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Background: Aberrant DNA methylation is a crucial epigenetic regulator that is
closely related to the occurrence and development of various cancers, including breast
cancer (BC). The present study aimed to identify a novel methylation-based prognosis
biomarker panel by integrally analyzing gene expression and methylation patterns in
BC patients.

Methods: DNA methylation and gene expression data of breast cancer (BRCA) were
downloaded from The Cancer Genome Atlas (TCGA). R packages, including ChAMP,
SVA, and MethylMix, were applied to identify the unique methylation-driven genes.
Subsequently, these genes were subjected to Metascape for GO analysis. Univariant
Cox regression was used to identify survival-related genes among the methylation-driven
genes. Robust likelihood-based survival modeling was applied to define the prognosis
markers. An independent data set (GSE72308) was used for further validation of our
risk score system.

Results: A total of 879 DNA methylation-driven genes were identified from 765
BC patients. In the discovery cohort, we identified 50 survival-related methylation-
driven genes. Finally, we built an eight-methylation-driven gene panel that serves as
prognostic predictors.

Conclusions: Our analysis of transcriptome and methylome variations associated with
the survival status of BC patients provides a further understanding of basic biological
processes and a basis for the genetic etiology in BC.

Keywords: epigenetics, DNA methylation, breast cancer, prognosis biomarker, integrative analysis

Abbreviations: AUC, area under the receiver operating characteristic curve; BC, breast cancer; CIMP, CpG methylation
profiles; ER, estrogen receptor; GO, Gene ontology; HCC, hepatocellular carcinoma.; ICB, immune-checkpoint blockade;
OS, overall survival; ROC, receiver operating characteristic; RSEM, RNA-Seq by expectation maximization; SNP, single-
nucleotide polymorphism; TCGA, The Cancer Genome Atlas; WGBS, whole-genome bisulfite sequencing.
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INTRODUCTION

Breast cancer (BC), affecting over 1.3 million women globally,
is the leading cause of cancer-related death in women (Bray
et al., 2018). According to recent statistics, the incidence
and mortality of BC have increased rapidly in the past
20 years (Torre et al., 2016). Most current treatments for
BC are limited to surgery, radiation, and chemotherapy.
Chemoradiotherapy is often accompanied by side effects such
as emesis, alopecia, and granulocytopenia, which significantly
impair the life quality of patients. Even worse, many BC
patients inevitably relapse and metastasize after treatment. With
the development of molecular biology and the deepening of
oncology research, targeted therapy has become a hotspot in
the research of BC treatment, leading the treatment of BC
into a personalized and precise era, bringing revolutionary
treatment for BC.

The onset of BC is thought to be driven by the accumulation
of both genetic and epigenetic alterations (Das and Singal,
2004; Basse and Arock, 2015), the latter corresponding to
inheritable gene expression alterations without modification of
DNA sequence. Epigenetic alterations are reversible and are more
susceptible to environmental factors than genetic alterations.
Thus, it is speculated that the epigenetic alterations are mainly
involved in the early stages of tumorigenesis. Interestingly,
epigenetic alterations are found in early adenomatous polyps
(Vymetalkova et al., 2019), supporting their essential role in
the early stage of oncogenesis. Epigenetic alterations interfere
with gene expression via DNA methylation, post-translational
modifications of histones, and miRNA. By repressing tumor
suppressors or activating oncogenes, epigenetic modification
takes part in the tumorigenesis of BC. DNA methylation
on “CpG islands” is the most frequently studied among the
various epigenetic modifications. It is well established that
hypermethylation of CpG islands in the promoter region of a
gene represses its expression (Rauscher et al., 2015). Aberrant
DNA methylation is found in various kinds of cancers. As for
BC, proapoptotic genes (HOXA5, TMS1), cell cycle inhibitors
(p16, RASSF1A), and DNA repair genes (BRCA family) are
identified as methylation silence genes (Esteller, 2002; Bagadi
et al., 2008; Lustberg and Ramaswamy, 2011; Radpour et al.,
2011). Previous research has identified the association of DNA
methylation and clinicopathological features of BC patients
including tumor stage, histological grade, and TP53 status.
Furthermore, the methylation of APC (Virmani et al., 2001),
CDH1 (Graff et al., 1995), and CTNNB1 (Suzuki et al., 2008) is
found to be closely related to BC development, implying that the
progression and prognosis of BC could be influenced by DNA
methylation status.

Establishing a robust prognostic risk scoring system might be
effective in identifying patients with poor prognosis and guiding
the individualized treatment. However, currently there are only
few studies focusing on the identification of methylation-based
prognosis biomarker panel and the development for a viable
prognostic risk scoring system. Therefore, our study aimed to
construct a methylation signature prognosis model to provide a
further understanding of basic biological processes and a basis for
the genetic etiology in BC.

MATERIALS AND METHODS

Data Acquisition
Data of BC patients in the TCGA project (TCGA-BRCA)
were downloaded. Only patients with survival information,
methylation data, and RNA-seq data were included for further
analysis. Sex is the biggest source of variability in methylation
data analysis (Aryee et al., 2014), and the variability mainly
comes from sex chromosomes (McCarthy et al., 2014). Therefore,
probes on sex chromosomes should be removed if a cohort
includes patients of both genders. Considering that more than
99% of BC victims are female, we excluded thirteen male patients
to maintain the integrity of the data. Finally, 764 tumor samples
and 78 solid tissue normal samples were included in our study.
Solid tissue normal samples in TCGA database indicate normal
tissue samples from individuals with cancer.

Level 1 (Raw data) clinical characteristics data were obtained
from TCGA via GDC Xena Hub (Goldman et al., 2019) (Version
GDC Release 10.0).

Level 2 (Normalized data) Infinium HumanMethylation-
450K(HM450K) methylation data (β-value calculations for each
probe and sample) were obtained from TCGA via GDC Xena
Hub (Version GDC Release 10.0).

Level 3 (Aggregated data) gene expression data were
obtained from TCGA via Firehose. In this study, RNA-Seq by
Expectation Maximization (RSEM) normalized values were used
because RSEM is more accurate compared to FPKM and TPM
(Li and Dewey, 2011).

Data Preprocessing
Preprocessing of gene expression data (RSEM) was conducted by
ProcessRNASeqData function in the MethylMix package (version
2.14.0) (Gevaert, 2015; Gevaert et al., 2015; Cedoz et al., 2018),
which includes steps as follows: firstly, removing samples and
genes with a percentage of NAs greater than 30%; secondly,
inputting NAs with the KNN method; thirdly, removing batch
effects by Combat adjustment.

As is shown in Figure 1B, methylation data preprocess is
a five-step procedure involving three R packages. Firstly, we
performed data filtering to remove multi-hit probes, probe
with <3 beads in at least 5% of the sample per probe, non-
CpG probes, and single-nucleotide polymorphism (SNP)-related
probes. Secondly, probes with a percentage of NAs greater than
20% and samples with a percentage of NAs greater than 30%
were removed, followed by the KNN neighborhood method to
estimate the missing value. Thirdly, the processed data were
subjected to BMIQ type II probe normalization. The three
steps mentioned above were performed by the ChAMP package
according to standard protocol (Morris et al., 2014). Then, we
use the SVA package (Leek et al., 2012) to remove batch effects
using combat algorithms according to standard protocol. Combat
algorithms use either parametric or non-parametric empirical
Bayes frameworks for adjusting data for batch effects (Johnson
et al., 2007). Finally, the average β-value in the promoter region
(1500 bp ahead of TSS and 5’UTR) of each gene was calculated
using the CalculateSingleValueMethylationData function of
TCGA-Assamble2 package (Zhu et al., 2014; Wei et al., 2017).
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FIGURE 1 | Analysis pipeline. Flowchart of the (A) prognosis-scoring model construction process and (B) data preprocess.

Integrative Analysis
We next performed integrative analysis with the MethylMix
package. MethylMix integrally analyzes DNA methylation data
of normal and cancer samples and the corresponding gene
expression data to identify DNA methylation-driven genes. The
algorithm of MethylMix includes three steps: the first step
identifies transcriptionally predictive methylation; the second
step identifies the methylation states of a gene with univariate
beta mixture modeling; the third step compares the methylation
levels of each methylation state to the mean of DNA methylation
level of normal tissue using a Wilcoxon rank-sum test. The main
outputs of MethylMix are methylation-related genes, which are
both differential methylated and transcriptionally predictive.

Gene Ontology Analysis of
Methylation-Driven Genes
We performed gene ontology (GO) analysis on the methylation-
driven genes using the Metascape web-based tool (Zhou et al.,
2019). We choose Metascape instead of DAVID because the
database of Metascape is updated monthly to ensure that its
content is up to date. The Metascape analysis was performed
using the default settings.

Construction of Discovery and Validation
Cohort and Identification of
Survival-Related Genes
The 764 tumor samples were randomly divided into two cohorts,
the discovery cohort and the validation cohort. Chi-square test

was applied to compare the distribution of baseline clinical
characteristics (age, stage, histological type, etc.) between the
two cohorts. Then, each methylation-driven gene was subjected
to Kaplan–Meier curve analysis in the discovery cohort. The
p value was generated by the log-rank test, and genes with
p < 0.05 were considered survival-related genes. Subsequently,
the survival-related genes were used as seed genes for robust
likelihood-based survival modeling to screen the genes panel. The
screening procedure was according to the standard protocol of R
package rbsurv (version 2.42.0). Subsequently, the correlation of
these genes was calculated by R package gpairs (version 1.2).

Construction of Risk Assessment Model
and Evaluation
We constructed the regression-coefficients-based risk assessment
model by performing multivariate Cox analysis on the discovery
cohort. The identified gene panels were subjected to multivariate
Cox analysis using the R package rms (version 5.1). After
generating the coefficient of each gene, the risk score was
generated based on the regression coefficients multiplied by
the methylation signature (β value). The risk assessment model
was then applied to patients to generate the risk score of each
patient. The receiver operating characteristic (ROC) curve was
constructed by the pROC package (version 1.15.0) to estimate
the prognosis efficiency of the risk assessment model and identify
the best threshold (Robin et al., 2011). Subsequently, the samples
were divided into the high-risk and low-risk groups by the
threshold. Then, Kaplan–Meier analysis was utilized to calculate
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the overall survival (OS) differences between the high-risk and
low-risk groups. Then, multivariate Cox analysis was presented
to testify whether the prognosis power of the risk assessment
model was independent of other clinical characteristics. We also
constructed a nomogram based on the independent prognosis
predictor identified by multivariate Cox analysis by the R package
rms (version 5.1).

Validation of the Risk Assessment Model
in an Independent Data Set
To validate the prognostic capacity of our risk assessment
model, we downloaded the methylation profile and clinical
information of GSE72308 (Jeschke et al., 2017) from the NCBI
GEO database. Similar methylation and gene expression data
preprocessing procedures are conducted. Subsequently, the risk

assessment model was applied to GSE72308, with the threshold
identified previously.

Statistical Analysis
R (version 3.6.2) and RStudio (version 1.2.1335) (Allaire, 2012)
were utilized for statistical analysis in this study. Categorical
variables were estimated by the chi-square test while continuous
variables were estimated by the Student’s t test. p < 0.05 was
considered as statistically significant.

RESULTS

Baseline Characters of Patients
The flowchart of the prognosis-scoring model construction
process and the data preprocess is shown in Figure 1. To

TABLE 1 | Clinical characteristics of TCGA patients.

Characteristics Cohort p value

Discovery Validation Total

Stage Unknown 5 (1.31%) 9 (2.34%) 14 (1.83%) 0.35

I 51 (13.38%) 65 (16.97%) 116 (15.18%)

II 222 (58.26%) 223 (58.22%) 445 (58.24%)

III 96 (25.19%) 81 (21.14%) 177 (23.16%)

IV 7 (1.83%) 5 (1.3%) 12 (1.57%)

Age ≤60 226 (59.31%) 204 (53.26%) 430 (56.28%) 0.092

>60 155 (40.68%) 179 (46.73%) 334 (43.71%)

HER2 Unknown 95 (24.93%) 99 (25.84%) 194 (25.39%) 0.755

Equivocal 59 (15.48%) 66 (17.23%) 125 (16.36%)

Intermediate 4 (1.04%) 7 (1.82%) 11 (1.43%)

Negative 182 (47.76%) 168 (43.86%) 350 (45.81%)

Positive 41 (10.76%) 43 (11.22%) 84 (10.99%)

ER Unknown 48 (12.59%) 52 (13.57%) 100 (13.08%) 0.483

Negative 73 (19.16%) 85 (22.19%) 158 (20.68%)

Positive 260 (68.24%) 246 (64.22%) 506 (66.23%)

PR Unknown 49 (12.86%) 52 (13.57%) 101 (13.21%) 0.715

Intermediate 1 (0.26%) 1 (0.26%) 2 (0.26%)

Negative 117 (30.7%) 103 (26.89%) 220 (28.79%)

Positive 214 (56.16%) 227 (59.26%) 441 (57.72%)

Histological type Unknown 1 (0.26%) 0 (0%) 1 (0.13%) 0.411

Infiltrating ductal carcinoma 267 (70.07%) 283 (73.89%) 550 (71.98%)

Infiltrating lobular carcinoma 75 (19.68%) 62 (16.18%) 137 (17.93%)

Medullary carcinoma 6 (1.57%) 2 (0.52%) 8 (1.04%)

Metaplastic carcinoma 3 (0.78%) 2 (0.52%) 5 (0.65%)

Mixed histology 13 (3.41%) 10 (2.61%) 23 (3.01%)

Mucinous carcinoma 6 (1.57%) 7 (1.82%) 13 (1.7%)

Other specify 10 (2.62%) 17 (4.43%) 27 (3.53%)

Race American Indian or Alaska 0 (0%) 1 (0.26%) 1 (0.13%) 0.225

Asian 15 (3.93%) 22 (5.74%) 37 (4.84%)

Black or African American 89 (23.35%) 69 (18.01%) 158 (20.68%)

Not reported 6 (1.57%) 9 (2.34%) 15 (1.96%)

White 271 (71.12%) 282 (73.62%) 553 (72.38%)

Radiation therapy Unknown 34 (8.92%) 32 (8.35%) 66 (8.63%) 0.953

NO 151 (39.63%) 151 (39.42%) 302 (39.52%)

YES 196 (51.44%) 200 (52.21%) 396 (51.83%)

No significant difference was found among cohorts.
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construct and validate a survival prediction model, 764 cancer
samples were randomly divided into discovery (n = 381)
and validation (n = 383) cohort. Baseline characteristics were
compared between the two cohorts (Table 1). Approximately
70% of BC patients in this study are early stage (stage I and II)
patients while 1.57% patients suffer from metastatic carcinoma.
The age at diagnosis of these patients ranges from 25 to 90, and
the median is 58 years. The histological type of most patients
(over 70%) is infiltrating ductal carcinoma (IDC). No significant
difference was observed among the baseline characteristics of the
two cohorts.

Identification and GO Analysis of
Methylation-Driven Genes in BC
A total of 764 cancer samples and 78 normal samples
were included to screen for the methylation-driven genes.

MethylMix identified 879 (Figure 2A) methylation-driven genes
out of 18,861 genes. For further understanding of functions
and metabolic pathways involved for these methylation-driven
genes, GO analysis was performed by Metascape. The GO
analysis showed that these proteins were involved in various
biological processes and the top 20 clusters were presented in
Figure 2B. Among them, cytokine-mediated signaling pathway,
lymphocyte activation, and pattern specification involved in
metanephros development are the most significantly enriched
in the function of dual-methylated, hypomethylated, and
hypermethylated genes, respectively. The network of the enriched
items and the interaction of these genes are shown in
Figure 2C. Further, we found that immune-related biological
function, including regulation of leukocyte proliferation, myeloid
leukocyte activation, and negative regulation of immune response
are closely linked to each other, indicating a possible association
between DNA methylation and immune responses in BC.

FIGURE 2 | Identification of methylation driven genes and GO analysis. (A) Heatmap of global methylation-driven genes in BC primary solid tumor and solid tissue
normal. (B) Bar graph of enriched terms and methylation-driven genes; only the top 20 clusters were presented. (C) Network of enriched terms.
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Identification of Survival-Related Genes
By applying Kaplan–Meier curve analysis in the discovery
cohort, we identified 50 survival-related genes (Figure 3A).
By applying the robust likelihood-based survival modeling,
eight genes (TCTEX1D4, MALE, LIME1, KLHL38, HPDL, ESR1,
UCP2, and COMMD7) were selected for the construction of
the prognostic risk model (Table 2 and Figures 3B–I). The
correlation between gene expression and methylation signature
was demonstrated in Figure 4 and Supplementary Figure S1.
Then, the correlation of the methylation signature of the eight
genes was calculated (Figure 5), showing that these genes were
not closely related in methylation signature. Moreover, GO
analysis of the eight genes showed no interaction, suggesting that
there are little redundancy and intersection in the information
carried between these genes.

Construction of Methylation
Signature-Based Survival Risk Score
System
By applying multivariate Cox analysis, an eight-gene methylation
signature prognostic risk model was generated as below:

Risk score = (0.190× COMMD7)+ (1.779×HPDL)

+ (1.779× LIME1)− (0.87× ESR1)

− (4.07× TCTEX1D4)− (2.47× KLHL38)

− (3.03×MAEL)− (8.50× UCP2 )

Patients in the discovery cohort were subjected to risk score
assessment; the best cutoff (−5.174) was determined by the ROC

FIGURE 3 | Identification of survival-related genes and generation of the eight-gene panel for the prognosis-scoring model. (A) Heatmap of methylation status of 50
survival-related genes identified in the discovery cohort. (B–I) Kaplan–Meier curves of the eight genes selected for construction of the prognosis-scoring model.
(B) TCTEX1D4, (C) MALE, (D) LIME1, (E) KLHL38, (F) HPDL, (G) ESR1, (H) UCP2, (I) COMMD7.
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TABLE 2 | Generation of the eight-gene panel using forward selection (AIC: Akaike
information criterion).

Gene nloglik AIC Selected

261.7 523.39

COMMD7 258.52 519.04 *

HPDL 254.24 512.49 *

LIME1 253.93 513.86 *

ESR1 253.29 514.58 *

TCTEX1D4 249.37 508.74 *

KLHL38 247.94 507.87 *

MAEL 245.76 505.52 *

UCP2 243.81 503.62 *

curve (Figure 6A). As is shown in Figure 6B, the distribution of
risk score among patients does not obey Gaussian distribution.
Patients with risk score of over −5.174 were grouped into the
high-risk group. Otherwise, they were grouped into the low-
risk group. In the discovery cohort, 132 (34.65%) patients were
grouped into the high-risk group, and 249 (65.35%) patients
were grouped into the low-risk group. Kaplan–Meier analysis
indicated that patients in the high-risk group showed a worse
OS, and there was a significant difference (p < 0.0001) in
prognosis between the two groups (Figure 6C). The median OS

of the high-risk and low-risk group was 2,417 and 7,455 days,
respectively. Therefore, our results showed that the model we
have established could successfully predict the prognosis of BC
patients. We then compared the prognostic power between our
model and the previously known markers in BC. Unsurprisingly,
stage III and IV patients have a worse prognosis than stage I
and II (p = 0.025), but our model showed a more significant p
value compared with the pathological grading. It is worth noting
that PAM50, ER, HER2, and PR status have no significant impact
on patients’ survival (p > 0.05, Supplementary Figure S2).
Therefore, we demonstrated that our model is superior to the
known biomarkers in prognostic prediction of BC.

To further evaluate the prognostic value of our model in
various subgroups, we performed survival analysis by Kaplan–
Meier plot. The results showed that our model performed well
in all subgroups (Figures 6F,G and Supplementary Figure S3).
Interestingly, the prognostic ability of our model is significantly
weaker in triple-negative breast cancer (TNBC) patients
compared to non-TNBC patients (Figures 6F,G). Moreover,
our model shows higher power to stratify prognosis in early
stage, HER2-negative, and PR-negative patients (Supplementary
Figure S3).

Then, verification was carried out in a validation cohort by
generating the risk score of each patient. With the threshold
identified previously (−5.174), 149 (38.9%) patients were

FIGURE 4 | Correlation between DNA methylation and gene expression of the eight genes selected for construction of prognosis-scoring model. (A) TCTEX1D4,
(B) MALE, (C) LIME1, (D) KLHL38, (E) HPDL, (F) ESR1, (G) UCP2, (H) COMMD7. Green dots (component 1): hypomethylated cases; orange dots (component 2):
hypermethylated cases.
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FIGURE 5 | Correlation analysis of the methylation signature of the eight genes. Scatter plots of the methylation signature between genes are presented in the lower
left corner, a distribution histogram of methylation signature is shown along the diagonal, correlation coefficients of methylation signature from −1 to +1 is presented
in the upper right corner; blue for positive correlation, red for negative correlation, the shade of blue/red represents the strength of correlation between genes.

grouped into high-risk groups, and 243 (61.1%) patients were
grouped into the low-risk group. As expected, patients in the low-
risk group had a longer OS and a better prognosis than those
in the high-risk group (p = 0.00014, Figure 6D). In the total
cohort, 281 out of 764 patients were grouped into the high-risk
group. Patients with high-risk scores were significantly correlated
with poor prognosis (p < 0.0001, Figure 6E). Subsequently,
to evaluate the power of prognosis prediction of this model,
time-dependent ROC analyses were carried out in discovery,
validation, and total cohort, and the area of respective ROC
curves (AUC) is 0.70048, 0.62244, and 0.66345, respectively
(Figure 7A). This result showed that our eight-gene methylation
risk score system performed well in stratifying patients into
high-risk and low-risk groups.

The total cohort was then subjected to multivariate Cox
analysis. As shown in Figure 7B, the risk score is an independent
prognostic factor in the discovery, validation, and total cohort (p
value <0.001). Considering only stage has a significant impact
on patients’ survival (Supplementary Figure S2), our nomogram
(Figure 7C) contains two variables, stage and risk score.

Validation of the Survival Risk Score
System in an Independent Data Set
To further examine the prognostic values of our risk score
system, an independent data set (GSE72308, n = 237) was
downloaded from GEO. The data set was subject to our risk
model for generating the risk score of each patient. Patients in

Frontiers in Genetics | www.frontiersin.org 8 April 2020 | Volume 11 | Article 301

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00301 April 17, 2020 Time: 19:20 # 9

Kuang et al. Epigenetic Prognostic-Biomarkers for Breast Cancer

FIGURE 6 | Unsupervised clustering analysis and prognostic analysis based on the prognosis-scoring model clustering. (A) Determination of the best cutoff
(−5.1737) for clustering patients into high- and low-risk group by ROC curve. (B) The distribution of risk score among patients in the total cohort shown in a
histogram. Kaplan–Meier curve with log-rank test of patients in discovery (C), validation (D), and total (E) cohort were generated to compare the prognosis of high-
and low-risk group. Patients in the high-risk group is significantly associated with worse OS in all cohorts (p < 0.0001). The prognostic ability of our model in
non-TNBC (F) and TNBC (G) patients is tested by the Kaplan–Meier curve with log-rank test.
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FIGURE 7 | Examine the prognostic power of the prognosis-scoring model. (A) AUC of the prognosis-scoring model in each cohort was generated. (B) Forest plot
of the univariant Cox analysis result shows that our prognosis-scoring model is an independent risk factor aside from histological stage and age. (C) Nomogram to
predict the 1-, 3-, and 5-year OS.

GSE72308 were grouped in high risk (n = 48, 20.3%) and low risk
(n = 189, 79.7%) by the threshold identified previously. Kaplan–
Meier curve (Figure 8A) indicated similar trends to the TCGA
patients. ROC curve (Figure 8B) was generated to evaluate the
capacity of the prognosis prediction of the risk score system. The
prognosis of high-risk patients was significantly worse than that
of low-risk patients. As shown in Figure 8B, the best threshold
identified in the GSE72308 data set was −5.256, very close to
the threshold of the discovery cohort (−5.174), implying the
stability of our model.

DISCUSSION

Breast cancer is a heterogeneous disease with various therapeutic
responses and outcomes. Apart from surgical treatment,

chemotherapy and target therapy are essential for BC
treatment. However, growing therapeutic options require
an accurate classification system to guide personalized treatment.
Traditionally, BC is staged by histopathological criteria including
size, level of invasiveness and lymph node infiltration, and
well-established biomarkers, including ER, PR, and HER2.
However, the prognostic predicting power of conventional BC
staging system prognosis is not satisfying. Recently, the study of
identifying gene-based methylation signature prognostic model
for BC has attracted much attention, and several papers have
reported the feasibility of this method (Bao et al., 2019; Chen
et al., 2019; Du et al., 2019; Qi et al., 2019). In the present study,
integrated analysis on patients in the BRCA project of TCGA was
carried out by MethylMix, identifying 879 methylation-driven
genes with different methylation patterns in tumor and normal
tissues. Our GO term analysis revealed that the differentially
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FIGURE 8 | Validation of the prognosis-scoring model in an independent data set (GSE72308). (A) Our model successfully clustered patients into high- and low-risk
group, and patients in the high-risk group are significantly associated with worse prognosis. (B) ROC curve was generated to test.

expressed DNA methylation-driven genes were involved in
cytokine-mediated signaling pathway and lymphocyte activation.
Network analysis of these genes showed a strong relation to
immuno-regulation, suggesting a close relationship between
DNA methylation and immunology. Moreover, we constructed
an eight-methylation-driven gene panel that serves as prognostic
predictors to identify high-risk and low-risk patients, providing
a guide for personalized therapy. Compared with a previous
study, our model outputs a risk score and performed further
verification with a validation cohort and an independent data
set, which makes our proposed model more reliable than the
genes and models in other articles. However, it has better
prognostic power in early stage, HER2-negative, and PR-negative
patients, respectively. Considering the uneven distribution of
the number of cases between subgroups, we speculate that the
difference is caused by the instability of the limited subgroup
cases. Our model shows lower power to stratify prognosis in
TNBC patients for several reasons. Firstly, the number of TNBC
cases is limited. Secondly, biological characteristics of TNBC,
including methylation pattern, are very unique, which requires
further investigation. Finally, the prognosis of TNBC patients
is worse than that of non-TNBC patients. The management of
TNBC patients is a hotspot in BC research, and a prognosis
prediction model for TNBC patients has great potential. We
also demonstrated that our model is superior to the known
biomarkers in prognostic prediction of BC. The WGBS and
EPIC array covers more genomic regions compared to the
HM450k (Pidsley et al., 2016). We used HM450k array data
in this study because large population data of WGBS or EPIC
array are not available yet. Moreover, further testing of our
model on different platforms is needed in the future. Besides,

a prospective study is needed to further test the reliability
of our model.

Our model involves the methylation signature of eight genes.
Among them, ESR1, encoding estrogen receptor-alpha (ER-
α), is the most investigated gene in BC. ERα-positive BCs
account for 70–80% of all BC types (Holst et al., 2007). It is
a hormone-dependent tumor, and stimulation with long-term
estrogen increases the risk of cancer recurrence and metastasis.
Therefore, endocrine therapy or other targeted therapies for
ERα and its signaling pathways are essential components of
comprehensive treatment for ER-positive BC patients. It is
reported that COMMD7 plays a role in a novel NF-κB-positive
feedback loop by dual-directional regulation in hepatocellular
carcinoma (HCC) (Esposito et al., 2016). The function of
TCTEX1D4 is not thoroughly investigated. Currently, it is known
as a protein phosphatase one interactor (Korrodi-Gregório et al.,
2013). He et al. (2016) identified Kelch-like protein 24 (KLHL24)
as a maintainer of skin integrity by balancing degradation and
intermediate filament stability. MAELSTROM protein (MAEL) is
a novel diagnostic biomarker for gastric cancer. A previous study
revealed that the function of MAEL is closely linked to epithelial–
mesenchymal transition (EMT) and stem cell properties (Zhang
et al., 2017). Lck Interacting Transmembrane Adaptor 1 (LIME1)
is a transmembrane adaptor involved in the activation of BCR
(B-cell antigen receptor)-mediated signaling via interaction with
Lck and Lyn (Hořejšì, 2004). However, to our knowledge, the
function of 4-Hydroxyphenylpyruvate Dioxygenase Like (HPDL)
remains unclear. Even though the prognostic impact of these
genes is identified in our study, their function, except for ESR1,
is generally unclear in BC. Therefore, the biological function of
these genes requires further investigation.
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CONCLUSION

In this study, we performed an integrated analysis to identify an
eight-gene DNA methylation score system that is prognostically
associated with the BRCA project of the TCGA database and
an independent data set (GSE72308). The scoring system could
distinguish between high-risk and low-risk patients for guiding
individualized treatment. Moreover, it might provide novel
potential therapeutic targets for BC. However, our score system
requires further validation by a prospective study in the future.
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