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Abstract

We modeled the ecological niche of a globally successful Bacillus anthracis sublineage in the United States, Italy and
Kazakhstan to better understand the geographic distribution of anthrax and potential associations between regional
populations and ecology. Country-specific ecological-niche models were developed and reciprocally transferred to
the other countries to determine if pathogen presence could be accurately predicted on novel landscapes. Native
models accurately predicted endemic areas within each country, but transferred models failed to predict known
occurrences in the outside countries. While the effects of variable selection and limitations of the genetic data should
be considered, results suggest differing ecological associations for the B. anthracis populations within each country
and may reflect niche specialization within the sublineage. Our findings provide guidance for developing accurate
ecological niche models for this pathogen; models should be developed regionally, on the native landscape, and with
consideration to population genetics. Further genomic analysis will improve our understanding of the genetic-
ecological dynamics of B. anthracis across these countries and may lead to more refined predictive models for
surveillance and proactive vaccination programs. Further studies should evaluate the impact of variable selection of
native and transferred models.
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Introduction

Bacillus anthracis is a soil-borne, spore forming bacteria and
the causative agent of anthrax in wildlife, livestock and humans
worldwide. Metabolically dormant B. anthracis spores can
persist in landscapes with suitable soil and ecological
characteristics for long periods of time [1] such that years may
pass between outbreaks. More recent evidence suggests B.
anthracis may have an active soil life cycle [2]. Despite a long
recorded history of anthrax [3], the environmental and
epidemiological catalysts for epizootics are poorly understood.
Control of the disease in livestock and humans is best
achieved through annual vaccination of livestock and adequate
surveillance to identify outbreaks early in the epidemic course
[4]. In wildlife populations, control is limited to active
surveillance and proper disposal of carcasses [5]. The

economic conditions in many anthrax endemic areas, however,
combined with expansive rural geographies are such that early
recognition of outbreaks and proactive distribution of vaccine is
challenging, but could be facilitated by active, targeted efforts
in areas of high likelihood of occurrence. Ecological niche
models of B. anthracis identify geographic areas suitable for
pathogen persistence, and these areas should be considered
priorities for surveillance and vaccination. In particular, areas
predicted to be supportive of the pathogen which also have a
history of outbreak clusters should be targeted for active
control [6].

Much of the earlier literature on anthrax ecology describes
soil conditions that are favorable for B. anthracis persistence,
including higher calcium levels and pH [7–9]. In addition to soil,
there is evidence that endemic anthrax areas are associated
with warmer temperatures, higher soil moisture content and
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topography [9,10]. These relationships between potential
pathogen persistence and these environmental variables make
ecological niche modeling valuable for predicting the spatial
distribution of anthrax. Ecological niche models (ENMs) are
frequently used to predict the potential distributions of species
in ecologic and geographic space. A variety of correlative
algorithms are available, all of which aim to identify non-
random relationships between known location data for the
species and environmental variables and then identify
geographic areas of predicted presence. Models developed on
a native landscape and determined to accurately predict the
species’ presence in the native range can be projected, or
transferred, onto novel geographical areas. Transferred models
have been used to predict suitable areas for invasive species
[11,12], to predict the effects of climate change on species’
range [13,14], and to test niche conservatism hypotheses
[15,16]. Ecological niche modeling has been incorporated into
phylogeographic studies by evaluating whether genetically
defined sub-populations are associated with divergence in
ecological niche and geographic distribution [17–21].
Combining ENM and phylogeography is particularly informative
for studies of globally distributed pathogens which have
intricate, often little understood, interactions with spatially
heterogeneous abiotic and biotic factors which may be linked to
genetic variation. From a methodological perspective, widely
distributed species tend to result in less accurate ecological
niche models [22], and models for such species can be
improved by dividing the larger population into biologically
meaningful sub-populations such as those defined by genetic
analysis [17,23].

The phylogeography of B. anthracis has been described at
the global level [24] and in multiple regions [7,25–27] using a
combination of genetic markers including single nucleotide
polymorphisms (SNPs) [24] and multiple locus variable number
tandem repeats (MLVA) [24,28,29]. Although the geographic
distribution of genetic lineages as defined by SNP and MLVA
analysis exhibits heterogeneity, globally successful lineages
can dominate strain collections in countries on separate
continents. For example, the MLVA defined A1.a is widely
distributed throughout North America and Eurasia [24]; this
sublineage was further defined using SNP analysis into the
trans-Eurasian ancestor (TEA) and the related Western North
American (WNA) group [24].

The possibility that genetic variation in bacterial pathogens is
associated with spatial and ecological divergence is supported
by studies demonstrating unique epidemiologic characteristics
or ecological affinities among genetic groups of pathogens
within a geographic region [17,18,30]. In the case of B.
anthracis, a study in Kruger National Park, South Africa [7]
revealed intriguing genetic-ecological associations for the
pathogen and a differential distribution of genotypes based on
soil characteristics. In this study, Smith et al. [7] detected
spatial and ecological differences between genotypes
representing the evolutionarily distinct B. anthracis A and B
branches within the relatively narrow geographic boundaries of
Kruger National Park. More recently, work by Mullins et al. [21]
suggested that B. anthracis genotypes belonging to A1.a
sublineage in Kazakhstan were associated with a broader

ecological space than the larger population containing multiple
A cluster sublineages, further supporting the importance of
genetic information in building relevant ENMs for the species.

In the countries of United States, Italy and Kazakhstan,
strains belonging to the A1.a sublineage are ecologically
established and dominate strain collections [24–26,28,29],
providing a unique opportunity to study the dynamics of this
successful group across diverse landscapes. In the United
States, ecological niche modeling of anthrax outbreak locations
predicted pathogen persistence primarily along a narrow
corridor running from southwest Texas northward through the
Dakotas [4]. In that landscape the A1.a sublineage (SNP group
WNA) is dominant, although small areas appear to support
other sublineages, including A3.b and A4. The genetic diversity
of B. anthracis and geographic distribution of anthrax outbreaks
in Italy was described by Fasanella et al. [26], Lista et al. [29]
and Van Ert et al. [24], and confirmed by Garofolo et al. [31].
The dominant genotypes in Italy fell into the MLVA A1.a group
and TEA SNP group. Isolates belonging to the A1.a/TEA
sublineage also predominate in the southern portion of
Kazakhstan [25], where the ecological niche and predicted
geographic distribution has been modeled [21,32]. We
developed ecological niche models of this globally successful
B. anthracis sublineage in the United States, Italy and
Kazakhstan. Models were reciprocally transferred to determine
if pathogen presence could be accurately predicted on novel
landscapes.

Methods

Anthrax occurrence data and environmental data
Geographic information system (GIS) databases of B.

anthracis isolates belonging to the MLVA-defined A1.a
sublineage and SNP defined TEA/WNA from the United States
(U.S.), Italy, and Kazakhstan were used to support our
analyses. All isolates were derived from collections previously
genotyped using MLVA typing systems containing the set of
eight markers (MLVA-8) described in Keim et al. [28] and SNP
analysis [24]. The U.S. isolates were derived from Kenefic et al.
[33], Blackburn et al. [4] and new strains from recent field
collections in western Montana and Texas (Blackburn,
unpublished data). The isolates from Italy were first reported in
Fasanella et al. [26] and mapped for this study. Several
isolates from Italy were mapped only to the nearest province
and, therefore, we removed the isolates from the analysis.
Kazakh data were derived from Mullins et al. [21]. Isolates were
independently grouped into genetic lineages using the
unweighted pair group method with arithmetic mean (UPGMA)
cluster analysis or canSNP group assignments [24–26].
Remaining occurrence data were reduced to spatially unique
points at an 8 km2 resolution to accommodate the spatial
uncertainty of the data [13]. Each occurrence dataset was
randomly divided into an 80% training set for model building
and a 20% dataset for testing the native projection. Figure 1
shows the occurrence point distributions for each of the
countries used in this analysis.

Grids representing six bioclimatic variables (Table 1) and
altitude were downloaded from WorldClim (www.worldclim.org)
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and two satellite-derived environmental variables describing
measures of vegetation were obtained from the
Trypanosomiasis and Land Use in Africa (TALA) Research
Group (Oxford, United Kingdom; Table 1) [34,35]. WorldClim
bioclimatic grids (Bioclim) may be more biologically meaningful

Figure 1.  Geographic distribution of the training and
testing points used for ecological niche model building
and evaluation.  Occurrences are shown for (A) the United
States, (B) Italy and (C) Kazakhstan. Model training points are
illustrated in green and independent data for model evaluation
are yellow.
doi: 10.1371/journal.pone.0072451.g001

than annual mean, maximum and minimum values because the
manipulation of monthly data results in variables that represent
annual trends and seasonality as well as extremes in
environmental conditions that limit a species’ range. All grids
were resampled to 8 km2 and clipped to country boundaries
using ArcView 3.3 with the GARP datasets extension
(Environmental Systems Research institute, Redlands,
California, USA). The eight variables in the environmental
dataset were chosen based on parameters reported to reflect
persistence of B. anthracis in soils and used in previous studies
[4,13,32,36]. The background extent of each country was
determined by political boundaries. These extents were chosen
because reporting and control of anthrax is conducted within
political boundaries.

Model development
This study employed the Genetic Algorithm for Rule-Set

Prediction (GARP) [37] with a best subset procedure to perform
the ecological niche modelling experiments [38]. Briefly, the
GARP approach uses a two-step procedure in which sets of
rules are developed iteratively to predict presence or absence
in variable space using presence only input data and
background data. These rule sets are combinations of if/then
statements derived from either variable ranges or logistic
regression functions. This process is a random walk and
develops multiple models; the best subset procedure aids in
the selection of optimal models based on user-defined
thresholds of omission and commission. Optimal rule sets are
then projected onto the landscape. Training data were input
into GARP with a 50% training/50% testing internal data
partition. For all experiments, we specified 200 models with a
maximum of 1,000 iterations and a convergence limit of 0.01.
The 10 best subset models were selected using a 10% hard
omission threshold and a 50% commission threshold. These
output models were imported into ArcMap 10 (Environmental
Systems Research institute, Redlands, California, USA) and
summated to generate a single cumulative raster file of model
agreement for B. anthracis presence. Grid cell values thus
ranged from 0 (all models predict absence) to 10 (all models
predict presence). Native models were trained in each of the

Table 1. Environmental variables used to develop
ecological niche models.

Environmental Variable (unit) Name Source
Elevation (m) Altitude WorldClim†

Annual Temperature Range (°C) BIO7 WorldClim
Annual Mean Temperature (°C) BIO1 WorldClim
Precipitation of Driest Month (mm) BIO14 WorldClim
Precipitation of Wettest Month (mm) BIO13 WorldClim
Annual Precipitation (mm) BIO12 WorldClim
NDVI Amplitude (no units) wd1014a1 TALA‡

Mean NDVI (no units) wd1014a0 TALA
† (www.worldclim.org) [35]
‡Trypanosomiasis and Land Use in Africa (TALA) Research Group (Oxford, United
Kingdom) [57]
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three countries, then rule sets were projected onto the two
other landscapes (for example, the model trained in the U.S.
was projected onto Kazakhstan and Italy). As described in
Mullins, et al. [21], Kazakh models were trained with a subset
of southern A1.a isolates and projected onto the entire Kazakh
landscape, the U.S. and Italy.

Model evaluation
Predictive performance of the best model subset was

evaluated with an area under the curve (AUC) in a receiver
operating characteristic (ROC) analysis using withheld
independent test data for native models and all data for
projected models. Values of AUC approaching one indicate a
well-performing model while an AUC equal to 0.5 indicates the
model performs no better than random and are tested
statistically with a z-score (Z) and standard error (SE)
estimates. AUCs were interpreted in conjunction with measures
of omission and commission calculated using the summated 10
best models [39,40]. Total commission is the percent of pixels
which are predicted as presence by areas of 10 model
agreement. Average commission is the average area predicted
as presence by all subset models. The greater the difference
between the 2 measures of commission, the greater the spatial
heterogeneity among the 10 best subset models [22]. Two
measure of omission were also calculated. Total omission was
calculated as the total number of test points falling into areas
predicted as absence by all 10 models. Summed area omission
(SAO) was calculated as the omission error of areas of 10
model agreement. Models with small SAO values are desirable
because complete model agreement represents the most
conservative threshold with which to predict areas of presence.
Models which most robustly predict areas with a high likelihood
of pathogen persistence facilitate implementation of cost
effective, focused public health measures such as surveillance
and pre-emptive vaccination.

Results

All experiments reached convergence of accuracy prior to
the maximum 1,000 iterations. The AUC scores for native
projections all performed significantly better than random, and
native models each had zero total omission and low average
omission (Table 2). The native U.S. model predicted B.
anthracis distributed in a north–south corridor in the center of
the country (Figure 2). This band widens as it moves from
southwest Texas northward into South and North Dakota and
eastern Montana. Areas of the interior northwest are also
predicted. The native Italian model predicted large sections of
the southeastern mainland as well as the islands of Sardinia
and Sicily. Areas of high likelihood also include coastal regions
in central Italy and two relatively isolated regions of the
northeastern and central north portions of the country. The
Italian model accurately predicted areas of provinces in the
northeast where A1.a strains have been documented, but were
excluded from the analysis because of imprecise GIS data. In
Kazakhstan, the native projection strongly predicted presence
along the mountainous region of the southern portion of the
country and a broad area in the north, while predicting the
interior of the country with low model agreement.

Models projected to novel landscapes performed poorly.
Transferred models which performed better than random were
poor, and some transferred models were more dispersed than
random; measures of omission and commission were
consistent with under-prediction by the Italian and U.S. models
and over-prediction by the Kazakh model (Figure 2, Table 2).
The native U.S. model when transferred to Italy predicted
similar geographic areas of Italy as the native Italian model, but
with very low model agreement. The transferred model failed to
predict the area in southern Basilicata which has experienced
anthrax outbreaks and gave low agreement for known endemic
areas. The native U.S. model transferred to Kazakhstan
broadly predicted, with low model agreement, almost the entire
landscape. Small areas in the southern and northern regions
were predicted with higher model agreement. These areas
were also predicted by the native Kazakh model, whereas in

Table 2. Sample sizes and accuracy metrics for all native models and projections.

Training Landscape United States Italy Kazakhstan†

Projection Native IT KZ Native KZ US Native KZ IT US
Training 48 - - 28 - - 24 - - -
Testing 12 35 39 7 39 60 8 15 35 60
AUC 0.93 0.51 0.48 0.84 0.56 0.43 0.90 0.71 0.45 0.48
SE 0.05 0.05 0.05 0.09 0.05 0.04 0.09 0.08 0.05 0.04
Z 5.84‡ 7.72‡ 5.99‡ 3.86‡ 97.91‡ 16.42‡ 3.13‡ 4.52‡ 15.93‡ 7.71‡

Total Omission 0 62.1 13.2 0 86.8 96.4 0 0 0 0
Average Omission 6.7 71 51 1.4 74.8 82.2 0 19.2 10 17.7
Total Commission 8.38 0 0.84 27.86 0 0 19.77 13.17 9.04 28.67
Average Commission 22.88 7.71 43.54 50.21 0.05 3.17 46.3 54.28 90.9 83.35
SAO 16.67 - 89.47 14.29 - 100 0 46.15 100 62.50

Native projection are under the curve (AUC) scores are shown in bold for comparison. SE = standard error, Z = z-score, SAO = summed area omission.
† Native training and testing are for southern training area only
‡ statistically significant value
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the northeast corner of the country, the U.S. and Kazakh
models were very different.

The model trained in Italy transferred to Kazakhstan
predicted a highly endemic area of southern Kazakhstan,
although with very low model agreement. Projected onto the
U.S., the model trained in Italy did highlight some areas
predicted by the native trained model, namely western Texas,
western Oklahoma and Colorado, but again with low model
agreement. When transferred, the models trained in
Kazakhstan over-predicted all of Italy and the majority of the
landscape in the U.S.

Discussion

Evidence increasingly suggests phylogenetic analysis
provides a meaningful way to subdivide B. anthracis, and other
species, for more accurate niche modeling [7,17,19,21,23].
Furthermore, an ability to apply models developed in a
landscape with known anthrax locations to one in which
anthrax is not reported or is poorly recognized would be of
great value in predicting potential areas of emerging disease.

This study tested whether ecological niche models of the B.
anthracis MLVA-8 defined A1.a sublineage can be used to
predict the distribution of the same sublineage on novel
landscapes. Our native models reasonably predicted the
occurrence points in our experiments, and furthermore the
native Italian model predicted a region in Italy where the A1.a
sublineage has been isolated, but due to lack of spatial data
was not included in the occurrence dataset. Transferred
models, however, failed to accurately predict documented
anthrax occurrence points and tended to over-predict or under-
predict presence on the non-native landscapes. Where
transferred models were successful in predicting areas of
known persistence, model agreement tended to be low. Both
over-prediction and under-prediction of transferred models are
considered failures, although these failures have different
practical consequences for public health applications. When
areas suitable for pathogen presence are not predicted by a
model, the failure to incorporate this area into surveillance
programs will result in cases of disease being overlooked.
Over-prediction by a model, on the other hand, hinders
epidemiologic investigations of cases by misallocating

Figure 2.  Predicted distribution of Bacillus anthracis by native and transferred projections.  Native models were built for (A)
the United States, (B) Italy and (C) Kazakhstan. Color ramp indicates the level of model agreement from zero (no models predict
presence) to ten (all models in the best subset predict presence).
doi: 10.1371/journal.pone.0072451.g002
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resources to monitor regions that are erroneously predicted to
support the pathogen.

The failure of transferred models to accurately and
consistently predict known occurrences presents an
interpretive challenge. The lack of transferability may have
resulted from methodological shortcomings of transferring
models, or could reflect genetic-ecological divergence of the
pathogen [15,17,19,41,42]. Evidence supporting genetic-
ecological divergence was demonstrated in Kruger National
Park, South Africa, where the A lineage had broader ecological
tolerances than the B lineage within the park [7]. Our results
suggest that this ecological divergence in B. anthracis strains
may also occur in a widely distributed sublineage. It is possible
that successful genetic groups with broader tolerances are
more likely to become established across ecological extremes,
and the local population would then differentiate to develop a
unique genetic signature associated with the local ecology [43].
In contrast, B. anthracis lineages with more limited tolerances,
such as the B lineage and, although its ecological associations
have not been characterized, the geographically limited C
lineage, would be restricted ecologically and geographically.
This process of regional-scale differentiation leading to spatially
structured genetic variation has been described among other
introduced species or pathogens [15,17,18,33,44]. That Italian
and U.S. models under predicted pathogen occurrence in
Kazakhstan, whereas Kazakh models overpredicted a large
extent of Italy and the U.S., may indicate that Kazakh strains
have adapted to a broader ecological envelope. Although more
complete genomic data are required to substantiate this
hypothesis, this may reflect an earlier introduction of the
sublineage into Kazakhstan than in Italy or North America.

Evidence for genetic differentiation within the MLVA-8
defined A1.a sublineage includes the separation of this
sublineage into distinct TEA and WNA SNP groups [24]. More
recent SNP analysis of the WNA lineage [33] suggests a
significant evolutionary divergence between the North
American (U.S.) and Eurasian (Italy and Kazakhstan) strains.
The evolutionary divergence between Eurasian strains in
Kazakhstan and Italy is not as well defined. However, a 15-
marker VNTR analysis of the Eurasian group reported by Van
Ert et al. [24] suggests a high level of genetic diversity exists
within the ‘TEA’ SNP group (A. Br.008/009). More recent VNTR
based analyses based on 25 markers indicates that the Kazakh
‘A1.a’ strains, as previously defined using the 8-marker system,
exhibit a considerable degree of genetic divergence (Sytnik,
unpublished data) from European strains. Although this VNTR
based diversity is intriguing, more comprehensive analysis is
required to more accurately measure the evolutionary
relationships between these populations, particularly
considering that discovery bias inherently limits resolution in
‘canonical’ SNP data [45]. There is clearly a need to genotype
existing collections of B anthracis isolates with the highest
resolution systems available, such as the Lista 25 marker
system [29] or the 31 marker system [46]. Such an effort will
enhance our understanding of the phylogenetics and the
ecology of the pathogen. Existing niche models should then be
reconstructed according to emerging phylogenetic evidence.
Despite the limitations of the genetic data used in the present

analysis, the finding that native models were successful while
transferred models failed to predict anthrax occurrence points
suggests that niche specialization may have occurred within
this broadly distributed sublineage and this suggestion of
genetic-ecological associations warrants additional
investigation.

From a modeling perspective, however, the effect of variable
selection [41,42,47,48] and background [49–51] on transferred
projections must be considered as potential methodological
limitations when interpreting the results of this study. The
variable set used in the current experiments was chosen based
on variables considered to be limiting factors in the persistence
of B. anthracis based on previous niche modeling efforts
performed within single landscapes [4,21,32]. In studies
exploring the effects of variable selection on transferred
ecological niche modeling experiments, changes in the
dimensionality [41,52] and source [41] of environmental
datasets resulted in different geographic predictions, and these
difference were more pronounced in the novel landscapes than
in the native ones. Variable selection can limit transferability
because limiting factors for the species vary geographically
[42,49], and, in addition, interactions among ecological
variables may differ across landscapes, which would alter the
relationship of more distal variables with the pathogen [51].
Ecological variables limiting the spatial distribution of B.
anthracis may also vary with genetic lineage, reflecting niche
specialization suggested by the work of Smith et al. [7] in
Kruger National Park, South Africa. The impact of variable
selection, as well as that of different techniques for selection of
environmental variable sets, on these results will be evaluated
in additional experiments.

A second methodological consideration is that of the extent
used for background. We have defined the background in this
study according to political boundaries instead of using other
suggested techniques such as minimum convex polygons [42],
global ranges [53], or the accessible extent [50,51] because B.
anthracis dispersal to novel areas is primarily anthropogenic
and therefore not constrained by natural physical boundaries or
biological limits to movement. Therefore the potential area of
dispersal, as currently understood, is limited by control and
prevention measures which follow political boundaries.
Similarly, the nature of surveillance for, diagnosis of and
reporting of anthrax outbreaks is dependent on policies which
fall within such limits. Despite this practical consideration,
however, we recognize that within the political boundaries used
for defining the extent for these models, considering the large
geographic extents and latitudinal differences between the
countries, the ranges of environmental variables is likely differ
between landscapes. Hence, concerns about extrapolation are
significant and should be addressed in additional experiments.

While we suggest the results presented here may reflect
niche differentiation within this sublineage of B. anthracis, while
considering the potential effects of methodological problems, it
is important to also consider the source of isolate/occurrence
data and the effects of control efforts on the disease in each
country [4]. It is possible that the broad native predictions within
Kazakhstan reflect an insufficient capacity to maintain
widespread vaccination to reduce the overall burden of anthrax
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[54]. In the case of the U.S., models likely reflect areas where
the disease persists after decades of widespread vaccination
efforts have resulted in a clear reduction in overall outbreak
numbers and an accompanying contraction in the spatial extent
of disease [55]. Differences in historical control, alone or in
synergy with genetic and ecological factors, could explain
some portion of the over- and under- prediction observed in the
transference of models.

In this study we have used measures of omission,
commission and AUC as accuracy metrics to evaluate native
models and their transferability. The AUC measure has
limitations when evaluating ecological niche models [39,40].
Two described limitations are that AUC is influenced by the
geographic extent of the landscape being studied and the AUC
uses the entire ROC plot which would render comparisons
between modeling platforms unreliable. Here, however, we
evaluate models over the same extent (ie, a native U.S. model
and a projection transferred to the U.S.) and all using the
GARP modeling platform. The optimum weighting of omission
and commission, although equally weighted in the AUC, varies
depending on the purpose of the experiment. In this study ENM
was used to predict the potential presence of a pathogen and
infer subsequent disease risk to inform public health policy.
Errors of commission, or over-prediction, will result in excess
expenditures for surveillance and interventions and mislead
trace-back efforts, whereas errors of omission, or under-
prediction, could result in sustained transmission [56]. Viewed
in this context, optimal weighting of omission and commission
will depend on the relative costs of surveillance and disease.
The summed area omission (SAO) allows for refinement of
models with the goal being that areas of total model agreement
can be used as a conservative threshold for predicted
presence. By calculating omission only in areas of complete
model agreement, this conservative evaluation of model
performance maximizes predictive value without incorporating

potentially large geographic areas of low model agreement and
therefore lower risk. Expensive surveillance and prevention
programs can then be effectively targeted to highest risk areas.

Previous ecologic niche models described conditions
favorable for B. anthracis outbreaks based on collections of
isolates from multiple genetic lineages that were likely biased
towards a dominant subset of genotypes [4,32] and the
potential for using genetic analysis to improve models was
subsequently demonstrated [21]. Our findings suggest genetic-
ecological divergence exists among geographically dispersed
populations of B. anthracis from the MLVA-8 defined A1.a
sublineage. Some caveats apply, however. More
comprehensive and higher resolution genomic data is required
to better characterize the genetic differences between these
populations. In addition, the methodological problems
discussed here must be explored in order to refine native
models and to evaluate whether variable selection methods will
enhance the transferability of models. Until our understanding
of the genetic-ecological dynamics of B anthracis is better
developed, we suggest that B. anthracis is best modeled on a
country or regional level and with consideration of the genetic
diversity of the population. Moving forward, understanding B.
anthracis genetic-ecological associations on the landscape will
result in construction of ecological niche models that are
sensitive to genotype and region and are more successful in
predicting outbreaks.
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