APC/β-cat cKOs show normal sociability
(n = 10–12 per genotype; *p < 0.05, **p < 0.01 to control, post-hoc Bonferroni corrected t-test). (C) Both β-cat cOEs and APC cKOs spend a reduced percent of
time interacting with the novel mouse vs. the familiar mouse, whereas APC/β-cat cKOs interact with the novel mouse more, similar to controls (*p < 0.05 to control,
post hoc Bonferroni corrected t-test). (D) APC cKOs bury significantly more marbles than controls in the marble burying assay. This repetitive behavior is prevented in
APC/β-cat cKOs (n = 8–11 per genotype; *p < 0.05, ***p < 0.001, post-hoc Bonferroni corrected t-test). β-cat cOEs bury significantly fewer marbles than controls,

(Continued)
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FIGURE 2 | Continued
and exhibit (E) repetitive circling behavior (n = 11–18 per genotype;
*p < 0.05, Chi-squared test). (F) Representative images and Imaris
reconstructions of the proximal apical dendrite of layer V cortical neurons
from the various mouse models. (G) Mice with elevated levels of β-cat (APC
cKO, β-cat cOE) show increased dendritic spine density (n = 3–5 animals per
genotype, 3–8 neurons per animal; *p < 0.05, ***p < 0.001, post hoc
Bonferroni corrected t-test) that is corrected in APC/β-cat cKO mice with low
levels of β-cat.

phenotype seen in APC cKOs. Similarly, mice with β-cat cKO
alone displayed normal behavior in the marble-burying assay
(Wickham et al., 2019).

Studies of post-mortem brains from autistic patients show
that dendritic complexity and spine density are commonly
altered in the disease (Hutsler and Zhang, 2010; Tang et al., 2014;
Weir et al., 2018). Our previous studies in APC cKOmice showed
increases in cortical spine density concurrent with the ASD
relevant behavioral phenotypes (Mohn et al., 2014). To assess
whether spine density is similarly altered in the new β-cat cOE
mouse line with high β-cat in the presence of APC, we employed
gene-gun labeling of individual neurons in brain slices from the
different mutant mouse lines followed by confocal microscopy
and Imaris reconstruction analysis (Figure 2F). Similar to APC
cKOs, β-cat cOEs showed an increase in dendritic spine density,
measured on the 1st branch of the apical dendrite of layer V
cortical neurons (One-way ANOVA F(3, 83) = 11.48, p < 0.0001;
Figure 2G). In contrast, APC/β-cat cKOmice show no significant
difference in spine density, relative to control mice. These data
suggest that high-levels of β-cat in glutamatergic neurons of the
forebrain in vivo result in increased spine density, similar to what
has been observed in primary cultures of hippocampal neurons
(Murase et al., 2002).

Elevated β-cat Causes Altered Expression
of Several Genes Linked to Human ASD
To begin to identify the molecular etiology of aberrant social
and repetitive behaviors caused by increased β-cat in our mice,
we employed unbiased next-generation sequencing of RNA
from the prefrontal cortex (PFC)—a brain region associated
with social behavior and implicated in ASD in human studies
(Hashemi et al., 2017; Selimbeyoglu et al., 2017; Brumback
et al., 2018; Carvalho Pereira et al., 2018; Lazaro et al., 2019).
We compared mice with elevated β-cat and altered social
and repetitive behaviors (β-cat cOEs, APC cKOs), mice with
reduced β-cat that do not display the phenotypes (APC/β-
cat cKOs) and control littermates. We found 87 dysregulated
genes (70 increased, 17 decreased) that are shared between
the elevated β-cat mouse lines, but not the reduced β-cat line
(Figure 3A; primary component analysis ANOVA p = 0.001,
q = 0.298). Nine of the dysregulated genes are canonical Wnt
targets (Hödar et al., 2010; Wisniewska et al., 2012; Figure 3).
Gene Ontology analysis for the up- and down-regulated gene
sets show enrichment for several GO terms relevant to circuit
malformations: neuron projection development (q = 0.0033) and
neuron differentiation (q = 0.0015).

Importantly, 10 of the 87 dysregulated genes are annotated
in the SFARI AutDB database (crhr2, scn5a, pax6, c4b, dcx,
kirrel3, fam19a2, nrp2, camk4, pvalb), displaying a significant
overrepresentation of gene changes in our models potentially
linked to ASD (One-sided Fisher’s exact test, p = 0.001). These
genes function in neuron migration, cytoskeleton dynamics,
cell adhesion, axon guidance, and neural activity. Our findings
suggest that β-cat networks, dysregulated by excessive β-cat in
excitatory neurons, leads to aberrant expression levels of multiple
genes implicated in human autism.

From these 10 ASD-linked genes, we have focused initially
on the downregulated gene, pvalb, encoding the calcium-
binding protein, parvalbumin, in fast-spiking interneurons.
Excitatory/inhibitory imbalance in the PFC has been shown to
alter social behaviors (Yizhar et al., 2011), and our previous
study of the APC cKO mouse shows a reduced number of
parvalbumin-positive cells in the medial PFC, increased c-fos in
excitatory neurons in the infralimbic subregion in response to
a novel social stimulus and increased mEPSC frequency (Pirone
et al., 2018). qPCR and immunoblots show reductions in pvalb
mRNA (One-way ANOVA F(3, 12) = 11.07, p = 0.0009; Figure 3B)
and protein levels (One-way ANOVAF(3, 12) = 4.1742, p = 0.0306;
Figure 3C) in the PFC of both mouse lines with elevated β-
cat. In contrast, PFC parvalbumin protein and mRNA levels
are normal in APC/β-cat cKOs that do not exhibit the aberrant
social and repetitive behaviors (Figures 3B,C). Consistent with
our results, reduced parvalbumin levels in the PFC have
been associated with altered social behaviors in both human
and mouse studies (Wöhr et al., 2015; Filice et al., 2016;
Hashemi et al., 2017).

DISCUSSION

Our major findings are that excessive β-cat leads to decreased
social interest and increased repetitive behaviors and aberrant
expression of multiple genes that have been implicated in human
ASD and play roles in synaptic function and circuit connections
in the brain. Decreasing β-cat in neurons predisposed by gene
mutations to express excessive β-cat averts these phenotypes.
Our data are elucidating how autism-linked human genes that
converge on the β-cat network may incline neurons to disease.

Our APC and β-cat mutant mouse lines are experimentally
amenable models of the mammalian brain. Although these
conditional mutants are not direct models of disease-linked
human gene mutations, they are valuable tools to elucidate
the pathophysiological consequences of aberrant β-cat levels in
neurons in vivo. Importantly, our β-cat genetic manipulations
target glutamatergic neurons, at a relevant developmental age, as
it coincides with the stage when cortical glutamatergic neurons of
both the human and mouse brain display convergent expression
of several ASD and ID linked genes (Parikshak et al., 2013;
Willsey et al., 2013). Thus the time-frame of our β-cat genetic
manipulations may target a critical developmental window.
Conditional manipulation of β-cat and APC gene expression
during synaptic differentiation, rather than earlier or later,
is necessary to define behavioral and cognitive phenotypes.
Global nulls lead to embryonic lethality (Haegel et al., 1995;
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FIGURE 3 | Elevated β-cat causes altered expression of multiple
autism-linked genes. (A) Next-generation data sets (n = 4 per genotype) were
subject to primary component analysis and hierarchical clustering. The PFC
shows 87 dysregulated genes (70 upregulated, 17 downregulated) shared
between the two elevated β-cat models that exhibit altered social and
repetitive behaviors, but not the reduced β-cat model that does not. Nine of
the dysregulated genes are canonical Wnt target genes (asterisks). Ten are
associated with human ASD (SFARI AutDB, bolded), and gene ontology
analysis shows altered functions relevant to ASD pathology. Decreases in one

(Continued)

FIGURE 3 | Continued
of the identified ASD-linked genes, pvalb, at both (B) mRNA (qPCR) and (C)
protein (immunoblot) levels in PFC of β-cat cOEs and APC cKOs, but normal
levels in APC/β-cat cKOs (n = 4 per genotype, *p < 0.05, **p < 0.01,
***p < 0.0001, Sidak-Bonferroni corrected Student’s t-test).

Moser et al., 1995; Huelsken et al., 2000). Conditional deletion
and overexpression in progenitor cells causes severe brain
malformation (Haegel et al., 1995; Moser et al., 1995; Brault
et al., 2001; Chenn and Walsh, 2002, 2003; Gao et al.,
2007; Grigoryan et al., 2008; Maguschak and Ressler, 2008;
Ivaniutsin et al., 2009).

Our findings provide the first direct in vivo evidence, to
our knowledge, that excessive levels of β-cat can lead to social
deficits and increased repetitive behaviors.Whilemostmutations
in human ctnnb1 (β-cat) gene result in loss of function of the
protein (Krumm et al., 2014; Krupp et al., 2017), work by us
and others suggests that maintenance of the proper levels of β-
cat is critical for normal behavior and may have cell type-specific
repercussions. This is highlighted by the fact we do not observe
these behavioral deficits in our mice with low levels of β-cat
in excitatory neurons, but social deficits have been observed in
mice with deletion of β-cat in parvalbumin interneurons (Dong
et al., 2016). Further, mutations in several other ASD-linked
human genes are predicted to cause up- or down-regulation of
β-cat functions.

Intriguingly, although the β-cat cOE and APC cKO mice
show similar increases in β-cat protein levels, we note some
differences in their behavioral phenotypes. While social interest
is reduced to a similar extent, β-cat cOEs exhibit increased
circling and a reduction in marble-burying activity relative to
APC cKOs. Further, β-cat cOEs show hyperphosphorylation
of APC, which may play a role in the behavioral differences.
As APC is a large protein with 180 putative phosphorylation
sites, further studies will be needed to test whether APC
function is altered and its potential contribution to the divergent
phenotypes. Additionally, APC loss in the APC cKOs may
also impact the behavioral phenotypes compared to the β-
cat cOEs.

The ability of this one dysregulated protein to cause a cascade
of molecular changes that impact behavior likely derives from
its role in two core pathways- the cadherin synaptic adhesion
complex and canonical Wnt signal transduction. β-cat links
the synaptic adhesion complex to the submembranous actin
cytoskeleton, thereby stabilizing the synapse (Knudsen et al.,
1995; Uchida et al., 1996; Yu and Malenka, 2004; Brigidi
and Bamji, 2011). Additionally, β-cat binds directly to key
postsynaptic scaffolds, the synaptic scaffolding cell adhesion
molecule (S-SCAM/Magi2) and APC, that bring together other
adhesion proteins, glutamate receptors and signaling molecules
that impact synapse maturation and function (Nishimura et al.,
2002; Rosenberg et al., 2010; Mohn et al., 2014). In the canonical
Wnt signaling pathway, β-cat functions as a transcription
co-activator with TCF/LEF to mediate Wnt responsive gene
expression (Clevers and Nusse, 2012). Several studies show that
manipulating cadherin andWnt signaling in the brain alters axon
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guidance cues, synapse maturation, density and plasticity, and
network connectivity (Uchida et al., 1996; Mysore et al., 2007;
Brigidi and Bamji, 2011; Park and Shen, 2012; Salinas, 2012;
Rosso and Inestrosa, 2013).

Studies of cultured hippocampal neurons show that excessive
β-cat increases dendritic branching, spine density and synaptic
function (mEPSC frequency), suggesting the potential for
excitability imbalance (Murase et al., 2002; Yu and Malenka,
2003, 2004; Okuda et al., 2007). Increased neural activity by
optogenetic activation of glutamatergic pyramidal neurons in
the PFC of wild-type mice is sufficient to cause reduced
social interest (Yizhar et al., 2011). Both of our mouse
lines with elevated β-cat, β-cat cOEs, and APC cKOs,
display increased dendritic spine density and reductions in
parvalbumin mRNA and protein levels. Further, APC cKOs
exhibit increased excitation of pyramidal neurons in the medial
PFC when presented with a novel social stimulus (Pirone
et al., 2018). Preventing the increase in β-cat in APC cKOs
(APC/β-cat cKOs) averts the reductions in parvalbumin and
corrects the social and repetitive behavioral phenotypes. The
decreases in parvalbumin in β-cat cOEs and APC cKOs are
likely caused by non-cell autonomous changes in the cellular
microenvironment as reporter studies of CamKIIα Cre mice
show that it is not expressed in these interneurons (Rios
et al., 2001; Pirone et al., 2017). Parvalbumin interneuron
specification, including migration, localization, maturation
and synaptogenesis, are known to be regulated by both
intrinsic and cellular microenvironment signaling (Wamsley
and Fishell, 2017; Loo et al., 2019). Future studies are
needed to identify the signaling factors responsible for the
reductions in parvalbumin. It is also important to assess
the other molecular changes found in the β-cat cOEs and
APC cKOs to elucidate their impact on excitatory and
inhibitory synaptic and circuit functions that are critical for
normal behavior.

Our findings define a novel role for β-cat by showing that its
dysregulation leads to altered expression of several genes linked
to autism in humans. We provide new insights into molecular

changes caused by malfunction of β-cat, one of a small number
of convergent targets identified in human ASD. Elucidating the
molecular etiologies of ASD is essential for identifying shared
pathological changes that may be root causes and potential
targets for effective therapeutic intervention.
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