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Abstract: Sepsis is not only a threat to the health of individual patients but also presents 
a serious epidemiological problem. Despite intensive research, modern sepsis therapy 
remains based primarily on antimicrobial treatment and supporting the functions of failing 
organs. Finding a cure for sepsis represents a great and as yet unfulfilled need in modern 
medicine. Research results indicate that the activity of poly (adenosine diphosphate (ADP)- 
ribose) polymerase (PARP) may play an important role in the inflammatory response and the 
cellular metabolic disorders found in sepsis. Mechanisms by which PARP-1 may contribute 
to inflammation and metabolic disorders include effects on the regulation of gene expression, 
impaired metabolism, cell death, and the release of alarmins. These findings suggest that 
inhibition of this enzyme may be a promising solution for the treatment of sepsis. In studies 
using experimental sepsis models, inhibition of PARP-1 has been shown to ameliorate the 
inflammatory response and increase survival. This action was described, among others, for 
olaparib, a PARP-1 inhibitor approved for use in oncology. While the results of current 
research are promising, the use of PARP inhibitors in non-oncological diseases raises some 
concerns, mainly related to the enzyme’s role in deoxyribonucleic acid (DNA) repair. 
However, the results of studies on experimental models indicate the effectiveness of even 
short-term PARP-1 inhibition and do not confirm concerns regarding its impact on the 
integrity of nuclear DNA. Current research presents PARP inhibition as a potential solution 
for the treatment of sepsis and indicates the need for further research. 
Keywords: sepsis, septic shock, inflammation, metabolism, poly(ADP-ribose) polymerases, 
PARP inhibitors

Introduction
The beginning of this century brought results of epidemiological studies which 
indicate that sepsis is a global health threat. In a study published in 2001, Angus 
et al presented the results of a multicentre study conducted in the United States 
based on the analysis of hospital records of over 6 million patients, of whom 
192,280 were diagnosed with severe sepsis(the term “severe sepsis” corresponds 
to the current definition of sepsis under SEPSIS-3)6. Of these, 51.1% received 
intensive care and 17.3% received ventilation at an Intermediate Care Unit or 
Coronary Care Unit. Patients with severe sepsis accounted for 11% of all patients 
admitted to the Intensive Care Unit (ICU), and in hospital mortality was 28.6%.1 In 
2006, the results of a multicentre study conducted in 24 European countries were 
published. According to this study, 30% of patients admitted to the ICU had severe 
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sepsis, with a mortality rate of 32.2%.2 The importance of 
these reports was confirmed by the recognition of sepsis as 
a Global Health Priority by the World Health Organization 
(WHO) in 2017.3

The concept of sepsis has evolved over time. At the 
turn of the 20th century, it was defined as the presence of 
bacteria in the blood and it was believed that the overall 
severity of illness resulted from the severity of the infec-
tion. The theories about the pathogenesis of sepsis did not 
start to resemble the current ones until the second half of 
the twentieth century when it was noticed that clinical 
symptoms are not always accompanied by the presence 
of microbes in the blood, and that the same pathogen may 
cause different responses. During the 20th century, endo-
genous mediators were discovered which were found to 
contribute to the induction of septic reactions.4 At the end 
of the 20th century, the definition of sepsis focused on the 
inflammatory response and sepsis was defined as 
a systemic inflammatory response syndrome in response 
to infection, and severe sepsis was defined as sepsis coex-
isting with organ failure.5 The current definition of sepsis, 
published in 2016, defines it as “life threatening organ 
dysfunction caused by a dysregulated host response to 
infection”.6 Therefore, over time, the perception of sepsis 
has evolved from an initial focus on infection to inflam-
mation to systemic disturbance of homeostasis. One aspect 
of these disorders is metabolic dysregulation, including 
limitation of mitochondrial functions, changes in basic 
metabolic processes and limitation of the body’s metabolic 
capacity.7 Additionally, circulating cytokines and asso-
ciated hormonal disruptions cause insulin resistance, and 
promote lipolysis and proteolysis, which alter the avail-
ability of nutrients for energy production and can lead to 
wasting.8

Although the metabolic disorders found in sepsis have 
been studied for a relatively long time,9 for many years the 
efforts of scientists to find a cure for sepsis have focused 
on combating inflammation. Despite intensive research, 
modern sepsis therapy remains based primarily on antimi-
crobial treatment and supporting failing organs. Since 
innovative solutions in the treatment of patients with sep-
sis constitute a great and so far unmet need for modern 
medicine, it seems justified to pay attention to components 
of the dysregulated host response to infection, including 
metabolism.10,11 Poly (ADP-ribose) polymerase (PARP) 
inhibitors are a promising group of drugs that could both 
suppress excessive inflammation and address some of the 
problems arising from metabolic disorders in sepsis. 

Therefore, the aim of this paper is to discuss the role of 
PARP in the inflammatory response and to review reports 
on the effectiveness of PARP inhibition in the treatment of 
sepsis.

Poly (ADP-Ribose) Polymerase
PARP is an evolutionarily conserved family of proteins 
involved in numerous biological processes such as deox-
yribonucleic acid (DNA) repair, cell division and differ-
entiation, but also in response to stress, immune response, 
and cell death. The first enzyme with poly (ADP-ribose) 
polymerase activity was described in 1963 and since then, 
seventeen human PARPs have been discovered which 
differ in their structural domains, function and cell loca-
tion. The PARP superfamily catalyses the attachment of 
mono (ADP-ribose) (MAR) or poly (ADP-ribose) (PAR) 
to target proteins using nicotinamide adenine dinucleotide 
(NAD+) as a substrate. These processes are called 
MARylation and PARylation.12–14 Of the seventeen 
PARP found in humans, only a few catalyse PARylation 
(eg, PARP-1, PARP-2, PARP-5A, PARP-5B), while most 
catalyse MARylation.15–17 PARPs that catalyse 
MARylation have been shown to have amino acid substi-
tutions at their catalytic centres that enable them to attach 
only MAR moieties to the target proteins.18,19 MARylation 
has been shown to play a role in intracellular signalling, 
including inflammatory and stress responses.19–21

The differences between the members of the PARP 
family, including the heterogeneity of the catalysed reac-
tions, meant a new nomenclature for these compounds was 
proposed in 2010, taking into account their structural and 
biochemical features. Enzymes once classified as PARP 
are now called diphtheria toxin-like ADP- 
ribosyltransferases (ARTD) (Table 1). The name comes 
from a prototype bacterial toxin to which the proteins of 
the PARP family are structurally similar.18,22 Due to the 
numerous references to historic literature, the old nomen-
clature will be used in this review.

The majority of intracellular PARP activity is by 
PARP-1, which accounts for approximately 90% of 
NAD+ consumption by the PARP family.23,24 PARP-1 
functions to add ADP-ribose moieties to target proteins 
and comprises an N-terminal, zinc-finger DNA binding 
domain (DBD), a central automodification domain 
(AMD), and a C-terminal, catalytic domain (CD).15,25 

PAR acceptor proteins include DNA repair enzymes, his-
tones, chromatin regulators, transcription factors, and 
PARP itself.13,14,26 The CD of PARP-1 is responsible for 
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the addition of ADP-ribose groups, which catalyse three 
different enzymatic reactions: initiation, elongation and 
branching (Figure 1). Initiation is the attachment of the 
first ADP-ribose monomer to the amino acid residue of the 
acceptor protein. Elongation, the attachment of further 
monomers, takes place through the formation of a (2ʹ-1ʹʹ) 
ribose-ribose glycosidic bond. Branching involves the 
creation of a ribose-ribose bond between ADP-ribose 
(2ʹʹ-1ʹʹʹ) units.27–29 The dual specificity of PARP-1, allow-
ing both elongation and branching, is unique among poly-
mer-forming enzymes.30 Ruf et al have shown that the first 
of these reactions is preferred and proposed that branching 
may occur when the orientation of the bound polymer is 
reversed by a 180° rotation.30 More recent studies have 
shown that alongside the ability of PARP-1 to form 
branched PAR polymers, PARP-2 also has a significant 
role in the formation of side chains; catalysing additional 
PARylation at the top of existing PAR chains, resulting in 
the formation of branched PAR chains.31,32 Differences in 
the properties of the resulting polymer, such as length and 
branching structure, have an impact on the cellular 
response – it has been shown that different PAR reading 
proteins respond differently to specific features of the 
polymer structure, eg, some bind only linear or only 
branched PARs.32,33 Another noteworthy feature of 
PARP-1 is its autoPARylation ability, which inhibits its 
catalytic activity. PARP-1 may be PARylated by itself, 

PARP-2 and possibly other PARPs as well.34 While the 
above model of PAR polymer elongation by addition of 
new ADP-ribose units at the distal 2ʹ-OH end seems 
unchallenged in the context of PARylating another protein 
or a second PARP-1 molecule (intermolecular PARP-1 
auto-modification), the mechanism of PARP-1 intramole-
cular automodification remains under discussion. This 
topic is beyond the scope of this paper, however has 
been recently reviewed by Alemasova and Lavrik35). The 
synthesis of PAR polymers can perform various functions 
in the regulation of cellular processes, including modifica-
tion of the role of PARylated proteins, marking polymers 
for PAR readers, and in the case of autoPARylation; nega-
tively regulate their own activity.13,14,26,36 PARP-1 plays 
a key role in numerous biological processes, and PARP-1 
activation has been shown to be part of the pathophysiol-
ogy of many inflammatory and neoplastic diseases, includ-
ing cardiovascular disease, inflammatory lung diseases, 
diabetes, breast cancer and ovarian cancer.37 PARP-1 
activity accounts for the vast majority of PARP activity 
in cells, and for this reason, PARP-1 is the most inten-
sively researched and most extensively described PARP.37 

Therefore, this review focuses primarily on PARP-1.

The Role of PARP in Inflammation 
and Disorders of Cell Metabolism
There is ample evidence that PARP-1 is involved in the 
inflammatory response, with current knowledge summar-
ized in Figure 2. PARP-1 is involved in the activation of 
innate immune cells (macrophages, neutrophils, dendritic 
cells and microglia), adaptive immune cells (lymphocytes) 
and the inflammatory response of non-immune cells 
(including fibroblasts, endothelial cells and 
astrocytes).38–41 One of the best described aspects of 
PARP’s involvement in the inflammatory response is the 
role of PARP-1 in macrophage activation. PARP-1 is 
involved in the mechanisms behind macrophage response 
to pathogen associated molecular patterns (PAMP), which 
include, eg, lipopolysaccharide (LPS), the most common 
bacterial factor that contributes to the development of sep-
sis. One of the elements of this is expression of pro- 
inflammatory cytokines.42–45 Contribution to the regulation 
of pro-inflammatory macrophage activation has also been 
demonstrated for other proteins in this family; PARP-2, 
PARP-9 and PARP-14. PARP-1 and PARP-2 have been 
shown to regulate a common set of inflammatory mediators 
(including interleukin-1β (IL-1β), tumour necrosis factor α 

Table 1 Comparison of ARTD and PARP Nomenclature18,22

ARTD Name PARP Name Other Name

ARTD1 PARP1
ARTD2 PARP2

ARTD3 PARP3

ARTD4 PARP4 vaultPARP
ARTD5 PARP5a TNKS-1

ARTD6 PARP5b TNKS-2

ARTD7 PARP15 BAL-3
ARTD8 PARP14 BAL-2

ARTD9 PARP9 BAL-1
ARTD10 PARP10

ARTD11 PARP11

ARTD12 PARP12 ZC3HDC1
ARTD13 PARP13 ZC3HAV1, ZAP

ARTD14 PARP7 TIPARP

ARTD15 PARP16
ARTD16 PARP8

ARTD17 PARP6

Abbreviations: ADP, adenosine diphosphate; ARTD, diphtheria toxin-like ADP- 
ribosyltransferase; BAL, B-aggressive lymphoma; PARP, poly (ADP-ribose) polymer-
ase; TIPARP, TCDD-inducible poly-ADP-ribose polymerase; TNKS, tankyrase.
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(TNF-α) and inducible nitric oxide synthase (iNOS)), indi-
cating that these enzymes can modulate inflammation 
through overlapping pathways. Furthermore, PARP-1 and 

PARP-2 can PARylate each other and form 
heterodimers.46–48 In addition to the NF-κB pathway 
described below, the involvement of other signalling 

Figure 1 Scheme of poly (ADP-ribose) polymerase 1 (PARP-1) catalyzed poly (ADP-ribosylation) of the target protein. The PARP-1 catalytic domain attaches ADP-ribose 
polymers to proteins, catalyzing three different reactions – initiation (A), elongation (B) and branching (C). Initiation is the attachment of the first ADP-ribose monomer to 
the amino acid residue of the acceptor protein. Elongation, the attachment of further monomers, takes place through the formation of a (2ʹ-1ʹʹ) ribose-ribose glycosidic 
bond. Branching involves the creation of a ribose-ribose bond between ADP-ribose (2ʹʹ-1ʹʹʹ) units.

https://doi.org/10.2147/JIR.S300679                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2021:14 1830

Wasyluk and Zwolak                                                                                                                                                Dovepress

https://www.dovepress.com
https://www.dovepress.com


pathways such as IFNγ-STAT1 and IL-4-STAT6 have been 
suggested.45,49

The mechanisms involved in the interaction between 
PARP-1 and the nuclear transcription factor NF-κB, which 
is crucial in the immune response, have been widely 
described.39,42–44,50 Research indicates that the interaction 
between PARP-1 and NF-κB can take place both enzyma-
tically and non-enzymatically. Regarding the enzyme path-
way, it has been proposed that in response to exposure to 
LPS or TNF-α, PARP-1 is phosphorylated by c-Abl 

tyrosine kinase at the conserved site Y829. Tyrosine- 
phosphorylated PARP-1 then catalyses the PARylation of 
the NF-κB p65/RelA subunit, which induces transcription 
of genes regulated by this transcription factor.44 Other 
studies have shown that PARylation supports the activa-
tion and nuclear retention of p65 NF-κB.50,51 As part of 
a non-enzymatic mechanism, PARP-1 also acts as 
a docking molecule, binding to the p65 and p50 subunits 
of NF-κB.14,52 When discussing the influence of PARP-1 
on NF-κB, it is also worth noting that PARP-1 interacts 

Figure 2 Molecular mechanisms linking poly (ADP-ribose) polymerase (PARP) with inflammatory response and disturbed cell metabolism. The first area covers the 
mechanisms involved in the regulation of gene expression, such as PARP-1 promotion and activation of transcription factors, chromatin modulation, PARP-1 binding to the 
promoter region of the gene, and regulation of post-transcriptional modification as exemplified by HuR PARylation. The second area covers the mechanisms related to 
metabolic impairment, which include a decrease in SIRT1 activity and cellular energy depletion, both of which are related to NAD+ depletion due to over-activation of PARP- 
1. The third area contains mechanisms related to cell death, including parthanatos, PARP-1 dependent and caspase-independent cell death related to PAR accumulation and 
their interaction with AIF. The final area covers the mechanisms leading to the production of alarmins, endogenous molecules that activate the innate immune system when 
released from the cell due to, eg, cellular damage. 
Abbreviations: AP-1, activator protein-1; HMGB1, high-mobility group box 1; HuR, human antigen R; IL, interleukin; iNOS, inducible nitric oxide synthase; mRNA, 
messenger ribonucleic acid; NAD+, nicotinamide adenine dinucleotide; NFAT, nuclear factor of activated T-cells; NF-κB, nuclear factor kappa-light-chain-enhancer of 
activated B cells; NO, nitric oxide; PAR, poly (ADP-ribose); PARP-1, poly (ADP-ribose) polymerase 1; PARylation, poly ADP-ribosylation; SIRT1, sirtuin 1; TNF-α, tumour 
necrosis factor α.
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with the histone acetyltransferase p300, which is 
a coactivator required for NF-κB-dependent gene 
transcription.53

In addition to NF-κB, PARP-1 modulates the cellular 
response to damage by regulating other transcription fac-
tors such as activator protein-1 (AP-1). AP-1 is 
a transcription factor involved in the cellular response to 
immune and oxidative stress.40 In animal studies, PARP-1 
has been shown to contribute to acute lung injury in 
response to endotoxemia by regulating the iNOS pathway 
through the activation of AP-1, but not NF-κB.54 Another 
transcription factor regulated by PARP-1 is nuclear factor 
of activated T-cells (NFAT). PARylation of NFAT 
increases its capacity to bind to DNA, thereby facilitating 
the transcription of IL-2. A recent study has shown that the 
expression of NFAT-dependent cytokines (IL-2 and IL-4) 
was reduced in T cells genetically deficient in PARP-1 
(PARP-1 (-/-)).55

In addition to affecting transcription factors, PARP-1 
may also regulate the expression of genes related to 
inflammation by modulation of the chromatin structure, 
coregulation of the promoter, and modification of post- 
transcription ribonucleic acid (RNA).37,56,57 The ability 
of PARP-1 to PARylate histones and other chromatin- 
related proteins has been comprehensively described in 
the literature. This PARylation leads to a change in the 
spatial structure of these proteins and influences gene 
expression.58 PARP-1 can also elicit effects by directly 
binding to gene promoters, eg, binding to the iNOS pro-
moter results in increased nitric oxide (NO) 
production.37,59

Gene expression associated with inflammatory 
response is regulated by both transcriptional and post- 
transcriptional mechanisms. Post-transcriptional mechan-
isms modify mRNA stability, which facilitates faster and 
more flexible control, and is especially important in coor-
dinating the initiation and resolution of inflammation.60 

PARP-1 may also influence the regulation of gene expres-
sion at the post-transcription level, modifying RNA bind-
ing proteins (RBP) such as human antigen R (HuR) by 
PARylation.61,62 Ke et al showed that the increased mRNA 
stability of pro-inflammatory genes in LPS exposed 
macrophages was abolished by PARP-1 inhibition. 
PARylation of HuR by PARP-1 has also been shown to 
enhance nucleocytoplasmic translocation, mRNA binding 
and promote mRNA stability.61

Increased activity of PARP-1 may also affect the 
regulation of metabolic homeostasis by indirectly 

affecting sirtuins. Sirtuins (SIRTs) are a group of 
enzymes that play important roles in cell metabolism. 
SIRT1, the most studied protein of the SIRT family, 
plays an important role in energy homeostasis by con-
trolling the acetylation state and activity of many 
enzymes and transcription regulators (eg, peroxisome 
proliferator-activated receptor (PPAR)) that affects the 
expression of genes involved in carbohydrate, fat and 
protein metabolism and the development of 
inflammation.63,64 Since both SIRT1 and PARP-1 are 
NAD+ dependent, over-activation of PARP can reduce 
SIRT1 activity by depleting the NAD+ pool, which can 
disrupt cellular metabolic homeostasis.65 It has also been 
shown that under the influence of LPS stimulation, 
PARP-1 and SIRT1 physically interact. Interestingly, 
research results indicate that PARP-1 inhibition enhances 
the physical interaction between PARP-1 and SIRT1.66

Another theory related to the energy metabolism of 
cells concerns energy depletion caused by NAD+ con-
sumption due to over-activation of PARP-1. NAD+ defi-
ciency causes a reduction in the rate of glycolysis, electron 
transport chain and adenosine triphosphate (ATP) produc-
tion, which can lead to impairment of mitochondrial and 
cellular function.67–70 In work by Khan et al, enterocytes 
of the Caco-2 cell line were immunostimulated with 
a cocktail of pro-inflammatory cytokines (cytomix) con-
taining TNFα, IL-1β and interferon γ (INFγ). The immu-
nostimulated cells were shown to consume oxygen at 
about half the rate of control cells. This effect was partially 
offset by the use of a PARP inhibitor. It was also shown 
that the decrease in oxygen uptake was associated with 
a decreased intracellular level of NAD+. Both the decrease 
in oxygen uptake and the decrease in intracellular NAD+ 

were completely abolished when liposome-encapsulated 
NAD+ was added to the immunostimulatory culture. The 
results of this experiment suggest that enterocytes exposed 
to pro-inflammatory cytokines consume less oxygen due to 
NAD+ depletion secondary to PARP activation by perox-
ynitrite or other oxidants.71 NAD+ depletion due to exces-
sive PARP activation has also been proposed as 
a mechanism to explain cytopathic hypoxia, 
a phenomenon of decreased ATP production despite nor-
mal availability of oxygen in cells.9,72

Many studies show that PARP-1 also acts as a rheostat, 
promoting a different cellular response depending on the 
type, strength and duration of the harmful stimulus.68 Low 
intensity stressful stimuli primarily result in 
a transcriptional response and DNA repair, while 
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excessive PARP-1 activity results in NAD+ depletion and 
PAR accumulation, which leads to serious disturbances in 
energy homeostasis or cell death.37,44,61

PARP-1 can induce cell death by apoptosis, necrosis, 
or parthanatos.68,73,74 Apoptosis or programmed cell death, 
does not usually cause inflammation. In contrast, necrosis 
is cell death associated with damage, including metabolic 
damage, eg, depletion of the ATP pool. Parthanatos is 
a PARP-1-dependent and caspase-independent cell death 
that has been described primarily in relation to neuronal 
cells.68,75

Research shows that the main cause of parthanatos is 
the accumulation of PARs, which interact with apoptosis 
inducing factor (AIF).37,76 AIF is a mitochondrial protein 
involved in energy production and cell death.77 Free PAR, 
generated in the cell nucleus due to PARP-1 activation, 
can be transferred to the cytoplasm. Binding of PAR by 
AIF allows AIF to be released from the mitochondria and 
translocated to the nucleus where it binds to DNA. 
Binding of AIF to DNA causes peripheral chromatin con-
densation and DNA fragmentation, which is characteristic 
of apoptosis; however, parthanatos also shows features 
typical of necrosis (eg, cell membrane disruption and 
energy depletion).68,77–80

PAR resulting from PARylation act not only intracellu-
larly, they also play a role in intercellular communication. 
PAR when released out with the cell have the ability to 
stimulate macrophages, inducing the production of 
cytokines.81 Thus, it can be assumed that PAR released 
from the cell (eg, due to damage) can act as alarmins. 
Alarmins, or damaging molecular associated patterns 
(DAMP), are endogenous molecules released following 
cell damage that activate the innate immune system by 
interacting with pattern recognition receptors (PRRs). 
Another alarmin related to PARP-1 is high-mobility 
group box 1 (HMGB1), which has been shown to be an 
important mediator in the pathogenesis of sepsis.82,83 

Research suggests that the PARP-1-dependent transloca-
tion of HMGB1 from the nucleus to the cytosol gives cells 
the ability to release this potent inflammatory mediator 
upon subsequent cell death.84 The translocation process 
of HMGB1 from the nucleus to the cytoplasm requires 
acetylation. PARP-1 catalyses the PARylation of HMGB1 
which in turn facilitates acetylation.85,86 Furthermore, 
PARylated HMGB1 has been shown to reduce efferocyto-
sis, which promotes maintenance of inflammation.87 Both 
released HMGB1 and free PAR are recognized by TLR4, 
which indicates the convergence of these pathways in 

distress signalling.81 In turn, the interaction of TLR4 
with HMBG1 or LPS supports PARylation of HMGB1 
(and therefore also its release), which forms a positive 
feedback loop, supporting inflammation.14 Interestingly, 
PARP-1 and HMGB1 are a target for some pathogens 
(eg, Streptococcus pyogenes which releases NAD+ glyco-
hydrolase) as a strategy to avoid an immune response.88

PARP Inhibitors – Opportunities 
and Threats
While the first enzyme with poly (ADP-ribose) polymer-
ase activity was described in 1963, the potential benefits of 
its blockade were not discovered until almost 20 years 
later.12,89 The first study was on DNA repair and used 
NAD+-like compounds that were found to bind to the 
catalytic site of PARP.89,90 Due to the role of PARP-1 in 
the detection and repair of DNA damage, the search for 
pharmacological inhibitors remains the subject of intense 
research. Preclinical data showing the efficacy of PARP 
inhibitors in the suppression of growth of BRCA mutant 
cells was first published in 2005.91,92 The first clinical trial 
using olaparib as monotherapy was reported in 2009 and 
showed anti-tumour activity in cancers associated with 
BRCA1 or BRCA2 mutations.93 In 2014, this drug was 
approved in Europe for the treatment of patients with 
platinum-sensitive serous ovarian cancer with BRCA1/2 
mutations.94

Structurally, all PARP inhibitors that have been clini-
cally tested to date contain motifs that mimic the nicoti-
namide component of NAD+ and bind to the catalytic site 
of PARP (Figure 3). Nicotinamide itself is also a natural 
inhibitor of this enzyme.95 The discovery of the NAD+- 
dependent PARP-1 activation pathway allowed for the 
design of many PARP inhibitors, ranging from first- 
generation inhibitors with millimolar levels of activity, 
including nicotinamide and 3-aminobenzamide (3-AB), 
to the current, third-generation inhibitors with efficacy 
in nanomolar concentrations (Figure 4).14 Since PARP 
inhibitors act by a competitive inhibition mechanism, 
competing with NAD+ at the active site of the enzyme, 
they have the potential to inhibit other NAD+ utilizing 
enzymes. This is an example of polypharmacology. There 
are three types of polypharmacology demonstrated by 
PARP-1 inhibitors; intra-family polypharmacology, inter- 
family polypharmacology and multi-signaling 
polypharmacology.96 Intra-family polypharmacology is 
defined as non-selective activity against targets of the 
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same family,96 and has been demonstrated for many 
PARP inhibitors. Wahlberg et al assessed a series of 
185 small molecule PARP inhibitors (including research 
reagents and clinically tested compounds), investigating 
their ability to bind to the catalytic domains of 13 out of 
17 members of the PARP family. The most polypharma-
cological profile was found in rucaparib, which bound to 
9 of the 13 PARPs assessed. The study also assessed 
PJ34, olaparib and 3-AB, mentioned in this review, for 
which binding to 8, 7 and 1 out of the 13 evaluated 
PARPs was shown, respectively.97 Inter-family polyphar-
macology of PARP-1 inhibitors, ie, activity against tar-
gets from different families,96 has been demonstrated for 
sirtuins and mono-ADP-ribosyltransferases (ARTs).98,99 

Multi-signaling polypharmacology, ie, multi-signaling 

activity mediated by the same target, includes the trap-
ping mechanism (autoPARylation of PARP-1 has been 
shown to allow the enzyme to break free from DNA, 
and inhibition of this process causes PARP trapping), 
which was described, among others, in the context of 
olaparib.14,96 Due to the polypharmacological phenom-
enon of PARP-1 inhibitors, scientific reports should be 
carefully analysed as there are many studies available 
which have found that the results obtained reflect 
PARP-1 inhibition, without considering the effect of the 
pharmacological intervention on other enzymes. 
A potential solution to this problem in scientific research 
may be to include a control model using PARP-1 genetic 
knockout, or to use PARP-1 short interfering RNA 
(siRNA), which would allow assessment of the 

Figure 3 Catalytic domain of poly (ADP-ribose) polymerase 1 (PARP-1) in complex with olaparib.
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relationship between the observed effects and PARP-1 
activity.98,100 There are also studies on the development 
of PARP inhibitors with an alternative mechanism of 
action other than similarity to NAD+, which may show 
greater selectivity and lower cytotoxicity.101,102

Although the development of PARP inhibitors was 
initially related to oncology, their efficacy has been 
demonstrated in many models (in vitro and in vivo) of 
inflammatory diseases. There have been studies reporting 
efficacy of olaparib in alleviating sepsis,103,104 as well as 

Figure 4 Nicotinamide adenine dinucleotide (NAD+) and poly (ADP-ribose) polymerase (PARP) inhibitors. (A) shows the substrate of the PARP family enzymes – NAD+. 
(B–F) show the PARP inhibitors mentioned in this review: nicotinamide (B), 3-aminobenzamide (C), PJ34 (D), and INO-1001 (E), olaparib (F). These contain motifs that 
mimic the nicotinamide component of NAD+ and bind to the catalytic site of PARP. Nicotinamide itself is also a natural inhibitor of this enzyme.
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studies in asthma,105 liver disease106,107 and transient cer-
ebral ischemia.108

The effectiveness of PARP inhibition in inflammatory 
diseases, including sepsis, may result from the inhibition 
of the PARP-1-mediated components of the inflammatory 
response presented above. PARP inhibition facilitates 
a reduction in NAD+ consumption and also affects cellular 
energy homeostasis. Inhibition of PARP also results in 
a reduction in NF-κB activation and inflammatory cyto-
kine expression, and reduces the formation of PAR which 
are involved in AIF release from mitochondria. It is pos-
sible that it also contributes to the reduction of genotoxi-
city caused by oxidative stress and inflammation. 
Interestingly, the effective doses of PARP inhibitors in 
non-oncological studies are lower than those required in 
oncology, which may be related to the synergistic combi-
nation of the above effects.14,109

Since PARP-1 is an enzyme also associated with the 
recognition of DNA damage and the recruitment of repair 
enzymes, its inhibition in inflammatory diseases is of con-
cern. There is some evidence that PARP inhibition is asso-
ciated with an increased risk of genotoxic effects and there 
are possible side effects of long-term treatment (which in the 
case of sepsis is not such a significant problem).14 However, 
other in vitro studies have demonstrated no genotoxic effects 
of PARP inhibition. The situation in vivo is more complex 
and there is a possibility of indirect protection against DNA 
damage caused by oxidative reactions.14,104,110 This issue 
undoubtedly requires further research.

PARP Inhibition in Experimental 
Models of Sepsis
Many reports have demonstrated the benefits of PARP 
inhibition in experimental models of sepsis (Table 2). 
The benefits of PARP inhibition are well illustrated by 
studies using genetically determined PARP-1 deficient 
mice (PARP-1 (-/-)), for example, Oliver et al observed 
that LPS administration resulted in rapid activation of the 
NF-κB pathway in mouse PARP-1 (+/+) macrophages, 
which was not observed in PARP-1 (-/-) mice. These 
authors also described resistance of PARP-1 (-/-) mice to 
LPS-induced septic shock.111 Moreover, Soriano et al 
showed that PARP-1 (-/-) mice that underwent cecal liga-
tion and puncture (CLP) had significantly lower plasma 
levels of TNF-α, IL-6 and IL-10, showed reduced organ 
inflammation, and had a higher survival compared to 
PARP-1 mice (+/+).112

In 2005, Corral et al conducted a study in which they 
used two murine models of endotoxemia using CLP and 
LPS injection, as well as two methods of endotoxemia 
resistance using genetic blockade using PARP-1 (-/-) 
mice and pharmacological inhibition of PARP-1 using 
PJ34. This study revealed that levels of pro-inflammatory 
mediators were increased, and intensity of mononuclear 
cell infiltration and organ degeneration were more pro-
found in animals in which PARP-1 was not blocked; 
however, impaired blood coagulation was seen in all 
groups of animals.113 Moreover, it was observed in the 
study that although both PARP-1 (-/-) and PARP-1 (+/+) 
mice treated with PJ34 showed a reduction in the level of 
proinflammatory mediators (TNF-α and IL-6) compared to 
the control group, this decrease was more pronounced in 
the group of mice with pharmacological inhibition of 
PARP (Table 2).113 These differences may result from 
the polypharmacological action of PJ34, which affects 
a particularly wide group of targets.96 It has been shown 
that PJ34 strongly binds to PARP-1, PARP-2 and PARP-3, 
and has activity against PARP-4, TNKS-1, TNKS-2, 
PARP-14 and PARP-16.97 In addition, the phenomenon 
of inter-family polypharmacology was described in rela-
tion to the compound, including inhibition of matrix 
metalloproteinase 2 (MMP2).114 Another interesting phe-
nomenon described for PJ34 is the inhibition of ADP- 
induced platelet aggregation, probably through competi-
tive P2Y12 antagonism.96,115 The polypharmacology of 
PJ34 may be responsible for the described differences in 
the concentration of pro-inflammatory mediators in the 
compared groups and should also be taken into account 
when interpreting other studies using this compound.

There are also reports focusing on specific organs. In 
studies evaluating the usefulness of PARP inhibition in the 
prevention of lung damage, endotracheal administration of 
pathogens or LPS is often used. Murakami et al showed 
that a PARP inhibitor (INO-1001) reduces lung damage in 
an ovine model of acute lung injury (ALI).116 Khin Hnin 
Si et al described an experiment in which rats were admi-
nistered intratracheal LPS, which induced metabolic 
acidosis, hypotension, hypoxemia, and increased levels of 
creatinine and potassium in the plasma. Increased expres-
sion of cytokine mRNA in lung and kidney has also been 
found, which has been shown to be associated with strong 
expression of PARP and NF-κB. It has been shown that 
administration of PARP inhibitor (3-AB) to animals sig-
nificantly alleviated metabolic acidosis and other biochem-
ical disorders. PARP inhibition also reduced cytokine 
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Table 2 Summary of the Effects of Inhibition of Poly (ADP-Ribose) Polymerase (PARP) in Experimental Models of Sepsis

No Species Sex Age Sepsis Model PARP Inhibition Characteristics of the Group with 
PARP Inhibition Compared with 
the Control Group

Ref

1 Mice (C57BL/ 

6)

Male 

and female

6–8 

weeks

LPS from E. coli 
0111:B4 
40 mg/kg 

i.p.

PARP-1-KO Resistance to LPS-induced 

endotoxic shock 
Lack of rapid activation of NF-κB in 

macrophages 

↓↓ NF-κB-dependent accumulation of 
TNF-α in the serum 

↓ iNOS.

[111]

2 Mice (129/Sv × 

C57BL/6)

Male 8 weeks CLP PARP-1-KO ↑ survival 

↓ plasma levels of TNF-α, IL-6, and 

IL-10 
↓ degree of organ inflammation (gut, 

lungs)

[112]

3 Mice (129/Sv × 

C57BL/6)

ND 3 months LPS from E. coli 
0111:B4 
40 mg/kg 

i.p.

PARP-1-KO ↓ plasma levels of TNF-α (1088 ± 84 

pg/mL) 
↓ plasma levels of IL-6 (586 ± 47 ng/ 

mL) 

↓ inflammatory infiltrates in organs 
(liver, lungs)

[113]

Mice (129/Sv × 
C57BL/6)

ND 3 months LPS from E. coli 
0111:B4 

40 mg/kg 

i.p.

PJ34 
10 mg/kg 

1 h before LPS 

treatment

↓ plasma levels of TNF-α (862 ± 155 
pg/mL) 

↓ plasma levels of IL-6 (381 ± 53 ng) 

↓ inflammatory infiltrates in organs 
(liver, lungs)

[113]

Mice (129/Sv × 
C57BL/6)

ND 3 months CLP PARP-1-KO ↓ plasma levels of IL-6 
↓ inflammatory infiltrates in organs 

(liver, lungs)

[113]

Mice (129/Sv × 

C57BL/6)

ND 3 months CLP PJ34 

10 mg/kga

↓ plasma levels of IL-6 

↓ inflammatory infiltrates in organs 

(liver, lungs)

[113]

4 LACA mice Female ND LPS from E. coli 
O111: B4 
50 μg per mouse 

i.t.

Olaparib 

5 mg/kg 
i.p. 

0.5 h after LPS 

administration

↓ inflammatory infiltrates in lungs 

↑ kidney function 
↓ uric acid level 

↓ level of MDA in lungs and kidneys 

↑ level of GSH in lungs and kidneys 
↓ activation of p65-NF-κB (but not 

expression of total p65-NF-κB) 

↓ tissue expression of TNF-α, IL-1β, 
and VCAM-1 (NF-κB-dependent 

genes)

[103]

5 Wild-type 

mice

ND 4–6 

weeks

CLP PJ34 

10 mg/kg 

i.p. 
3 h before CLP

↓ serum HMGB1 levels [66]

(Continued)
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Table 2 (Continued). 

No Species Sex Age Sepsis Model PARP Inhibition Characteristics of the Group with 
PARP Inhibition Compared with 
the Control Group

Ref

6 C57BL6 mice Male 8 weeks CLP Olaparib 
1 mg/kg, 3 mg/kg or 

10 mg/kg 

i.p. 
24-hour protocol 

1st dose 0.5 h after 

CLP 
2nd dose 8 h after 

CLP 

experiment was 
terminated at 24 h 

Survival protocol 

1st dose 0.5 h after 
CLP 

2nd dose 8 h after 

CLP 
subsequent doses 

every 8 h 

experiment was 
terminated at 48 h

↑ survival (at 10 mg/kg but not at 
the two lower doses) 

↓ degree of mitochondrial DNA 

damage in the liver 
↓ number of bacteria in the plasma 

and spleen 

↓ plasma levels of TNFα, IL-1α, IL- 
1β, IL-2, IL-4, IL-6, IL-12p40 

↑ CD4+ and CD8+ lymphocytes in 

the spleen (reduced in response to 
CLP) 

↓ CLP-induced alterations in miR15, 

miR17, miR181 and miR365 levels in 
the spleen 

↓ CLP-induced downregulation of 

miR146 in the spleen 
↑ CLP-induced upregulation of 

miR146 in circulating leukocytes

[104]

C57BL6 mice Female 8 weeksa CLP Olaparib 
10 mg/kg 

i.p.

No beneficial effects [104]

C57BL6 mice Male 72 weeks CLP Olaparib 

10 mg/kg 

i.p.

No significant beneficial effects on 

most organ injury markers 

↓ plasma levels of IL-4, IL-12p70

[104]

C57BL6 mice Female 72 weeks CLP Olaparib 

10 mg/kg 
i.p.

↓ CLP-induced liver injury markers 

ALP and ALT 
↓ plasma levels of TNFα, IL-1α, 

MIP1α, M-CSF and MIG

[104]

7 Sprague– 

Dawley rats

Male ND LPS from E. coli 
O111: B4 

16 mg/kg 
i.t.

3-AB 

20 mg/kg

↓ plasma levels of lactate, creatinine, 

and potassium 

↑ arterial blood gas pH 
↑ PaO2 

↓ mRNA expressions of TNF-α, IL- 

1β and IL-6 in the lung and kidney 
↓ expressions of PARP and NF-κB in 

the lung and kidney 

↓ lung W/D ratio 
No perivascular edema in the lungs 

or kidneys 

Attenuation of LPS-induced 
hypotension

[117]

(Continued)
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mRNA expression as well as PARP and NF-κB 
expression.117 Kapoor et al used the modern PARP inhi-
bitor olaparib, and demonstrated that it alleviated acute 
lung and kidney damage following endotracheal LPS 
administration in mice. Use of olaparib 30 minutes after 
endotracheal LPS administration reduced the total number 
of inflammatory cells, particularly neutrophils, in the 
lungs. There was also a reduction in pulmonary edema 
and a lower protein content of the bronchoalveolar fluid. 

Olaparib has also been shown to provide protection against 
secondary kidney damage. In addition, RT-PCR results 
show that olaparib downregulates LPS-induced expression 
of NF-κB dependent genes (TNF-α, IL-1β, and VCAM-1) 
in the lung, without altering the expression of total p65NF- 
κB.103

Lobo et al assessed intestinal damage in sepsis caused 
by administering Pseudomonas aeruginosa to rabbits and 
evaluated the effect of a PARP inhibitor (PJ34) on gut 

Table 2 (Continued). 

No Species Sex Age Sepsis Model PARP Inhibition Characteristics of the Group with 
PARP Inhibition Compared with 
the Control Group

Ref

8 Sprague- 
Dawley rats

Male 8 weeks CLP 3-AB 
10 mg/kg 

i.v. 

Pretreatment group 
2 h before CLP 

Treatment group 

2 h after CLP

↓ serum levels of troponin I and CK- 
MB 

↓ activity of caspase-3 and level of 

cytochrome C in the myocardial 
tissues 

↑ ATP and NAD+ concentrations in 

the myocardium tissues 
↓ activity of PARP1 in the 

myocardium tissues 

↓ PARP-1 and Bax expressions in 
the myocardium tissues 

↑ Bcl-2 expression in the 

myocardium tissues 
↓ degree of cardiocyte injury

[119]

9 New-Zealand 
rabbits

ND ND P. aeruginosa (ATCC 
27,853) 

2 mL of a solution 

i.t.

PJ34 
10 mg/kg bolus + 

3 mg/kg/h infusion 

i.v.

↓ gut W/D ratio 
No significant differences in lung W/ 

D ratios

[118]

10 Sheep Female ND Cotton smoke 

exposure 
(4 x 12 breaths) 

+ 

Pseudomonas 
aeruginosa 
i.b. 

5 × 109/kg

INO-1001 

3 mg/kg bolus 
1 h after injury 

+ 

0.3 mg/kg/h infusion 
i.v.

↓ histological injury in the lung 

(congestion, inflammation, 
hemorrhage) 

↓ PAR accumulation in the lung 

↓ lipid peroxidation (MDA 
formation) in the lung 

↓ deposition of nitrotyrosine in the 

lung 
↓ pulmonary vascular permeability 

↓ lung W/D ratio 

↑ SaO2 

↑ PaO2/FiO2 ratio

[116]

Note: aPresumably. 
Abbreviations: 3-AB, 3-aminobenzamide; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ATP, adenosine triphosphate; CK-MB, creatine kinase muscle brain; 
CLP, cecal ligation and puncture; DNA, deoxyribonucleic acid; FiO2, fraction of inspired oxygen; GSH, reduced glutathione; HMGB1, high-mobility group box 1; i.b., 
intrabronchial; i.p., intraperitoneal; i.t., intratracheal; i.v., intravenous; IL, interleukin; iNOS, inducible nitric oxide synthase; KO, knockout; LPS, lipopolysaccharide; M-CSF, 
macrophage colony-stimulating factor; MDA, malondialdehyde; MIG, monokine induced by interferon γ; MIP, macrophage inflammatory protein; mRNA, messenger 
ribonucleic acid; NAD+, nicotinamide adenine dinucleotide; ND, not determined; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PaO2, arterial 
partial pressure of oxygen; PAR, poly (ADP-ribose); PARP, poly (ADP-ribose) polymerase; PJ34, N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide hydro-
chloride; SaO2, arterial oxygen saturation; TNF-α, tumor necrosis factor α; VCAM-1, vascular cell adhesion molecule-1; W/D, wet/dry.
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health. This study showed that PARP inhibition reduces 
intestinal inflammation and may reduce bacterial 
translocation.118

Zhang et al showed that the PARP inhibitor, 3-AB, 
in a rat model of sepsis had a cardioprotective effect. 
PARP inhibition by 3-AB was associated with an 
increase in ATP, NAD+ and Bcl-2 levels, a decrease in 
PARP and caspase 3 activation, and a decrease in mal-
ondialdehyde (MDA), cytochrome C, creatine kinase 
muscle brain (CK-MB) and troponin I.119 Myocardial 
dysfunction was also investigated in two patient studies 
in which PARP inhibition was not used, but PARP-1 
activity was assessed. In 2006, the results of a study by 
Soriano et al involving 25 patients with sepsis or septic 
shock showed that the heart tissue of patients with 
sepsis and impaired cardiac function had significantly 
elevated levels of PARP activation. They also described 
a positive correlation between troponin I levels and PAR 
staining densitometry.120 In 2014, the results of a study 
by Li et al evaluating 64 patients in septic shock showed 
that the activity of PARP-1 in circulating mononuclear 
cells in non-surviving patients was significantly higher 
than in surviving patients. In addition, this study showed 
that PARP-1 activity in these cells was an independent 
risk factor for myocardial dysfunction, indicating 
a potential prognostic significance.121

In 2014, Walko et al, using a mouse model of sepsis, 
showed that the administration of PJ-34, a specific PARP-1 
inhibitor, reduced the concentration of HMGB1 in the 
serum of mice undergoing CLP compared to a control 
group. Reduction of HMGB1 acetylation induced by 
PARP inhibition has been proposed as a likely 
mechanism.66 Two interesting studies on PARP inhibition 
were published in 2019. In the first one, Ahmad et al 
demonstrated the beneficial effects of the PARP inhibitor 
olaparib in both mice undergoing CLP and cells under 
oxidative stress. Interestingly, in the case of the animal 
studies, the effect was related to their sex and age. 
Olaparib was shown to be protective and anti- 
inflammatory in the organs of young adult male mice, 
while its beneficial effects were limited in older male 
and female mice and not seen in young female mice.104 

These differences in the efficacy of olaparib may be due to 
the physiological inhibitory effect of estrogen on PARP 
activation.69,109 Olaparib (in the dose and concentration 
range evaluated) has also been shown to have no adverse 
effects on nuclear DNA integrity and has a protective 
effect on mitochondrial DNA and mitochondrial 

function.104 In another new study, Zhang et al, using 
a model of human aortic endothelial cells (HAECs) 
affected by LPS-induced inflammation, demonstrated that 
remifentanil, a potent opioid analgesic, could reduce the 
LPS-induced inflammatory response through the PARP-1/ 
NF-κB signalling pathway. Cells pretreated with remifen-
tanil showed a decrease in iNOS, ICAM-1, PARP-1 and 
PAR expression compared to the control group. 
Furthermore, the use of remifentanil reduced the produc-
tion of superoxide anions and DNA damage. The effect of 
remifentanil on the inhibition of PARP-1 expression by 
small interfering RNAs (siRNAs) was also compared. 
Both methods inhibited LPS-induced NF-κB p65 expres-
sion and translocation to the nucleus, suggesting that 
remifentanil reduces the LPS-induced inflammatory 
response via the PARP-1/NF-κB signalling pathway. 
Although there is no confirmation of these reports in 
animal models or clinical trials, these results appear to be 
promising for use of analgesia in patients with sepsis, and 
the issue requires further research.122

Conclusions
Despite intensive research, modern sepsis therapy is based 
primarily on antimicrobial treatment and supporting failing 
organs. Sepsis poses a serious threat to the health of 
patients; therefore, innovative solutions are necessary for 
the treatment of inflammation and metabolic disorders. As 
excess PARP activity appears to be an important compo-
nent of the inflammatory response and promotion of meta-
bolic disorders at a cellular level, inhibition of this enzyme 
may be a promising solution in the treatment of sepsis. 
Over the past two decades, PARP-1 inhibition has been 
repeatedly shown to ameliorate the inflammatory response 
and increase survival using experimental sepsis models. 
Such action is described, among others, for olaparib, 
a PARP-1 inhibitor approved for the treatment of selected 
oncology patients. Despite the promising effects, the use 
of PARP-1 inhibitors in non-oncological diseases raises 
some concerns, mainly related to the role of PARP-1 in 
DNA repair, and concerning the risk of mutagenesis and 
oncogenesis. However, the results of studies on experi-
mental models indicate the effectiveness of even short- 
term PARP-1 inhibition and do not confirm such concerns 
about its impact on the integrity of nuclear DNA. The 
collected data so far indicate that inhibition of PARP-1 
may be a sought after and innovative solution in the 
treatment of sepsis.
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