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Abstract
High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian 
population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring 
network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM2.5) pollution in 
India. We developed a model for daily average ambient PM2.5 between 2008 and 2020 based on monitoring data, meteorology, land use, 
satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled 
using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to 
account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an R2 of 0.86 at the daily level in the 
validation data and outperformed each component learner (by 5–18%). Annual average levels in different zones ranged between 
39.7 μg/m3 (interquartile range: 29.8–46.8) in 2008 and 30.4 μg/m3 (interquartile range: 22.7–37.2) in 2020, with a cross-validated (CV)-R2 

of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 μg/m3. We 
obtained high spatial accuracy with spatial R2 greater than 90% and spatial MAE ranging between 7.3–16.5 μg/m3 with relatively better 
performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM2.5 at a 
very fine spatiotemporal resolution, which allows us to study the health effects of PM2.5 across India and to identify areas with 
exceedingly high levels.
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Significance Statement

High levels of particulate matter (PM2.5) are a major public health hazard in a populous country like India. However, sparse ground 
monitoring and lack of detailed exposure assessments present major hurdles to understand the health effects of PM2.5. In this paper, 
we have developed a model for assessing daily ambient PM2.5 at 1 km × 1 km across India from 2008 to 2020, with high accuracy. We 
used PM2.5 data from monitoring stations, predictors from multiple domains, along multiple machine-learning algorithms to predict 
PM2.5 levels at high spatiotemporal resolution, while ensuring the representativeness of the model. This presents a valuable resource 
to generate evidence on health effects of PM2.5 across urban, periurban, and rural India, which is critical for informing policy actions.
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Introduction
Fine particulate matter (PM2.5) has been linked with multiple 
health outcomes across the life course, including those related 
to pregnancy (1), birth (2), cardiovascular (3), cardiometabolic 
(4), pulmonary (5), and cognitive conditions (6). Mechanistic stud
ies indicate that PM2.5 affects health through multiple pathways, 
such as inflammation, oxidative stress, imbalance of the auto
nomic nervous system, direct translocation, and DNA methyla
tion (7, 8). High levels of PM2.5 and other air pollutants have 
been a major public health problem in India (9), with concentra
tions exceeding more than 10 times the World Health 
Organization (WHO) recommended levels in certain areas (10). 
Further, high levels of PM2.5 are not limited to urban areas and af
fect a large share of the population across the urban–rural gradi
ent (11). However, most of the research linking PM2.5 with health 
has been conducted in countries with lower levels of PM2.5, with 
relatively less research originating from low- and middle-income 
countries. Differences in particle composition and nonlinearities 
observed in concentration-response relationships make extrapo
lating the results from higher income and lower concentration 
countries difficult.

A major obstacle in conducting research on health effects of air 
pollution in India is the lack of robust exposure estimates at fine 
spatiotemporal resolution across the country. Existing estimates 
of PM2.5 levels across India are inadequate due to the low volume 
of data from a sparse monitoring network (12) and limitations of 
existing methods for predicting local levels, such as land-use re
gression, emissions inventories, and chemical transport models 
(CTM) (13). Important recent advances include a satellite- 
informed machine-learned model for the state of Delhi over 7 
years (14), a model for the Indo-Gangetic Plain using data from a 
single year and based mostly on meteorological predictors (15), 
and models based on aerosol optical depth (AOD) over India (16). 
Several of these models are reliant on global CTM (11, 17) and 
use a calibration approach based on the ratio between PM2.5 and 
AOD. Despite these recent advancements leveraging remote sens
ing, there are limitations that need to be addressed, with respect to 
spatiotemporal resolution and methodologies. Specifically, mod
els relying mainly on satellite observations (such as AOD), sparse 
ground monitoring data, or a few meteorological parameters are 
inadequate to fully capture the localized spatiotemporal trends 
in PM2.5 across a geographically diverse country like India, which 
spans more than 3 million km2. Further, predictions using only 
the coincident ratio between CTM-predicted PM2.5 and AOD inher
ently assume that AOD is an accurate predictor of PM2.5, while ig
noring variables such as road networks, vegetation, and fires, 
which have been shown as major contributors to PM2.5 concentra
tions. Further, the use of global CTM often does not incorporate lo
cal sources of air pollution and relies on linear regression which is 
known to have limitations in modeling complex relationships. 
These approaches also assume that the effect of meteorology on 
PM2.5 is entirely captured through the CTM.

Another approach to model PM2.5 uses a hierarchical Bayesian 
model to calibrate annual average PM2.5 concentrations using a 
global dataset and chemical transport model (18). Modeling an
nual averages rather than 24-h averages ignores the short-term 
variations in PM2.5. With several country and city-specific models 
showing significant variations in sources and patterns of air pollu
tion, global models often fail to capture finer local variations that 
are important for individual-level epidemiological studies on 
acute and chronic exposure to air pollution (19, 20). Studies on 
pregnancy and birth outcomes (1), neurodevelopment (21), 

hypertension (22), and diabetes (23) often need different durations 
of exposure including short- and long-term averages to under
stand the associations. Further, the high uncertainty from exist
ing global models in South Asia (18) makes it important to have 
country-specific models that incorporate more ground monitor
ing data as well as region-specific variables within methods that 
are adept at modeling complex relationships to arrive at the 
PM2.5 estimates.

Moreover, to the extent that the estimates from PM2.5 predic
tion models are to be used in epidemiologic health effects studies, 
it is important to ensure that the resulting exposure estimates will 
have minimum bias and relative error, and generate minimal bias 
when used in epidemiology studies. Although methods such as re
gression calibration (24) are available to adjust for exposure meas
urement error in epidemiology studies, exposure assessment 
models seldom implement any such corrections, thus potentially 
leading to bias in the epidemiological associations reported in 
health effect studies utilizing the predictions.

To address these gaps in exposure assessment in India, here we 
describe the development of a novel nationwide model to esti
mate daily ambient PM2.5 concentrations at a 1 km × 1 km spatial 
resolution between 2008 and 2020. Our approach leverages an un
precedented set of features (meteorological, built environment, 
remote-sensed, and chemical transport model outputs) as inputs 
into a series of machine-learned models which are calibrated 
against a large curated database of daily average PM2.5 data 
from ground-based monitors across India. Regression calibration 
applied to the ensemble average from these models provides high
ly localized, minimally biased estimates of daily PM2.5 for nearly 
every square kilometer in India. This novel dataset is already 
being used to enable previously infeasible research, increase local 
awareness of air pollution levels across India, and influence 
policy.

Methods
Data on daily average PM2.5 and PM10 were collected from the air 
quality monitoring stations maintained by the Central and State 
Pollution Control Boards of India; real-time monitors at embassy 
of the United States of America in New Delhi, Mumbai, 
Hyderabad, Chennai, and Kolkata; and data collected as part of 
academic campaigns (Details in Supplemental Material). Data 
from both continuous real-time monitoring stations as well as 
manual monitoring stations were included in the analysis. To ad
dress the sparseness in observed daily PM2.5, we first developed an 
imputation model based on an extreme gradient boosting algo
rithm (25), for the ratio of daily average PM2.5 and PM10 at locations 
and days where measurements of both fractions were available. 
The details of the predictors used in this model are provided in 
the Supplemental Material. This calibration model was trained 
on 172,983 available ratios and had an overall cross-validated 
(CV) R2 of 0.91 in a left-out validation dataset of 43,245 observa
tions. This was used to predict PM2.5 at locations and times where 
only PM10 was recorded, thus extending monitor coverage across 
India (additional 387,883 observations of PM2.5). Details of quality 
checking for the monitored data are provided in the Supplemental 
Material.

To account for zonal similarities and differences, the country 
was classified into 6 zones similar to the boundaries defined by 
the State Reorganisation Act 1956, Government of India, Section 
15, with the addition of the North-East Zone as per the North 
Eastern Council Act. The notable exception here was that of 
Sikkim being added to the Eastern Zone for spatial consistency. 
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The resulting zone variable was used in the model as a categorical 
predictor. For model summaries, we also used districts which are 
second-level administrative divisions within the 29 states of the 
country.

We incorporated predictors across multiple domains including 
satellite-based observations, meteorology, land-use patterns, and 
emissions inventories. Table 1 shows the major domains, sources, 
and spatial and temporal resolution of the predictors. All varia
bles at coarser spatial resolution were downscaled to the 1 km ×  
1 km grids of interest before developing the model. Variables 
available at resolutions finer than 1 km × 1 km were aggregated 
to ensure all variables were available at the same spatial reso
lution. Further details describing the predictors are provided in 
the Supplemental Material. The model development was a multi
stage process described in detail below and a schematic diagram 
in Fig. 1 demonstrates the same process.

Aerosol optical depth imputation
The daily multiangle implementation of atmospheric correction 
(MAIAC) AOD (470 nm) at 1 km × 1 km resolution was retrieved 
from the moderate resolution imaging spectroradiometer (MODIS) 
instrument of the Terra and Aqua satellites along with quality assur
ance flags from NASA’s Land Processes Distributed Active Archive 
Center (LP DAAC) at the United States Geological Survey (USGS) 
Earth Resources Observation and Science (EROS) Center (https:// 
lpdaac.usgs.gov/products/mcd19a2v061/). Preprocessing was car
ried out to remove observations contaminated by cloud and snow 
(removing cloudy pixels and observations surrounded by more 
than >8 cloudy pixels) and filtering outliers based on the valid 
MAIAC AOD values (removing AOD values <0 and > 1.2), as done 
in several similar exposure studies to avoid pixels contaminated 
by clouds or snow (36, 37). After these corrections, it was observed 
that more than 60% of AOD data were missing over the study region 
for the study period. To impute the missing AOD, the MODIS AOD ob
servations were calibrated against the Copernicus Atmosphere 
Monitoring Service (CAMS) reanalysis-based total AOD at 469 nm 
(at a spatial resolution of 80 km) using a deep-learning algorithm 

(38, 39), along with other predictors, such as meteorological 
variables, elevation, and population density. Specifically, the deep- 
learning model was a multilayer feedforward artificial neural 
network that is trained with stochastic gradient descent using back- 
propagation. We used the AOD at 469 nm since several publications 
have shown that the deep blue algorithm (which utilized the blue 
wavelengths, e.g. 470 nm) for MODIS performed better than the ori
ginal over bright surfaces (e.g. urban areas and deserts) (36). The 
best-performing model was used to predict the AOD values for miss
ing days and grid cells. Annual CV R2 for this model was in the range 
of 0.73–0.87 across 2008–2020 while the same during monsoon 
(June–September) was in the range of 0.64–0.81 across 2008–2020 
(Table S1). In the second stage of modeling the relationship between 
PM2.5 and the predictors, we used the MAIAC AOD wherever avail
able along with the imputed AOD when MAIAC AOD was missing. 
When using this imputed AOD in our machine learning models, 
we included imputed AOD up to 2 to allow for potential high- 
pollution scenarios. That is, we believe a measured AOD of 2 is too 
likely to represent cloud contamination rather than high air pollu
tion, but an imputed AOD of 2 based on the variables we used is 
not subject to cloud contamination and likely represents a very 
high air pollution day.

Cross-validation procedure
We split the entire dataset by sampling monitors which provided 
observed PM2.5 (or PM2.5 from the PM ratio model). Given the con
centration of stationary monitors in a few urban locations (for ex
ample, Delhi), especially in the earlier years (2008–2016), we 
needed to ensure that our training set did not oversample moni
tors with large amounts of data concentrated in the North Zone. 
This inequality in the spatial distribution of the monitors across 
India is the reason why we did not sample equally across zones. 
We created quintile-based strata of data availability for each sta
tion (ratio of monitor-specific observations and total observa
tions). Within each stratum, we sampled 80% of the available 
monitors while leaving out 20% of the monitors as validation data
set. This resulted in 211 stations (out of 1,056) being included in 

Table 1. Variables used during model development are segregated by major domains along with corresponding sources, spatial, and 
temporal resolution.

Type Variable Resolution Source

Spatial Temporal

Satellite-based AOD 0.01° × 0.01° Daily MAIAC products from MODIS (26)
Vegetation index (NDVI) 0.01° × 0.01° 16-day MODIS
Active Fires 0.01° × 0.01° Daily MODIS Active Fires (27)
Light intensity at night 0.01° × 0.01° Annual Visible Infrared Imaging Radiometer Suite (VIIRS) (28)
NO2 concentrations 0.01° × 0.01° 2019 annual 

average
Sentinel 5P (29)

Meteorology Reanalysis-based variables  
(ECMWF Re-Analysis [ERA] 5)

0.125° × 0.125° Daily European Centre for Medium Range Weather  
Forecast (ECMWF) (30)

Land use Road density 1 km × 1 km Time-invariant Open Street Maps
Population density 1 km × 1 km 2010, 2015, 2020 Gridded Population of the World version 4 (31)
Elevation 30 m × 30 m Time-invariant Terra Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital  
Elevation Model (GDEM) Version 3 (32)

Location of toll plazas, airports, 
power plants

— Time-invariant

Land classification Categorical Time-invariant Census based
Emissions Sectorwise estimates of PM2.5 

emissions (in tons/year)
0.25° × 0.25° 5 year average Venkataraman et al. (33)

Carbon emissions from fires 0.25° × 0.25° Daily GFED (34)
Reanalysis-based 

variables
AOD and PM2.5 80 km × 80 km Daily CAMS (35)
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the left-out validation dataset, the rest was the training dataset. 
The zonal distribution of the stations is shown in Table S2.

Developing the learners
The relationship between observed PM2.5 and all predictors in the 
training data was modeled using machine-learning algorithms, 
including deep-learning (39), random forests (40), gradient boost
ing (41), and extreme gradient boosting (25) Within each algo
rithm, an internal cross-validation (by splitting the training 
dataset using a 90:10 split) was implemented to ensure optimal se
lection of the hyperparameters and prevent overfitting. The 
choice of hyperparameter space for each algorithm is provided 
in the Supplemental Material. The best learner within each algo
rithm was obtained by minimizing root-mean-squared errors. 
Using each optimized learner, predictions were obtained on the 
left-out validation data. Predictions from the four machine learn
ers were combined using an ensemble model based on Gaussian 
processes (allowing for anisotropic smoothing across the coordi
nates) which utilized the predictions from each learner, month, 
year, elevation, vegetation, and density of roads in a 10 km buffer 
as predictors (42, 43). We obtained R2 (overall, spatial, and tem
poral), mean absolute errors (overall, spatial, and temporal 
mean absolute error [MAE]), slope, and bias of the predictions 
within the test dataset to assess prediction accuracy of each com
ponent learner and the ensemble-averaged model.

Analyzing variation (error) of predictions
We computed monthly average standard deviations of the resid
uals between predicted and observed PM2.5 and analyzed these 
variations against meteorological and land-use variables to 
understand the factors associated with the performance of the 
model. Generalized linear models were used with a gamma distri
bution because of the positively skewed nature of the outcome 
while accounting for overdispersion.

Correcting for exposure error
A regression calibration approach was implemented to account for 
exposure error in the predictions (44). For this, the grid cells were 
classified into clusters based on the similarity of land-use charac
teristics (elevation, land classification, census classification, and 

distance to major and medium cities) using a clustering for mixed 
variable-type data (k-proto clustering) (45). In the left-out valid
ation dataset, a robust linear regression was used to calibrate the 
ground monitoring data with the ensemble-averaged predictions, 
stratified by cluster and month. The optimum number of clusters 
was selected by minimizing the within-cluster sum of squares. The 
slopes from these models were used to upscale or downscale the 
ensemble-averaged predictions to provide concentrations cor
rected for bias and exposure error. Details of the method are pro
vided in the Supplementary materials.

Results
Description of the ground monitoring data
Figure 2 describes the ground monitoring data for PM2.5, which 
amounted to 679,354 observations from 1,056 stations (both con
tinuous real-time and manual). The locations of the monitors are 
shown in Fig. 1B. Panel (C) shows the availability of data by Zone 
and year, which indicates that 15% of the total ground monitoring 
data were from 2018 to 2020 in the North Zone. We also analyzed 
the growth in the number of continuous real-time monitoring sta
tions, which are installed and maintained by the Central Pollution 
Control Board, across time and observed a steep increase starting 
from 2015. Initially, continuous monitors were only present in two 
districts in India (Delhi and Mumbai) with 0.6 (∼1)  monitors being 
added each year to unmonitored districts. Since 2015, ∼21 moni
tors have been added each year up to 2020 (Fig. S2).

Model performance
We evaluated the model performances for the individual learner 
models as well as the regression-calibrated ensemble-averaged 
models within the left-out validation dataset by computing met
rics shown in Table 2A. The overall CV-R2 for daily predictions 
for the entire country over the 13-year period was 0.86, with per
formance improving across the years. Splitting the performance 
by zone, we observed that the ensemble-averaged model per
formed best in the North (0.87) and Central (0.83) zones compared 
to others. We note that among the learners, gradient boosting- 
based models out-performed deep-learning and random forests, 
across all years. Importantly, the ensemble-averaged model had 
a higher daily CV-R2 than each component learner during the 

Deep learning

Random forests

Gradient boosting

Extreme gradient 
boosting

Full dataset
Observed PM2.5 and 

predictors

Training data
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DLoptopt

RFoptopt
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XGBoptopt

AOD 
imputation

Ensemble averaging
using Gaussian 

process regression

Regression 
calibration to correct 

for exposure error

Fig. 1. Model development framework: Machine-learning-based framework for developing the spatiotemporal prediction model for daily ambient PM2.5, 
starting with AOD imputation, splitting of data by monitors, training of the four learners, application of optimized models on validation data, ensemble 
averaging, and regression calibration to correct for exposure error.
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entire period. The improvement in daily CV-R2 from using the en
semble average was 18%, 7%, 7.5%, and 5% in comparison to deep- 
learning, random forests, extreme gradient boosting, and gradient 
boosting, respectively. The models performed better in terms of 
spatial accuracy with spatial R2 > 0.90 across all years, while tem
poral accuracy was lower in the earlier years. The overall daily MAE 
across the years ranged from 14.4 to 25.4 μg/m3, while the spatial 
MAEs were observed to be 7.3–16.5 μg/m3 (Table 2B). Bias in the pre
dictions were between 5.3 and 10.6 μg/m3 across years, while all 
the slopes of the regression between observed and predicted daily 
PM2.5 concentrations were close to 1 (Table 2C). For annual average 
predictions, the CV-R2 and MAE were 0.94 and 8.8 μg/m3, respect
ively. Using a regression calibration approach by spatial clusters 
and month, we obtained coefficients (shown in Table S1) to upscale 
and downscale the ensemble-averaged predictions to provide pre
dictions corrected for exposure error.

Analysis of precision and regression calibration
We analyzed the monthly standard deviation of the predictions at 
each station in the validation dataset against spatial predictors 
(Fig. S3). Using a nonlinear regression model, we observed preci
sion was lower at rural and vegetation areas compared to urban 
areas, at grid cells with high elevation, and those away from large 
and medium cities. Among nonlinear associations, precision was 
lower in areas with high vegetation and median NO2 concentra
tions (from Sentinel 5P). We also assessed the prediction accuracy 
of the model between urban and rural stations in the validation 
data (Table S3), where we observed the accuracy was higher at sta
tions located in statutory towns (daily CV-R2 > 0.77 across all 
years), whereas in rural stations the accuracy was lower (daily 
CV-R2 < 0.65 in most years). However, we also note that the propor
tion of data arising from rural stations was low across the entire 
duration although the accuracy in the last 3 years (2018–2020) in 
rural areas was 0.83, which could indicate improved performance 
with more training data from rural areas. Using a regression cali
bration technique, we obtained coefficients (Table S4) within 
land-use-based clusters and months to upscale or downscale the 
ensemble-averaged predictions for use in a health effects study.

Spatiotemporal patterns of PM2.5

Clear spatiotemporal patterns exist in the annual average concen
tration of PM2.5 across India as well as within each year (Fig. 3). 

We observed higher concentrations during all years in the 
Indo-Gangetic plain stretching from the state of Rajasthan in 
the Northwest to West Bengal in the East. The southern peninsula 
and the mountainous regions in the North and North-east had 
lower concentrations. We also observed a drop in annual levels 
in 2020, which might be due to the reduced anthropogenic activity 
due to the COVID-19 lockdowns in the country.

Temporally within each year, we observed higher concentra
tions in the period between October and February, especially in 
the Indo-Gangetic plains. As temperature increases in the sum
mer months, the levels reduce and reach minimum levels in the 
monsoon season (months of July and August). In the desert re
gions of the Northwest, higher levels were also observed in the 
summer months of April to June.

We examined the districtwise annual PM2.5 levels and the aver
age within-district variation in annual PM2.5 within 662 districts, 
according to quartiles of change in population density from 2010 
to 2020 (Fig. 4). Districts with larger increases in population density 
(above the third quartile) had higher averages as well as low vari
ation across the years, while those below the first quartile had low
er average concentrations along with higher spatial variation. In 
addition, we also observed an increase in spatial variation in recent 
years among districts with lower changes in population density. 
These patterns indicate that several districts with increasing 
population densities are also experiencing consistently higher ex
posure to PM2.5, which could be relevant in increasing burden from 
air pollution exposures for large populations.

Scenario in select cities
Many cities in India are densely populated and often bear the bur
den of high levels of PM2.5. As an example of spatiotemporal vari
ation in Indian cities, Figure 5A–E describes the annual average 
PM2.5 levels during 2019 in the cities of Mumbai (in the West), 
Chandigarh (in the North), Bangalore (in the South) and 
Guwahati (in the East). The areas of each city were 460, 119, 708, 
and 4,357 km2, while the highest concentrations in these cities 
were 47.1, 47.5, 58.7, and 58.7 μg/m3, respectively. We observed 
both within and between city differences in the levels with 
identification of potential high-pollution areas in each city. 
Identification of these spatial heterogeneities makes it possible 
to assess short- and long-term health effects of air pollution in co
horts from these cities, using exposure averages over appropriate 
durations of time.

A B C

Fig. 2. PM2.5 and PM10 ground monitoring stations and data availability: A) Zonal breakup of India into six zones, North, Central, East, North-East, South, 
and West. B) Location of manual and real-time ground monitoring stations that provided daily average PM2.5 and PM10 observations in India. C) Proportion 
of total number of PM2.5 observations from ground monitoring data according to the six zones and 13 years.
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Scenario in an adjoining rural district
It is often assumed that periurban and rural areas are less affected 
by PM2.5. Figure 5E shows the annual average levels during 2019 in 
the district of South 24 Parganas (area 6,045 km2), which neigh
bors the metropolitan area of Kolkata (area of 1,933 km2), a dense
ly populated large city in the Eastern region of India. We clearly 
observe higher concentrations (50–80 μg/m3) in close proximity 
to Kolkata with lower concentrations closer to the Bay of Bengal. 
Concentrations above 40 μg/m3 are seen as much as 30 km south 
of Kolkata. This indicates how increasing population pressure and 
extension of the urban boundaries of major cities might influence 
pollution in neighboring periurban or rural areas.

Discussion
We have developed a comprehensive prediction model to retro
spectively assess daily ambient PM2.5 across India at a high spatial 

resolution over a 13-year period, using a machine learning frame
work and a wide range of predictors. The findings from the model 
provide a useful resource to identify pollution hotspots and to 
study particulate matter pollution and its acute and chronic 
health impacts in a diverse country like India, without restricting 
to select geographies.

From the annual averaged predictions, we observed a slight de
crease in PM2.5 from 2019 (highest quintile: 45.4–167 μg/m3) and 
especially in 2020 (highest quintile: 39.9–149 μg/m3), compared 
to 2018 (highest quintile: 52.2–186 μg/m3). The effect of the 
COVID-19 pandemic is a possible explanation from 2020 and per
haps some of the preceding decrease may be attributed to the im
plementation of the National Clean Air Program (NCAP) (46) after 
the extreme air pollution events in 2016–2017. NCAP is a national- 
level strategy for a 20 to 30% reduction in PM2.5 and PM10 concen
tration by 2024, with 2017 as the base year for comparison. The 
program covers 131 nonattainment cities that did not meet the 
prescribed national ambient air quality standards for five 

Table 2. A) Prediction accuracy (R2) of daily predictions of PM2.5 concentration using deep-learning, random forests, extreme gradient 
boosting, gradient boosting, and an ensemble-averaged model in the validation dataset, aggregated by year. B) Zone-specific prediction 
accuracy in the validation dataset using the predictions from the ensemble-averaged model. C) Overall, spatial, and temporal MAE, bias, 
and slope for the ensemble-averaged predictions of daily PM2.5 across 2008–2020.

A)

Year Deep-learning Random forests Gradient boosting Extreme gradient boosting Ensemble averaged

Overall Spatial Temporal

2008 0.64 0.74 0.75 0.74 0.80 0.93 0.51
2009 0.63 0.72 0.75 0.70 0.80 0.91 0.52
2010 0.57 0.68 0.72 0.69 0.81 0.94 0.54
2011 0.56 0.66 0.68 0.67 0.80 0.89 0.60
2012 0.64 0.73 0.74 0.71 0.82 0.94 0.53
2013 0.56 0.68 0.70 0.65 0.80 0.96 0.53
2014 0.52 0.63 0.66 0.59 0.79 0.95 0.53
2015 0.53 0.66 0.69 0.67 0.74 0.90 0.60
2016 0.66 0.76 0.78 0.76 0.79 0.96 0.65
2017 0.76 0.83 0.85 0.82 0.86 0.92 0.80
2018 0.82 0.88 0.89 0.87 0.89 0.95 0.82
2019 0.80 0.88 0.89 0.87 0.92 0.98 0.89
2020 0.77 0.85 0.87 0.85 0.90 0.95 0.84

B)

Zone Deep-learning Random forests Gradient boosting Extreme gradient boosting Ensemble averaged

Central 0.71 0.73 0.77 0.74 0.82
East 0.46 0.69 0.72 0.70 0.80
North 0.74 0.84 0.86 0.84 0.87
North-East 0.25 0.43 0.48 0.49 0.75
South 0.26 0.42 0.43 0.39 0.63
West 0.50 0.62 0.67 0.59 0.73

C)

Year MAE Bias Slope

Overall Spatial Temporal

2008 14.10 7.08 12.72 2.82 1.00
2009 15.10 9.78 13.04 4.79 0.96
2010 15.50 9.65 14.40 4.48 0.95
2011 15.40 14.80 14.05 3.32 0.94
2012 19.10 7.30 17.70 7.56 1.01
2013 16.00 6.31 15.20 4.53 0.95
2014 14.30 6.38 13.19 3.26 0.97
2015 15.50 7.16 14.09 2.51 0.91
2016 25.40 10.30 25.97 7.36 0.98
2017 19.70 10.50 18.72 4.74 0.98
2018 20.20 13.30 20.83 6.95 0.98
2019 14.90 6.27 15.30 4.11 1.04
2020 14.90 7.31 14.90 3.49 1.03
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consecutive years (2011–2015). In terms of monitor density, we ob
served a steep increase post 2015, which could also be attributed 
to the NCAP program as well as the recommendation by the 
Central Pollution Control Board to prioritize installation of sta
tionary monitors in urban as well as rural areas in the country.

Comparing the results from our prediction model with those de
veloped in other countries indicated that we have achieved com
parable accuracy and performance with significantly less 
resources. The latest models for PM2.5 for mainland USA, which 
used techniques such as neural networks, random forests, and 
gradient boosting, combined using ensemble averaging, reported 
CV R2 of 0.86 for daily ambient PM2.5, along with a spatial root- 
mean-squared-error (RMSE) of 1.26 μg/m3 and temporal RMSE of 
2.53 μg/m3 (37). In Europe, ensemble modeling has been carried 
out in Italy (47), Great Britain (48), and Israel (49), with reported dai
ly prediction accuracies of 0.79–0.81 (RMSE 5.3–6.6 μg/m3), 0.77 
(RMSE 4.0 μg/m3), and 0.87 (RMSE of 6.1 μg/m3), respectively. A re
cently published model from China using machine learning-based 
techniques reported a prediction accuracy of 0.59 with RMSE of 
29 μg/m3 (50). However, it is important to note the difference in 
the number of observations (in case of the USA and China) and 
the smaller areas (in case of the other countries) compared to 
the Indian scenario.

In the case of India, there have been few attempts to develop 
high-resolution exposure models for ambient PM2.5, each with 
its own limitations. In Mandal et al. (14), daily ambient PM2.5 

was assessed at a 1 km × 1 km spatial resolution over 2010 to 
2016 for the city of Delhi, which was not representative of India 
in terms of geography and meteorology. Further, this model 
used only ground monitoring data from stations around the 

Delhi National Capital Region. Mhawish et al. (15) carried out a 
modeling exercise for the Indo-Gangetic plain using data from 
2019, which was limited both temporally and spatially and also 
did not use spatial predictors such as land-use patterns. In a pre
viously published satellite observation-based exposure model for 
the whole country, the reported prediction accuracy was 0.80 at 
the daily level and 0.97 at the annual level with RMSEs of 25.7 
and 7.2 μg/m3, respectively (16). Our model does noticeably better 
for daily values but somewhat worse for annual predictions. 
However, their model was trained on a 70:30 split of observations 
from only 120 central monitoring stations with a random cross- 
validation approach and no held-out data for final evaluation. 
Since the split was done on observations and not monitors, the 
spatial performance (and thereby annual and overall perform
ance) is likely overestimated. Further, the model only relied on 
satellite- and reanalysis-based aerosol optical depth as a predictor 
of ambient PM2.5, which does not account for numerous other fac
tors such as land use and meteorology, potentially affecting the 
model’s ability to capture local and regional variations in PM2.5. 
Recently, an extension of this model incorporated an AOD filling 
algorithm and reported a fivefold cross-validation R2 of 0.92 and 
RMSE of 11.8 μg/m3 on an annual scale (51). In the modeling ap
proach developed by Shaddick et al. (18), 82% of the global ground 
monitoring data used to develop the model were from 2013 and 
2014 with no rural or periurban representation which makes up 
the majority of India. Further, the model used annual average 
concentrations as the modeled outcome, while using data on 
long-term average of PM2.5 from the monitoring stations in the 
WHO ambient air quality database. The latest iteration of this 
database provides only 421 annual average observations of PM2.5 

Fig. 3. Spatiotemporal patterns of PM2.5 in India: Annual average concentrations of PM2.5 obtained by aggregating daily ambient PM2.5 estimates from the 
ensemble-averaged model at 1 km × 1 km resolution from 2008 to 2020.
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from 160 unique locations with no spatial disaggregation within 
large cities such as Delhi.

There are several strengths of our modeling approach. A major 
difference between our approach with existing approaches is the 
use of daily average concentrations as the modeled outcome ra
ther than annual averages. This allows us to model the short- 
and long-term variations which are particularly important in 
Indian scenarios which experience large seasonal variations as 
well as variations due to regional sources like agricultural crop 
burning. Epidemiological studies that study the acute and chronic 
effects of PM2.5 on health of individuals often require time-varying 
exposures of different durations starting from the day before sam
ple collection, birth, death, or hospital admission (52, 53). Our 
model allows the construction of these average exposure metrics 
using daily concentrations rather than relying on downscaling an
nual averages. In addition, for our modeling purposes, we have 

used daily average PM2.5 measurements from over 1,000 monitors 
across India, which we have carefully curated over the past few 
years. To our knowledge, this is much larger than any existing da
tasets for India used in other studies resulting in more robust ex
posure estimates. This is a major strength in comparison with the 
global models that rely on small sample sizes from South Asia and 
India, in particular (11, 17, 18).

We have used four different machine learning approaches 
which have specific advantages toward modeling nonlinear pat
terns, interaction between variables, and high dimensional inter
actions. We observed a poorer performance of the deep-learning 
algorithm compared to the gradient boosting-based approaches 
when data was sparse in the earlier years. However, with an in
creasing number of observations in the most recent years, the per
formances of the different methods were comparable. Further, 
the ensemble averaging approach using the Gaussian processes 
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Fig. 4. Mean and variation within districts by changing population density: A) Annual average PM2.5 by summarizing daily predictions over districts 
experiencing different magnitude of changes in population density from 2010 to 2020. B) Average within-district (average of districtwise standard 
deviations) variation categorized by quartiles of change in population density.
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led to an improvement in the prediction accuracy of the model in 
comparison to each component learner across each year. This en
abled us to overcome the learner-specific deficiencies across all 
years to obtain accurate predictions across the entire time period, 
pointing to its ability to capture complex patterns across methods. 
Unlike previously developed models in Italy (48) or Great Britain 
(49), we have a better performance in terms of spatial accuracy, 
which is important to study the health effects of air pollution 
due to spatial heterogeneities. This approach can thus provide a 
template to model pollutants in data sparse scenarios especially 
in low- and middle-income countries.

As pointed out by Ravishankara et al. (11), air pollution is not 
exclusively an urban problem in India, with large populations in 
rural and periurban areas also at risk. In our dataset, we had vary
ing degrees of data from monitors located in rural and periurban 
areas. The proportion of data originating from rural locations was 
6% in 2008 and increased to 16% in 2020, which enhances the rep
resentativeness of our model across rural India. We specifically 
highlighted a scenario where high PM2.5 levels in densely popu
lated urban location (Kolkata) were spilling over into periurban 
and rural areas surrounding it. Further, we presented an analysis 
of precision that highlights the need of monitoring such areas to 
be able to characterize exposure more precisely and facilitate 
the study of health effects of air pollution.

We used a cross-validation approach by leaving out monitors 
based on spatial clustering as well as data availability. This en
sured that the model training was based on an equitable distribu
tion across spatial clusters as well as data-heavy and data-light 
monitors. This was an important aspect to prevent overfitting 
while using multiple machine-learning algorithms, especially 
since most of the country’s data originated from a few urban 
population centers in recent years. An additional feature of the 
model was our ability to implement regression calibration to ac
count for potential exposure error while using these predictions 
in studies of health associations, which were not available in the 
existing exposure models. Health effect studies using exposure 
from prediction models lack gold standard exposure measure
ments, potentially introducing bias in the associations between 
PM2.5 and health. Hence the availability of an exposure error- 
corrected prediction, leveraging a validation dataset, is an import
ant resource for future health studies.

Despite the efforts to develop a comprehensive model, there 
are limitations to our model. First, we used variables that 
were available for all grids across the country. However, there 
may be sources of PM2.5 that are specific to certain neighborhoods, 
for example, shopping malls and commercial areas in urban 
areas, for which information was not available nationally. Also, 
we did not have access to any validated source for spatiotempor
ally varying data on traffic flow, which is a major contributor of 
PM2.5. Inclusion of these predictors to build hyperlocal models of 
PM2.5 may increase the accuracy of our model. Second, we observe 
a poorer performance of the model in the early years, most likely 
due to the sparseness of ground monitoring data. However, we 
used a PM2.5 and PM10 calibration model to fill in gaps in the 
PM2.5 ground monitoring data. Third, we observed large gaps in 
the MAIAC AOD data over the country and used a 
deep-learning-based imputation to fill the gaps. However, the 
coarse resolution and inherent uncertainty in the CAMS AOD as 
well as meteorological variables may introduce biases in the im
puted AOD. Further, our model is not equipped to fully capture ex
treme events due to localized sources such as biomass burning 
during winter in Northern India, which often leads to spikes in 
air pollution. While we did use MODIS fire and global fire 

emissions database (GFED) carbon emissions from fires in our 
models, these variables do not fully capture short-term variations 
in biomass burning. However, in studies of long-term health ef
fects of air pollution in a population setting, these limitations 
should not hamper our inferences. Further, access to above- 
mentioned predictors can help facilitate updating the model for 
the future years. The existing model will be updated for following 
years using additional ground monitoring data and for select cit
ies, models will be updated to obtain predictions at a finer spatial 
resolution of 200 m × 200 m.

Conclusion
In this article, we presented a comprehensive state-of-the-science 
resource to assess daily average PM2.5 concentration at fine spatio
temporal resolution across a large, diverse, and populous country 
over a time period of 13 years. This unique model is an important 
resource to fill the gaps in air pollution epidemiology research in 
India. The modeled PM2.5 can be effectively leveraged to study as
sociations with a range of health outcomes across urban, periur
ban, and rural India.
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