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Abstract: Material adapted repair technologies for fiber-reinforced polymers with 

thermosetting matrix systems are currently characterized by requiring major efforts for 

repair preparation and accomplishment in all industrial areas of application. In order to 

allow for a uniform distribution of material and geometrical parameters over the repair 

zone, a novel composite interlock repair concept is introduced, which is based on a repair 

zone with undercuts prepared by water-jet technology. The presented numerical and 

experimental sensitivity analyses make a contribution to the systematic development of the 

interlock repair technology with respect to material and geometrical factors of influence. 

The results show the ability of the novel concept for a reproducible and automatable 

composite repair. 
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1. Introduction 

The increased application of fiber-reinforced polymers in varying industries accounts for adapted 

repair concepts with respect to the possible kinds of deterioration. Besides repair solutions for surface 

deteriorations, especially technologies for the reconstitution of the composite properties were developed. 

All these technologies are mainly based on manually realized mountings in the near field of the 

deterioration or extensively applied patches, respectively [1-4]. Besides the mechanical exposing of 

deteriorated laminate plies, the composite surface can also be ablated thermally by use of laser 

technology, roughened by means of sandblasting, or embrittled using ultraviolet radiation [5].  

In order to reach an entire reconstitution of the part properties, repair techniques with increased 

compaction pressures are necessary, which can only be achieved by means of autoclave and pressing 

technologies. Due to the generally high part dimensions and volume, these technologies possess only a 

limited application for repair. Hence, the repair in practice is currently carried out by vacuum-assisted 

infiltration of limp soft-patches [6-9] or by gluing of rigid hard-patches [10-18], respectively.  

The currently used repair concepts in industry are mainly based on the manual realization of a 

scarfed intersection from the basic laminate to the repair patch. Due to the minimization of changes in 

stiffness, the needed scarf angle leads to an extensive repair area, even in cases of small-area damages. 

Furthermore, an increased risk of deviations in properties of the repair area exists because of the high 

manual effort. In contrast, overlaps as an alternative repair concept are mainly characterized by a 

significant raise of the wall thickness and thus are not appropriate for visible surfaces.  

2. Novel Repair Concept 

Due to their excellent specific properties, fiber-reinforced polymers are increasingly used for 

applications in highly loaded structures for aviation industry, vehicle construction, shipbuilding, as 

well as mechanical engineering. Thus, major importance is placed on composite-adapted repair 

technologies, which allows for a wide preservation and reproducible reconstruction of the mechanical 

part properties. Therefore, a novel repair technology based on form-closed and adhesive bond interlock 

elements is investigated [19]. The interlock technology is specifically tailored to a one-sided 

automated repair zone preparation and subsequent repair of composite structures. Hence, a minimal 

repair zone even for thick laminates and the preservation of the surface quality becomes 

possible (Figure 1).  

Figure 1. Novel interlock composite repair concept. 

 



Materials 2011, 4              

 

 

2221

3. Preliminary Design and Simulation Studies 

In technical solutions—especially in woodwork and plastics engineering—a lot of different 

undercutting elements are known. So a lot of experience is available for traditional isotropic or medium 

anisotropic materials. Based on these, elementary shapes for connecting elements were 

deduced (Figure 2). 

Figure 2. Elementary shapes of basic connecting elements. 

 

In real composite components, these connecting elements mainly have to transfer in-plane-forces. 

So they have to be designed for fiber-parallel loads and in-plane shear loads. The undercutting 

geometry has to be adapted to the anisotropic material behavior. The load-transferring fibers have to 

remain uncut as much as possible. Furthermore, the areas of shear load transfer have to be large due to 

the low shear strength parallel to the fibers. In addition, the contour of the undercutting connection 

needs to be tangential to a big curvature radius to avoid notch stresses around the edges. 

To find an optimized shape for the interlock basic connecting elements, the selection was performed 

in three steps. Out of a pool of six basic geometries, the best three were selected considering aspects of 

the size of the load transferring area from undercut to root, fiber adapting potential, contact pressure, 

notching effect, manufacturing, and bonding area. The six criteria were weighted against each other 

according to established design methods. The main focus was on criteria with respect to a fiber adapted 

design. Manufacturing and bonding issues were of minor importance. The criteria assessment is shown 

in Table 1. Three points are given if the criterion I is more important than II and one point for the 

opposite. Two points are given for the same weight. The value W describes the importance of the 

different criteria. 

Table 1. Weighting of the different criteria. 

   II 
S W 

   A B C D E F 

I 

Undercut root area A  2 3 3 3 3 14 0.78 

Fiber adapting potential B 2  2 2 3 3 12 0.67 

Contact pressure C 1 2  2 3 3 11 0.61 

Notching effect D 1 2 2  3 3 11 0.61 

Manufacturing E 1 1 1 1  2 6 0.33 

Bonding area F 1 1 1 1 2  6 0.33 
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For each of the first four elementary designs in Figure 2, a second design for undercut connecting 

elements with slight modifications like notch radius or width were evaluated. Finally, the ten variants 

were rated according to the weighted design criteria (Table 2). Each of the ten variants is valued for 

every criterion with 0 points up to 4 points. 0 points stands for the lowest and 4 for the highest degree 

of fulfillment. So it can be seen, that the elliptical and circular shape of the interlock-connecting 

elements and the dove tail with smooth notches fulfill the criteria best and were further investigated in 

detail by means of finite element analysis (FEA) and experimental studies. 

Table 2. Evaluation of the elementary designs for undercutting elements. 

  Dove tail Wedge Fir tree T-shape Interlock 

  no mod. smooth notches no mod. smooth notches thin thick thick thin circle elliptic

 W 

     
  P P·W P P·W P P·W P P·W P P·W P P·W P P·W P P·W P P·W P P·W 

A 0.78 4 3.1 3 2.3 3 2.3 2 1.6 3 2.3 3 2.3 3 2.3 1 0.8 3 2.3 3 2.3 

B 0.67 4 2.7 4 2.7 3 2.0 3 2.0 2 1.3 1 0.7 2 1.3 1 0.7 3 2.0 4 2.7 

C 0.61 3 1.8 2 1.2 3 1.8 3 1.8 4 2.4 4 2.4 4 2.4 4 2.4 3 1.8 2 1.2 

D 0.61 1 0.6 3 1.8 1 0.6 3 1.8 0 0.0 0 0.0 1 0.6 1 0.6 3 1.8 4 2.4 

E 0.33 2 0.7 3 1.0 2 0.7 3 1.0 0 0.0 0 0.0 1 0.3 1 0.3 4 1.3 4 1.3 

F 0.33 2 0.7 2 0.7 3 1.0 3 1.0 4 1.3 4 1.3 3 1.0 3 1.0 2 0.7 3 1.0 

   9.6  9.7  8.4  9.2  7.4  6.8  8.1  5.8  10.0  11.0

The simulation was done within the FEA software ABAQUS (V8.6-1) under utilization of a material 

sub-routine (UMAT). For a comparative assessment of the selected basic undercutting design elements, 

the results of the two dimensional models were interpreted by using the CUNTZE failure criterion. 

According to performed tension tests, the load was induced parallel to the fibers in 0°-direction. 

Because of the repetitive and symmetric shape of the elements, the modeling of only one half of the 

basic undercutting element—representing one fifth of the width of the tensile specimen—was possible. 

Figure 3 shows the simulated section with its coupled boundary conditions and the applied load. These 

boundary conditions are also feasible for the specimen edges due to a closed contour under realistic 

repair conditions. 

Figure 3. Boundary conditions used for the two dimensional simulation. 
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For the preliminary design, an efficient model with a mesh of four-node shell elements was 

designed (Figure 4). The thickness is 1.2 mm, according to the [0/90]S laminate architecture. Table 3 

shows the material properties used as input parameters. The modeling of the bonding layer—which is 

necessary for the adhesive connection of the interlock partners—was carried out by using one row of 

elements with isotropic material properties shown in Table 4. This simplified modeling of the bond 

line is feasible due to their minor importance for the load bearing behavior of the interlock connection, 

especially in case of the present basic investigation of different interlock geometries.  

Figure 4. FE-mesh used for the two-dimensional preliminary design. 

 

Table 3. Material properties of the prepreg laminate system [20]. 

Property  Value 

Fibers  AS4 
Matrix  3501-6 ep. 
Fiber volume fraction φf 0.60 
Longitudinal modulus E|| 126 GPa 
Transverse modulus E⊥ 11 GPa 
In-plane shear modulus G||⊥ 6.6 GPa 
Major Poisson’s ratio ν 0.28 
Through-thickness Poisson’s ratio ν⊥⊥ 0.4 
Longitudinal tensile strength Rt

|| 1950 MPa 
Longitudinal compressive strength Rc

|| 1480 MPa 
Transverse tensile strength Rt

⊥ 48 MPa 
Transverse compressive strength Rc

⊥ 200 MPa 
In-plane shear strength R⊥|| 79 MPa 

Table 4. Material properties used for the bonding line. 

Property  Value 

Matrix type  MY750 
Young’s modulus  Em 3.35 GPa 
Shear modulus Gm 1.24 GPa 
Major Poisson’s ratio νm 0.35 
Tensile strength  Rt

m 80 MPa 
Compressive strength Rc

m 120 MPa 

The analysis of the simulation results was done using CUNTZE’s mode specific efforts in its 

individual fracture types. The resultant stress effort in each laminate ply can be determined from the 

individual stress efforts. Figure 5 shows the representative resultant stress effort Eff for fiber directions 
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of the two circular interlocks with a circle radius of 3.5 mm as well as the comparable results in  

90°-direction for dove tail and elliptical interlock connections. It can be seen that Eff in the 90°-layer is 

45% higher than in the 0°-layer. As expected, the most critical area is the small counter section (neck). 

For all analyzed geometries it was assessed that the inter-fiber failure (matrix failure due to normal 

stress) in the 90°-layer is the most critical one.  

Figure 5. Resultant stress effort for (a) circular interlock in 0°-layer; (b) circular interlock 

in 90°-layer; (c) dove tail interlock in 90°-layer; (d) elliptical interlock in 90°-layer. 

 

In order to investigate the influence of the shape-specific geometrical parameters, extensive 

parameter studies were accomplished. Especially due to the minimum stress effort of circular and 

elliptical interlock connections, a parameter study regarding their optimum radii was performed.  

Table 5 shows the strong influence of the radius size on the resultant stress effort. For the width of 

10 mm for one interlock element, it was proven that a circular element reveals an optimum at a radius 

of 3.5 mm. The same value is chosen for the semi-minor axis of the elliptical variant, where the  

semi-major axis has to be 10 mm. 
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Table 5. Resultant stress efforts depending on the radius parameter of 10 mm wide 

interlock variants. 

Geometry 
Parameter 

[mm] 
Eff 

in 0°-direction 
Eff 

in 90°-direction 
Sketch 

Circular interlock 

2.0 0.688 0.957 
2.5 0.602 0.912 
3.0 0.581 0.846 
3.5 0.548 0.803 
4.0 0.556 0.824 

4.8 0.695 0.966 

Elliptical interlock 

3.5 / 8.5 0.598 0.789 
3.5 / 9.0 0.588 0.766 
3.5 / 9.5 0.575 0.758 

3.5 / 10.0 0.558 0.719 
3.5 / 10.5 0.565 0.749 
3.5 / 11.0 0.572 0.762 

The variation of the undercutting angle of the dove tail did not show a significant effect. Finally, the 

circular as well as the elliptical interlock connection geometry exhibit the best performance for an 

undercutting connection element. Table 6 compares the resultant material efforts of the three 

analyzed geometries. 

Table 6. Resultant stress efforts of the analyzed undercut shapes. 

Geometry Parameters 
Eff 

in 0°-direction 
Eff 

in 90°-direction 
Sketch 

Dove tail 
(smooth notches) 

Opening angle α 
radius r 

35° 
2.25 mm 

0.672 0.957 

Circular interlock Radius 3.5 mm 0.548 0.803 

Elliptic interlock 
Major axis ra 
Minor axis rb 

10.0 mm 
3.5 mm 

0.558 0.719 

4. Experimental Work 

For the experimental analysis of the developed composite repair technique based on undercutting 

elements by means of tensile tests, appropriate interlock specimens based on the simulation results 

were manufactured. As composite material for specimen preparation, a symmetric even laminate was 

chosen. It is composed out of four layers of unidirectional prepreg material with carbon fibers in 

0°- and 90°-direction and an epoxy matrix system. An elliptical and a circular geometry with two and a 

half interlock connection elements along the specimen width were selected. Additionally, a third 
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geometry with an up-scaled circular element was analyzed (Figure 6). The specimens were manufactured 

by waterjet-cutting out of composite plates with a [0/90]S-lay-up. After cutting, the specimen halves 

were adhesively bonded by use of epoxy resin in order to ensure the exact edge alignment of the halves 

and consequently to avoid undefined multiaxial stresses. 

Figure 6. Tested interlock geometries. 

 

In addition to the three geometries, the influence of the lateral support was considered. In reality the 

damage of a structure will be mostly enclosed and surrounded by composite material. So the repair zone 

will not have free edges and the interlock base elements will always have a neighbor to avoid lateral 

bending, which occurs during the tensile tests (Figure 7). To simulate this support, subsequent tensile 

tests were performed by using an additional guiding element. It was mounted beside the tension rod so 

that it avoids lateral bending of the interlock elements but not the axial movement of the specimen. 

Figure 7. (a) Lateral bending of interlock elements; (b) Avoided lateral bending by using 

guiding element. 

 

Basic failure phenomena appeared in every tested sample. As first phenomenon bond line cracking 

occurs, shown in form of curve flattening after the linear slope in the stress-strain diagram in Figure 8. 

After further increase of the tensile force, the laminate completely failed. This is caused by exceeding 
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the geometry-specific maximum surface pressure of the connection interface. Additionally, a pull-through 

effect occurs. The single layers of one connection partner delaminate and split the single layers of the 

second partner (Figure 9). 

Figure 8. Typical failure shown in stress-strain diagram. 

 

Figure 9. Typical failure of interlocks during tensile testing. 

 

The accomplished tests exhibit a significant geometry dependency of the stress-strain behavior. 

Compared to each other, the elliptical interlock geometry reached the highest values in stiffness and 

tensile strength (Figure 10). 
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Figure 10. Stress-strain diagram of different interlock geometries. 

 

5. Conclusions 

The introduced novel composite repair technology based on undercutting interlock elements exhibits 

excellent possibilities with regard to a fully automated repair process, especially for large outer skin 

panels with visible surfaces and one-sided accessibility. 

Fundamental numerical analyses make a contribution to the subsequent geometry definition and 

parameter adaptation of the interlock connection elements. Based on the simulation results, extensive 

experimental repair studies and tensile tests were accomplished. The findings show the best load 

bearing behavior for interlock elements with elliptical shape. In consequence of the geometry 

modification compared to circular interlock elements of different sizes, a doubling of the tensile 

strength was achieved. In addition, the interlock repair design indicates a non-problematic  

quasi-ductile failure behavior due to the specific subsequent delamination progress. 

The repaired tensile specimen showed a structural stiffness of about 30 % compared to the untreated 

laminate. In order to analyze the highly geometry-dependent mechanical properties of the interlock 

repair zone, further studies on thick-walled large-scale composite structures are planned. Due to the 

global structural support of the interlock zone and the thick laminate, much higher mechanical stiffness 

and strength compared to the analyzed tensile specimen are expected. 
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