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Histopathological imaging 
features‑ versus molecular 
measurements‑based cancer 
prognosis modeling
Sanguo Zhang1, Yu Fan1,3, Tingyan Zhong2,3 & Shuangge Ma3*

For lung and many other cancers, prognosis is essentially important, and extensive modeling has 
been carried out. Cancer is a genetic disease. In the past 2 decades, diverse molecular data (such as 
gene expressions and DNA mutations) have been analyzed in prognosis modeling. More recently, 
histopathological imaging data, which is a “byproduct” of biopsy, has been suggested as informative 
for prognosis. In this article, with the TCGA LUAD and LUSC data, we examine and directly compare 
modeling lung cancer overall survival using gene expressions versus histopathological imaging 
features. High-dimensional penalization methods are adopted for estimation and variable selection. 
Our findings include that gene expressions have slightly better prognostic performance, and that most 
of the gene expressions are weakly correlated imaging features. This study may provide additional 
insight into utilizing the two types of important data in cancer prognosis modeling and into lung 
cancer overall survival.

For most if not all cancers, various prognosis outcomes, such as overall survival, progression free survival, and 
time to metastasis, are of essential importance. Accordingly, extensive modeling research has been conducted. 
In “classic” prognosis studies, low-dimensional demographic, clinical, and environmental risk factors are ana-
lyzed, and “standard” regression-based techniques (such as Cox model) are usually sufficient. Despite some 
successes, it has been well recognized that the complexity of cancer prognosis demands additional data and 
more sophisticated modeling.

Cancer is a genetic disease. In the past 2 decades, with the fast development of high-throughput sequencing 
techniques, molecular data have been extensively collected in cancer studies. Accordingly, molecular data-based 
prognosis modeling has been accumulating. For example, an investigation of miRNA expression in 104 pairs of 
primary lung cancers and corresponding noncancerous lung tissues revealed that high hsa-mir-155 and low hsa-
let-7a-2 expressions were correlated with poor survival. The signatures were cross validated using an independ-
ent set of adenocarcinomas1. Since then, hsa-mir-155 over expression has been reported in thyroid carcinoma, 
breast cancer, colon cancer, and cervical cancer, indicating its potential for serving as a biomarker for tumor 
detection and evaluation of prognosis outcome2. As another example, the study of genome-wide expression of 
100 Non-Small-Cell lung cancer (NSCLC) FFPE samples identified a signature composed of 59 genes, which was 
strongly associated with prognosis for stage I lung cancer patients. This signature was later proven to be robust 
for clinical usage3. Molecular data are high-dimensional and contain substantial “noises”, that is, the majority of 
measurements are not associated with prognosis. To effectively remove noises, identify relevant effects, and build 
reliable models using “signals” only, a myriad of high-dimensional statistical techniques has been developed. 
A popular family of approaches conducts regularization and applies techniques such as penalization, boosting, 
Bayesian, and thresholding, which can simultaneously achieve estimation and variable selection. Such techniques 
have demonstrated statistical, numerical, and empirical successes. We refer to published literature4–6 for reviews 
and more extensive discussions. With the accumulation of clinical and experimental data, there is increasing 
knowledge on the functionality of molecular changes. As such, studies have also been conducted using molecular 
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changes that have “prior information”, for example, with evidence of being relevant from previous studies. In this 
line of work, multiple gene panels have been developed and utilized. For example, Jablons and others aimed at 
developing a prognostic risk score for patients with completely resected lung adenocarcinomas based on genes 
previously identified in microarray models of NSCLC prognosis. They suggested narrowing the 61-gene panel 
down to four genes7. A drawback of molecular data is that it is not as easy to collect: many patients are still con-
cerned with providing tissues for molecular profiling, not all hospitals can conduct profiling and process such 
data routinely, and the cost of high-throughput profiling is still not “friendly”.

A more recent type of data for cancer modeling comes from histopathological imaging. In cancer clinical prac-
tice, biopsy is routinely conducted, which generates histopathological images. Such images have been long used 
for definitive diagnosis and staging8. They contain rich information on tumors’ “micro” properties and surround-
ing microenvironment, which play important roles in cancer development. Traditionally, pathologists would 
examine specimens on slide glass for hours using microscopes and make judgement on a handful of features such 
as tumor-infiltrating lymphocytes (TIL) and tumor cell intensity. This process can be highly time-consuming, and 
have poor inter-laboratory, inter-observer, and intra-observer reproducibility9. More recently, the development 
of digital imaging processing algorithms and software has made it possible to automatedly extract features from 
histopathological images. Compared to the traditional approach which highly relies on human capability, the 
new approach is much less labor-intensive and can extract more features that are “hidden” from human eyes and 
have not been traditionally studied, hence containing possibly different information. With less dependence on 
human, these high dimensional features can also be more objective and reliable. In a handful of recent studies, 
histopathological imaging features, especially those extracted using automated imaging processing software, have 
been used for modeling cancer prognosis (as well as other outcomes and phenotypes)10,11. However, such studies 
are still relatively scarce. With the consideration that tumor properties as reflected in histopathological images can 
be affected by molecular changes, there have been studies modeling the relationships between imaging features 
and molecular changes12,13. Such studies are biologically well-grounded. In particular, morphological features 
of tumor cells and microenvironment can be caused and regulated by molecular changes. As a testament, the 
successful prediction of microsatellite instability from histopathological images of gastrointestinal cancer14 and 
colorectal cancer15 suggests that such a genotype–phenotype correlation is consistent enough to robustly infer 
genotypes by observing histopathological imaging features. A recent pan-cancer study confirmed this finding 
by analyzing the histopathological images of more than 5,000 patients across 14 solid tumor types using deep 
learning. This study demonstrated the feasibility of identifying genetic variants, gene expression signatures, and 
clinical biomarkers from images16. There are also a small number of recent studies showing that collectively 
analyzing molecular and imaging data can improve prediction. For example, to predict the prognosis of Glio-
blastoma Multiforme (GBM), Kang et al. integrated histopathological imaging and gene expression data with a 
deep learning approach. The integrated data achieved a C-index of 0.702 in comparison to 0.640 by using only 
histopathological imaging data17. Similar data integration has also been pursued for breast cancer18,19, glioma20, 
lung cancer21, and prostate cancer22. These studies have suggested the great potential of high dimensional histo-
pathological imaging features for cancer research. Overall, with the cost-effectiveness and routineness of biopsy 
and histopathological images can potentially play an important role in cancer modeling. As a “side note”, we 
distinguish between histopathological images and radiological images—the latter are generated by CT, PET, and 
other radiological techniques and inform “macro” properties of tumors such as size, shape, and density.

A common limitation of the existing studies is that information has been scattered. More specifically, studies 
that analyze both histopathological imaging features and molecular changes using the same data and on the same 
ground are very limited. With differences in patient characteristics and data generation, processing, and analysis 
procedures, findings from different studies may not be directly comparable. In the integration studies, there is 
often a lack of attention to the direct comparison of molecular and imaging data analysis results.

The objective of this study is multi-fold. Specifically, it intends to further demonstrates cancer prognosis mod-
eling using histopathological imaging and molecular data, taking advantage of high-dimensional regularization 
techniques (which may have a more lucid interpretation than the deep learning and some other techniques). 
More importantly, it provides a direct and fair comparison of modeling using these two types of highly impor-
tant and popular data—this differs from most of the published studies. To be comprehensive, we also examine 
integrating these two types of data for modeling prognosis as well as modeling their relationships, as in some 
of the aforementioned studies. With the analysis of TCGA LUAD and LUSC data, this study may also provide 
additional insight into lung cancer prognosis.

Materials
TCGA (The Cancer Genome Atlas) is one of the largest and most comprehensive cancer projects organized by 
the NCI (National Cancer Institute) and NHGRI (National Human Genome Research Institute). For over thirty 
different types of cancer, it has published comprehensive phenotypic, demographic, molecular, and imaging 
data23. We choose to analyze TCGA data because of its high quality, comprehensiveness, and public availability. 
In particular, we analyze data on LUAD (lung adenocarcinoma) and LUSC (lung squamous cell carcinoma), two 
subtypes of NSCLC. Lung cancer patients in general have poor prognosis, and as such, prognosis modeling can 
be especially important. For prognosis outcome, we choose overall survival, as in Radzikowska et al.24, Collins 
et al.25, and quite a few other studies.

Histopathological imaging data.  Whole-slide histopathological images in the svs format are down-
loaded from the TCGA website (https​://porta​l.gdc.cance​r.gov). These tissue slides are formalin-fixed and par-
affin-embedded, and the cell morphology is well-preserved and suitable for image feature recognition. They are 
captured at 20× or 40× magnification by the Aperio medical scanner. In recent studies, we13 and others21,26 have 
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developed and implemented a pipeline for extracting high dimensional imaging features, which is sketched in 
Fig. 1. Briefly, it includes the following three main steps. First, whole-slide histopathological images are chopped 
into small subimages of 500 × 500 pixels, and 20 subimages are randomly selected. Then, imaging features are 
extracted using CellProfiler27, a publicly available software package that has been adopted in quite a few recent 
studies11,18,28. In the next step, for each patient, features are averaged. We refer to Zhong et al.13 and Luo et al.26 
for more detailed discussions on this imaging processing pipeline as well as alternatives. With this processing 
pipeline, a total of 299 features can be obtained. We note that this is significantly higher than in studies such 
as Wang et al.29 and Romo et al.30. As briefly mentioned above, some imaging studies, especially the early ones, 
utilize low dimensional imaging features. Comparatively, high dimensional features may have less lucid interpre-
tations but can contain information not reflected in the low dimensional features. With their advantages such as 
cost-effectiveness and reliability, it can be of higher interest to examine their prognosis modeling performance. 
With the extracted features, we further conduct quality control. In particular, irrelevant features, such as file size 
and execution information, are removed. We also remove features with severe missingness (> 25%) and no or 
little variation. A total of 221 features are included in downstream analysis.

Molecular data.  For molecular data, we analyze gene expressions, which have been considered in many 
lung cancer prognosis modeling studies31,32. Compared to DNA and epigenetic changes, gene expressions are 
“closer” to phenotypes. With a lack of high-quality protein data, TCGA gene expression data have been exten-
sively analyzed for prognosis, other phenotypes, and biomarkers. In TCGA, gene expressions were measured 
using the Illumina Hiseq2000 RNA Sequencing Version 2 analysis platform and processed and normalized using 
the RSEM software. More detailed information is available in the literature33,34. It is possible to directly conduct 
whole transcriptome analysis. However, findings may be unreliable when sample sizes are limited. As such, we 
take a candidate gene approach. In particular, the 61 gene panel developed in Raz et al.7 is adopted. Matching 
this panel with gene names in the TCGA data leads to 50 genes for analysis. We acknowledge that there is still a 
lack of definitive consensus on lung cancer prognosis genes and that there are other lung cancer prognosis gene 
panels. This particular panel is selected as it has been recently examined in authoritative studies. The proposed 
analysis can be directly applied to other prognosis panels.

Available data.  Beyond imaging and gene expression data, clinical characteristics have also been estab-
lished as associated with prognosis and included in our analysis. Following published studies and considering 
data availability, we include sex, age, cancer stage, and tumor size. More specifically, tumor size is defined as the 
longest dimension × shortest dimension, and we combine cancer stages into three levels to avoid small counts. 
Multiple types of data are combined by matching unique sample IDs. The final LUAD data contains 307 samples. 
Among them, 106 died, with survival times ranging from 0 to 88.07 months and a median of 20.52 months. 
There are also 201 censored subjects, with observed times ranging from 0 to 238.11 months and a median of 
23.16 months. The final LUSC data contains 334 samples. Among them, 155 died, with survival times ranging 
from 0.10 to 173.69 months and a median of 18.36 months. There are also 179 censored subjects, with observed 
times ranging from 0.39 to 156.54 months and a median of 23.55 months. For both LUAD and LUSC, data on 
221 histopathological imaging features and 50 gene expressions are available. Summary statistics on the clinical 
characteristics are presented in Table 1.

Analysis techniques
Denote T and C as the event and censoring times, respectively. With right censoring, we observe 
(U = min (T ,C), δ = I(T ≤ C)) . Denote X as the p-dimensional vector of histopathological imaging features, 
Z as the q-dimensional vector of gene expressions, and L as the r-dimensional vector of clinical characteristics. 
Assume n iid samples.

Associate histopathological imaging features and gene expressions with survival.  Here our 
goal is to conduct various “standard” survival analysis and associate imaging features and/or gene expressions 
with overall survival, while properly accounting for the effects of clinical characteristics. We comprehensively 
consider multiple sets of analysis.

First consider the analysis with XL =
(

X
′, L′

)′

 as input. Consider the Cox model, under which the hazard 
function:

�
(

T|XL
)

= �0(T) exp
(

β ′
X
L
)

.

Figure 1.   Pipeline for extracting imaging features.
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Here �0(T) is the unknown baseline hazard function, and β is the vector of unknown regression coefficients. 
Consider the log partial likelihood function:

where subscripts i and j correspond to subjects i and j , and Yj(Ui) is the subject j ’s at risk indicator at time Ui . 
To accommodate the high data dimensionality, and to remove noises and identify relevant effects, we consider 
the Lasso penalized estimate:

where τ > 0 is the data-dependent tuning parameter and chosen using cross-validation, and βl is the l  th compo-
nent of β . Here it is noted that penalization is only imposed on the imaging features. As such, the clinical variables 
are automatically included, given their established importance in lung cancer prognosis. For a specific imaging 
feature, a nonzero estimate suggests its association with survival. Literature review suggests that penalization is 
one of the most popular techniques for accommodating high-dimensional input and feature selection, and Lasso 
is likely the most popular penalization technique. The adopted “Cox model + Lasso estimation” approach has been 
examined in multiple published studies35,36. In our analysis, it is realized using the R package glmnet. We note 
that analysis can also be conducted using other penalties and regularization techniques other than penalization, 
and that analysis results depend on the adopted technique.

Next we consider the analysis with ZL =
(

Z
′, L′

)′

 as input. Analysis can be conducted in the same manner 
as for imaging features. Denote γ as the vector of unknown regression coefficients in the Cox model and γ̂ as 
its Lasso penalized estimate. Note that the baseline hazard functions in this and the above analysis may be dif-
ferent. In this analysis, although the genes have been pre-selected, it is still necessary to apply penalization. In 
particular, the number of variables, relative to the sample size, is still large. As such, certain regularization is 
needed in estimation. In addition, to be cautious, it may still be sensible to examine whether all genes in the panel 
are associated with survival for the particular TCGA patient cohort (which may differ from those examined in 
published studies).

In the next set of analysis, we integrate the imaging features and gene expressions using an additive approach. 

In particular, we consider a Cox model with input variable 
((

β̂1, . . . , β̂p

)

X ,
(

γ̂1, . . . , γ̂q
)

Z, L′
)′

 . Prior to model 
fitting, we compute the correlation coefficient between 

(

β̂1, . . . , β̂p

)

X and 
(

γ̂1, . . . , γ̂q
)

Z , which can suggest 
whether the two types of data have overlapping information in modeling survival (after adjusting for the clinical 
variables). In model fitting, as the dimensionality is low, we do not impose any penalization. This analysis takes 
an additive modeling strategy, which has been developed in the literature28 and shown as reasonably effective 
for data integration. It retains the “structure” of imaging effects and that of gene expressions. It can be more 
interpretable compared to some existing approaches, for example the “black-box” deep learning.
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Table 1.   Summary of clinical characteristics.

LUAD (n = 307) LUSC (n = 334)

Sex

Female 170 Female 85

Male 137 Male 249

Age

65.49 (SD = 9.71) 67.38 (SD = 8.59)

Cancer stage

Stage I 3

Level_A (164)

Stage I 1

Level_A (176)Stage IA 73 Stage IA 60

Stage IB 88 Stage IB 115

Stage II 0

Level_B (77)

Stage II 1

Level_B (93)Stage IIA 28 Stage IIA 33

Stage IIB 49 Stage IIB 59

Stage III 0

Level_C (66)

Stage III 0

Level_C (65)
Stage IIIA 40 Stage IIIA 46

Stage IIIB 7 Stage IIIB 14

Stage IV 19 Stage IV 5

Tumor size

0.467 (SD = 0.324) 0.470 (SD = 0.309)
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For the above three sets of survival analysis, we adopt the following random splitting approach to evaluate 
prediction performance: (a) randomly split all samples into a training and a testing set with sizes roughly 3:1; 
(b) conduct survival analysis as described above using the training set; (c) for subjects in the testing set, compute 
the predicted risk scores. For example, for the analysis with imaging features, the risk scores are β̂

′

X
L . Compute 

the C-index using the predicted risk scores and testing set (observed time, event indicator). The C-index ranges 
between 0 and 1, with a larger value indicating better prediction. It is also the time-integrated AUC (Area under 
the Receiver Operating Characteristic curve). To avoid an extreme split, Steps (a)–(c) are repeated 100 times, 
and the average C-index is computed to quantify prediction performance. The goal of this analysis is two-fold. 
The first is to directly compare prognostic performance of the imaging-based model versus that of the gene 
expression-based. In addition, this analysis also examines whether integrating the two distinct types of measure-
ments using the additive approach can further improve prediction performance.

Associate gene expressions with histopathological imaging features.  As briefly discussed in 
“Introduction”, histopathological imaging features can be affected by molecular changes, and such a relationship 
has been studied in some recent publications13,21. We note that this analysis is unsupervised in the sense that 
it does not involve survival. As such, the most direct goal is not to improve prognosis modeling but rather to 
understand, in a broad sense, overlapping information contained in the two distinct types of data.

With normalization to zero means, consider the model:

where η is the p× q matrix of regression coefficients, and ε is the p-dimensional vector of random errors. Here 
we model the “downstream” imaging features using the “upstream” gene expressions. Linear regression is adopted 
with the consideration that more complex modeling may not be reliable with the limited sample size and high 
dimensionality of both sides of modeling. For estimating η , consider:

where subscript i corresponds to subject i , τ > 0 is a data-dependent tuning parameter and chosen using cross-
validation, ηj. is the j th row of η , and || · ||2 is the l2 norm. Here to accommodate the high data dimensionality 
and select gene expressions that are relevant for imaging features, we apply the group Lasso penalization.

Similar to above, to more objectively evaluate the relationship, we consider the following approach: (a) ran-
domly split data into a training and a testing set in the same way as above; (b) conduct the group Lasso estimation 
using the training set; (c) for the testing set subjects, predict imaging feature values using gene expressions and 
the training set estimate. For each imaging feature, compute the correlation coefficient between the predicted 
and estimated values; (d) to avoid an extreme split, repeat Steps (a)–(c) 100 times, and compute the average cor-
relation values. We note that penalization may introduce shrinkage towards zero. As such, we adopt correlation 
coefficient as the criterion, which is less affected by shrinkage.

Results
Comparison of modeling using histopathological imaging features with gene expres‑
sions.  The first set of analysis regresses survival on the imaging features and clinical characteristics. For the 
variables included in the final models, their estimated regression coefficients are shown in Tables 2 (LUAD) and 
3 (LUSC), respectively. It is noted that Level C is chosen as the reference level for stage, thus having an “NA” 
estimate. Beyond the clinical characteristics, 7 and 9 imaging features are identified, representing AreaShape, 
Texture, Granularity, and other characteristics. It has been noted in the literature that, unlike omics and some 
other types of data, high-dimensional imaging features extracted using automated algorithms/software do not 
have lucid functional interpretations. As such, we do not further pursue bioinformatics interpretations.

In the next set of analysis, we regress survival on gene expressions. The identified gene expressions and clinical 
characteristics as well as their estimated coefficients are shown in Tables 4 (LUAD) and 5 (LUSC), respectively. 

X = ηZ + ε,

η̂ = arg min







�

i=1,...,n

X i − ηZ2
i2 + τ

�

j=1,...,q

ηj.2







,

Table 2.   Analysis of LUAD data: identified imaging features and clinical characteristics associated with overall 
survival and their estimated coefficients.

Imaging feature Coef Clinical characteristic Coef

AreaShape_Zernike_6_4 0.3697 Sex − 0.0245

AreaShape_Zernike_8_6 0.0426 Age 0.0095

AreaShape_Zernike_9_7 0.1409 Tumor_Size 0.1154

Count_identifytissueregion 0.1759 Stage_Level_A − 1.2100

Neighbors_AngleBetweenNeighbors_Adjacent − 0.1033 Stage_Level_B − 0.2976

Neighbors_FirstClosestObjectNumber_Adjacent − 0.2527 Stage_Level_C NA

Threshold_WeightedVariance_identifyhemaprimarynuclei − 4.04E-05
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Among the identified genes, there are “familiar” discoveries such as PIK3CG37 and RND338. In addition, there 
are also genes that have not yet been well examined in the literature, such as DNMT2 and UQCRC2.

When integrating the combined imaging effect with the combined gene expression effect in one Cox model, 
for the LUAD data, we obtain regression coefficients 0.9842 (imaging feature, p value = 2.12e−6) and 0.4726 (gene 
expression, p value = 5.36e−9). For the LUSC data, we obtain regression coefficient 0.9709 (imaging feature, p 
value = 5.55e−9) and 0.8769 (gene expression, p value = 2.04e−3).

In the random-splitting based prediction evaluation, for the LUAD data, the median prediction C-index values 
are 0.6202 (imaging features), 0.6864 (gene expressions), and 0.6823 (combined). For the LUSC data, the median 
prediction C-index values are 0.5466 (imaging features), 0.5606 (gene expressions), and 0.5511 (combined). 
More detailed information, for example on the prediction C-index of each split, is available from the authors.

Remarks  In the separate survival analysis with imaging features and gene expressions, relevant effects have been 
identified. For imaging features, extensive additional research will be needed to annotate and fully comprehend 
the identified variables. We note that this issue has been noted in the literature8Remarks. In the analysis of gene 
expression data, the “familiarity” of findings may provide support to the validity of analysis to a certain extent. 
However, it is noted that more definitive validation will be needed to confirm the findings. The survival analysis 
with both imaging and gene expression signatures as covariates seems to suggest that the two types of measure-
ments have independent effects. In the random splitting-based evaluation, it is observed that for LUAD, gene 
expression has moderate predictive performance, and imaging data has moderate/weak predictive performance. 
For LUSC, both types of measurements have weak predictive performance. For both datasets, gene expression 
has better performance, which is sensible considering the genetic nature of lung cancer (and other cancers too). 

Table 3.   Analysis of LUSC data: identified imaging features and clinical characteristics associated with overall 
survival and their estimated coefficients.

Imaging feature Coef Clinical characteristic Coef

AreaShape_EulerNumber − 0.1575 Sex 0.5259

ObjectNumber − 0.2416 Age 0.0231

Granularity_12_ImageAfterMath 0.2382 Tumor_Size − 0.0369

Threshold_SumOfEntropies_identifytissueregion 0.1466 Stage_Level_A − 0.7496

Location_Center_X.1 − 0.0812 Stage_Level_B − 0.4852

AreaShape_Center_X − 0.0903 Stage_Level_C NA

AreaShape_Orientation − 0.0985

Neighbors_AngleBetweenNeighbors_Adjacent 0.1414

Granularity_9_ImageAfterMath 0.1395

Table 4.   Analysis of LUAD data: identified gene expressions and clinical characteristics associated with overall 
survival and their estimated coefficients.

Gene expression Coef Clinical characteristic Coef

CCNB1 0.0033 Sex 0.0011

CTSL 0.3694 Age 0.0173

GLI2 0.2555 Tumor_Size 0.0640

MFHAS1 − 0.2228 Stage_Level_A − 1.2460

PIK3CG − 0.3782 Stage_Level_B − 0.4012

RND3 0.1841 Stage_Level_C NA

Table 5.   Analysis of LUSC data: identified gene expressions and clinical characteristics associated with overall 
survival and their estimated coefficients.

Gene expression Coef Clinical characteristic Coef

IL11 0.0526 Sex 0.4661

MUC1 0.0977 Age 0.0309

PIK3CG 0.0702 Tumor_Size − 0.4890

PRKCA 0.1295 Stage_Level_A − 0.7719

WDHD1 − 0.1404 Stage_Level_B − 0.6034

Stage_Level_C NA
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Although both LUAD and LUSC are lung cancer subtypes, we observe significantly different results, which can 
be attributable to the complexity of cancer and suggest that there may not be a definitive conclusion applicable 
to all cancers. The random splitting evaluation further suggests that integrating the two types of signatures in 
an additive manner may not further improve prediction, which seems to “contradict” the analysis above. There 
can be multiple interpretations for this finding. First, the distinction between estimation and prediction should 
be made – a “good” estimation result may not directly translate into a good prediction. Second, the estimation 
analysis is repeatedly based on the same data, and there is a risk of over fitting. Third, in the random splitting 
evaluation, both the training and evaluation are based on fewer observations. An improvement that can be poten-
tially observed with a larger dataset may not be observable with a smaller dataset. It is also noted that penalization 
and some other sparse approaches have been designed for estimation and may not be ideal for prediction, which 
may explain the less satisfactory prediction performance observed here.

Association of gene expressions and histopathological imaging features.  We first regress imag-
ing features on gene expressions. Detailed information on the identified gene expressions and their estimated 
coefficients are provided in the Supplementary Materials 1 and 2. In Fig. 2, we show the heatmaps of the esti-
mated coefficients. Briefly, for the LUAD data, in the 50 × 221 coefficient matrix, a total of 7,735 elements are 
nonzero. A total of 35 genes, including MKI67, ACSL6, NFX1, and WIF1, are identified as associated with the 
221 imaging features. For the LUSC data, a total of 6,618 elements are nonzero. A total of 28 genes, including 
ARAF, BCL7A, NXF1, and TP53, are identified as associated with the 221 imaging features.

The random-splitting based prediction evaluation results are summarized in Fig. 3, where we sort perfor-
mance, from the worst to the best, across imaging features. More detailed numerical results are provided in the 
Supplementary Materials.

Remarks  The regression analysis suggests that certain gene expressions are connected to imaging features. This 
observation is sensible considering, as described in “Introduction”, that properties reflected in imaging features 
are regulated by molecular changes to a certain extent. On the other hand, the prediction results, as shown in 
Fig. 3, suggest that such associations are mostly weak to moderate. The majority of information in imaging 

Figure 2.   Heat map of modeling imaging features using gene expressions. Upper panel: LUAD; lower panel: 
LUSC.

Figure 3.   Analysis of predicting imaging features using gene expressions: mean and standard deviation plots of 
correlation coefficients from 100 random splits. Left: LUAD. Right: LUSC.
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features cannot be readily explained by gene expressions, and this finding differs from that in some published 
studies39–41. It is unclear whether such a difference is attributable to the complexity of cancer, difference in analysis 
approach, or other factors. More exploration, especially a direct comparison, will be needed.

Additional analysis.  To complement the above analysis, we conduct additional exploration and present the 
findings in the Supplementary Materials. In particular, (1) in some cancer studies with high dimensional vari-
ables, marginal screening is conducted prior to modeling to reduce dimensionality to a more manageable level. 
In the above analysis, as the dimensionalities are not as high, screening is not conducted. Results presented in 
the Supplementary Materials suggest that, for our particular data and analysis, screening can change estimation 
and identification results, but has no substantial impact on prediction performance. (2) The above penalized 
estimations involve a tuning parameter, which is selected using cross validation. In the literature, there are many 
tuning parameter selection methods, and cross validation has been among the most extensively used. In the 
Supplementary Materials, we show that varying the tuning parameter values near the cross-validation-selected 
optimal has some moderate impact on estimation. But the findings on prediction are not strongly impacted.

Conclusions
Accurately modeling prognosis and other cancer outcomes has been and will remain an important problem for a 
long time to come. Molecular and histopathological imaging data have played important roles in cancer prognosis 
modeling. In particular, with unique advantages including broad availability and high cost-effectiveness, it will be 
of interest to develop more histopathological imaging-based prognosis modeling. In this study, we have analyzed 
and integrated molecular and imaging data on the same ground using regularization techniques. More analysis 
of this kind will be needed to better understand the relative roles that molecular and imaging data play for other 
cancer types. Some of our findings are “negative”: for example, we have found that integrating data using the 
additive approach cannot improve prediction. More sophisticated methodological development will be needed 
to conclude whether this lack of improvement should be attributable to data/cancer type or analysis approach. 
The revealed interconnections between imaging and molecular features warrants additional investigation.
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