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BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) has been linked to intensified systemic

inflammation and represents a novel risk factor for atherosclerotic cardiovascular diseases, including aortic stenosis (AS).

OBJECTIVES This study aimed to assess the clinical impact of CHIP in a cohort of severe AS patients undergoing

transcatheter aortic valve implantation (TAVI).

METHODS We enrolled 110 severe AS patients in this retrospective study. Targeted next-generation sequencing was

employed to detect somatic mutations with a variant allele frequency >2% in 16 genes most frequently associated with

CHIP. Correlative analyses on clinical, laboratory, and echocardiographic parameters were also performed. The primary

endpoint was post-TAVI heart failure hospitalization. Multivariate Cox regression model was used to account for con-

founding effects of relevant clinical factors.

RESULTS CHIP was detected in 40 (36.4%) patients in our cohort. The most commonly mutated genes were DNMT3A,

TET2, and ASXL1. With a median follow-up of 55.2 months, patients carrying CHIP had a significantly higher heart failure

hospitalization rate (adjusted HR: 3.060; 95% CI: 1.090-8.589; P ¼ 0.034) than those without CHIP. Additionally,

patients harboring CHIP had higher serum ferritin levels, as well as echocardiographic evidence of left ventricular

hypertrophy and diastolic dysfunction.

CONCLUSIONS Our study supports the adverse clinical impact of CHIP in AS patients undergoing TAVI, which could

be attributed to systemic inflammation and maladaptive LV remodeling. Prospective trials are anticipated to validate

our findings and provide further evidence that CHIP holds the potential of being an actionable therapeutic target in

AS. (JACC Adv. 2025;4:101532) © 2025 The Authors. Published by Elsevier on behalf of the American College of Cardiology

Foundation. This is anopenaccess articleunder theCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AS = aortic stenosis

AV = aortic valve

CHIP = clonal hematopoiesis of

indeterminate potential

CRP = C-reactive protein

CV = cardiovascular

HF = heart failure

HFH = heart failure

hospitalization

IL = interleukin

LV = left ventricle

MDCT = multi-detector

computed tomography

NGS = next generation

sequencing

NT-proBNP = N-terminal pro-

brain natriuretic peptide

NTUH = National Taiwan

University Hospital

PB = peripheral blood

PH = proportional hazard

STS = Society of Thoracic

Surgery

TAVI = transcatheter aortic

valve implantation

VAF = variant allele frequ
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A s individuals age, somatic mutations
inevitably accumulate in the he-
matopoietic system, leading to sur-

vival advantage of some hematopoietic stem
cells and their clonal expansion. This process
is currently known as clonal hematopoiesis
or clonal hematopoiesis of indeterminate po-
tential (CHIP),1,2 because these mutational
events can be detected even in the general
population. CHIP is clinically defined as the
presence of myeloid disease–associated mu-
tations in the peripheral blood (PB) or bone
marrow at a variant allele frequency (VAF)
of >2% in individuals without a formal diag-
nosis of hematological malignancies.3,4 CHIP
mainly occurs in the following 3 transcrip-
tional regulators, namely DNMT3A, TET2,
and ASXL1 (aka. DTA mutations), accounting
for more than 80% of the CHIP events. How-
ever, other commonly affected genes in CHIP
include those involved in the intracellular
signaling cascade (eg, JAK2, GNAS, GNB1,
CBL), DNA damage response (eg, TP53,
PPM1D), and splicing factors (eg, SF3B1,
SRSF2).1,2,5

With accumulating evidence in the past
decade, we now realize that CHIP is associ-
ated with not only hematological malig-
nancies but also an increased risk of several
inflammatory diseases,6,7 as well as atherosclerotic
cardiovascular (CV) diseases, such as coronary artery
disease (CAD), myocardial infarction, and ischemic
heart failure (HF).4,8-14 In a previous single cell tran-
scriptomics study examining the peripheral blood
mononuclear cells derived from DNMT3A-mutated
HF patients, elevated expressions of several in-
terleukins (IL) and cytokines, such as IL1B, IL6, IL8,
and CCL3, were observed in the circulating mono-
cytes.15 In another experimental study, Tet2 defi-
ciency in the mouse model aggravated atherosclerosis
and accelerated HF through an augmented inflam-
matory chemokine milieu resulting from NLRP3
inflammasome-mediated overproduction of IL-1b by
the Tet2-deficient macrophages.16

Aortic stenosis (AS) is the most common degener-
ative valvular heart disease in the elderly,17 charac-
terized by progressive restriction of the aortic valve
(AV) leaflets and left ventricular (LV) outflow
obstruction, which eventually becomes fatal if left
untreated.18 Of note, when AS patients become
symptomatic, clinical deterioration can be rapid and
the 2-year mortality rate may exceed 60%.19 Although
the conventional surgical AV replacement was shown
to improve the survival and LV systolic function in

ency
patients with severe AS,20,21 the minimally invasive
transcatheter aortic valve implantation (TAVI) pro-
cedure has recently revolutionized the treatment of
severe AS and has now become the most common
treatment modality.22-25 In terms of pathogenesis, the
etiology of AS has historically been attributed to age-
related calcium deposition on the AV leaflets; how-
ever, recent evidence suggests that chronic inflam-
mation is actually the more fundamental driving
force underlying degenerative fibrocalcific AS.26,27 In
a recent report, the researchers examined the prog-
nostic relevance of DNMT3A or TET2 mutations, the 2
most frequently mutated genes in CHIP, in a cohort of
severe AS patients, and found that patients having
DNMT3A or TET2 mutations had inferior medium-
term overall survival post-TAVI. They also observed
a higher Th17/Treg ratio and increased nonclassical
monocytes in the AS patients carrying CHIP compared
with those without.28 Although the current main-
stream knowledge indicates that CHIP is linked to
worse prognosis in atherosclerotic CV diseases
through an enhanced inflammatory response, how
CHIP contributes to compromised outcomes in AS
remains to be further elucidated. Therefore, in line
with the contemporary recognition of the link be-
tween CHIP and systemic inflammation,29 we hy-
pothesized that CHIP may potentiate the progressive
atherosclerotic degeneration of the AV, leading to
accelerated functional decline of the valve leaflets,
LV outflow obstruction, and inferior patient out-
comes. In this study, we aimed to characterize the
prevalence of CHIP in an Asian cohort of severe AS
patients undergoing TAVI, examine how CHIP may
impact postprocedural clinical outcomes, and provide
additional insights into the underlying pathophysio-
logic mechanisms.

MATERIALS AND METHODS

STUDY POPULATION AND OUTCOMES. Between
March 2016 and July 2021, a total of 114 consecutive
patients who had been diagnosed with severe AS ac-
cording to the 2020 American College of Cardiology/
American Heart Association Guideline for the Man-
agement of Patients With Valvular Heart Disease30

and received TAVI at the National Taiwan University
Hospital (NTUH) were recruited. None of these pa-
tients had been previously diagnosed with hemato-
logical malignancies; patients who had a prior
diagnosis of solid cancer and were actively receiving
anti-cancer treatments (N ¼ 4) were excluded. This
study was conducted in accordance with the Decla-
ration of Helsinki and was approved by the Research
Ethics Committee of the NTUH. (IRB approval
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number: 202207051RINB) Written informed consent
was obtained from each study participant.

All study participants were prospectively enrolled
in the Asian TAVR registry and were clinically fol-
lowed up in accordance with the study protocol.31

Baseline clinical characteristics including de-
mographics, body mass index, stage of AS (D1, D2, and
D3 for symptomatic severe AS),30 Society of Thoracic
Surgery (STS) risk score, NYHA functional classifica-
tion, associated comorbidities, laboratory data, multi-
detector computed tomography (MDCT), and echo-
cardiographic parameters were systematically
collected at the pre-TAVI evaluation (within 1 month
before the TAVI procedure). The electrocardiogram-
gated MDCT was performed with a 256-slice scanner
(Revolution, GE Healthcare). The calcium deposition
was quantified with the Agatston score method.32 All
the transthoracic echocardiographic examinations
were performed by board-certified sonographers us-
ing commercially available cardiac ultrasound ma-
chines (iE33/EPIQ 7G, Philips Healthcare) in
compliance with contemporary guidelines30 and
reviewed by experienced cardiologists with level III
training. The echocardiographic parameters were
measured from an average of 3 heartbeats for patients
in sinus rhythm and 5 heartbeats for patients with
atrial fibrillation, except for peak aortic velocity and
mean aortic valve pressure gradient, which were
recorded with the highest value to avoid under-
estimation of AS severity.

OUTCOMES. The primary outcome was time to heart
failure hospitalization (HFH), defined as the duration
from the date of TAVI to the first hospitalization due
to HF exacerbation. Secondary outcomes included CV
mortality (defined as death attributed to end-stage
HF, fatal thromboembolic events, or sudden cardiac
death) and all-cause mortality.

SAMPLE PROCESSING AND NEXT GENERATION

SEQUENCING. DNA was extracted with the QIAamp
DNA Blood Mini Kit (Qiagen) from PB mononuclear
cells of study participants after lysis of erythrocytes.
To detect CHIP mutations in patient samples, a
customized amplicon-based next generation
sequencing (NGS) gene panel, the iNA CHIP NGS kit
(Instant NanoBiosensors), was designed to detect the
presence of somatic mutations in 16 genes previously
identified as candidate drivers of CHIP (Supplemental
Table 1). A total of 20 ng of DNA from each patient was
used for library preparation. The quantity and quality
of DNA libraries were confirmed with the Qubit
Fluorimeter (Thermo Fisher Scientific) and Qsep 100
Analyzer (BiOptic Inc). The libraries were then
sequenced on the NovaSeq 6,000 sequencer
(Illumina) at the 150 bp pair-end mode. Mean
coverage across all samples was about 2,500X, with a
minimal coverage of 300X.

The FASTQ files were mapped to the GRCh37 hu-
man genome with Burrows-Wheeler Alignment-
MEM. Somatic mutations were identified using Var-
scan 2 (version 2.4.4).33 The variants were annotated
with SnpEff (version 4.3 t),34 with information from
the following databases:1,000 Genome Project (phase
3), Genome Aggregation Database (release 2.1),35

Catalogue Of Somatic Mutations In Cancer (v92),36

and dbSNP (version 154).37 The variant calls were
further filtered by the following criteria: 1) protein
coding region variants with a VAF $ 2.0%; 2) total
depth of coverage $250; 3) number of reads sup-
porting the alternate allele $10; and 4) documented
in the Catalogue Of Somatic Mutations In Cancer
database or with minor allele frequency # 0.01 in
1,000 Genome Project and Genome Aggregation
Database.

STATISTICAL ANALYSIS. Continuous variables were
expressed as median (IQR), and categorical variables
as numbers and frequencies, unless otherwise speci-
fied. For the comparison of continuous variables be-
tween 2 groups, Wilcoxon rank-sum test was used. For
the comparison of categorical variables between 2
groups, Chi-square test and Fisher exact test were
used. Time-to-event data were plotted with the
Kaplan-Meier method and compared using the log-
rank test. The Cox proportional hazards (PH) model
was used to estimate the adjusted HR and 95%CI in the
multivariate analysis, with additional clinically rele-
vant factors included as covariates. In addition, we
used overlap propensity score-weighting to account
for potential confounding associated with baseline
clinical characteristics.38-40 A propensity score for
having CHIP was estimated from a multivariable lo-
gistic regression model including the demographic,
clinical, laboratory, and echocardiographic parame-
ters collected in this study. All tests were two-sided
and were considered statistically significant if
P < 0.05. All analyses were conducted in the R statis-
tical computing environment (version 4.0.3).

RESULTS

PATIENT CHARACTERISTICS. In this study, we
analyzed 110 consecutive severe AS patients, without
a prior diagnosis of hematological or solid cancers
that required active anti-cancer treatments, who had
undergone the TAVR procedure at NTUH. The base-
line demographic and clinical characteristics of the
110 patients were summarized in Supplemental
Table 2. The median age of this cohort was 82.5
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FIGURE 1 Characterization of the Clonal Hematopoiesis of Indeterminate Potential (CHIP) Variants Identified in the Patients With Severe Aortic Stenosis

(A) Number of genetic variants identified across various genes included in our sequencing panel. (B) Distribution of variant allele frequency of the genetic variants

identified in this study.
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(78.0-86.0) years, and 41 (37.3%) were male. About
42.7% of the patients had an AS stage greater or equal
to D2, the median STS score was 4.12 (2.66-8.00).
Nearly all (99.1%) of the patients had clinical symp-
toms of congestive heart failure, and 80.9% of them
presented with NYHA functional classes 3 or 4. Upon
preprocedural echocardiographic examination, the
median AV area was 0.76 (0.62-0.89) cm2, and the
median AV peak pressure gradient was 73.10 (51.10-
91.72) mm Hg. On preprocedural MDCT scans, the
median Agatston calcification score was 1771.45
(1,090.57-2,554.00) for the AV and 778.04 (160.05-
1,561.36) for the coronary arteries, reflecting the
heavy calcium deposition and severity of AS in our
patient cohort.

PREVALENCE OF CHIP AND ITS CLINICAL ASSOCIATION

IN PATIENTS WITH AS. In our cohort consisting of 110
patients with severe AS, we identified 60 CHIP vari-
ants in 40 (36.4%) patients (Figure 1A, Supplemental
Table 3, Supplemental Figure 1A); this prevalence is
comparable with previous reports in cardiovascular
patients.8-10,13,28,41 We also observed that the preva-
lence of CHIP increased with age (Supplemental
Figure 1B), in accordance with our knowledge
derived from previously reported large population-
based cohorts.1,2,42,43 Among the 60 CHIP variants
detected in our AS cohort, 29 (in 24 patients, 21.8% of
the cohort) affected DNMT3A, 12 (in 12 patients, 10.9%
of the cohort) affected TET2, 7 (in 7 patients, 6.4% of
the cohort) affected ASXL1, while 12 (in 9 patients,
8.2% of the cohort) affected other myeloid disease–
related genes. Among the 40 AS patients who
harbored CHIP, 24 (60.0%) harbored only one variant,
12 (30.0%) harbored 2 variants, while only 4 (10.0%)
harbored 3 variants. As shown in Figure 1B, the me-
dian VAF of the CHIP variants was 3.49% (range, 2.01-
42.86), approximately equivalent to the presence of
6.98% mutated nucleated cells in the PB, if the vari-
ants were heterozygous. The median VAF for the 3
most prevalent mutated genes, namely DNMT3A,
TET2, and ASXL1, were 5.11%, 2.67%, and 3.16%,
respectively. On the other hand, 48 (80.0%) of the
variants detected had a VAF less than 10%, indicating
that most of the CHIP carriers had rather small clones.

The baseline clinical characteristics in AS patients
with or without CHIP are summarized in Table 1.
Overall, we observed that AS patients with CHIP had a
higher proportion of the D3 stage, while there were no
statistically significant differences in terms of age,
gender, NYHA functional classes, Agatston calcifica-
tion scores, or comorbidities.

THE IMPACT OF CHIP ON PATIENT OUTCOMES POST

TAVI. With a median follow-up period of 55.2 months,
AS patients carrying CHIP had significantly increased
HFH rate than those without CHIP (P ¼ 0.026)
(Figure 2). In subgroup analyses (Supplemental
Figure 2), we noted that the HFH rates were consis-
tently higher in the patients carrying CHIP compared
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TABLE 1 Baseline Clinical Characteristics in Aortic Stenosis Patients With or Without

Clonal Hematopoiesis of Indeterminate Potential

No CHIP
(N ¼ 70)

CHIP
(N ¼ 40) P Value

Age, y 80.5 (76.0-85.0) 83.0 (80.8-86.0) 0.085

Male 24 (34.3) 17 (42.5) 0.514

BMI (kg/m2) 24.29 (21.24-26.73) 23.79 (20.89-26.86) 0.965

Stage of AS 0.026

D1 39 (55.7) 24 (60.0)

D2 14 (20.0) 1 (2.5)

D3 17 (24.3) 15 (37.5)

NYHA functional class III/IV 57 (81.4) 32 (80.0) >0.999

STS score 4.12 (2.81-7.13) 4.16 (2.60-8.03) 0.842

MDCT calcium scan

Agatston score: AV 1771.45
(1,089.00-2,717.00)

1710.64
(1,199.49-2,177.31)

0.390

Agatston score: coronary 810.08
(140.46-1771.60)

764.12
(469.21-1,457.78)

0.881

Associated conditions

CAD 34 (48.6) 14 (35.0) 0.238

Previous MI 4 (5.7) 0 (0.0) 0.312

CHF 70 (100.0) 39 (97.5) 0.776

A-fib 15 (21.4) 9 (22.5) >0.999

DM 26 (37.1) 13 (32.5) 0.778

HTN 44 (62.9) 29 (72.5) 0.412

Stroke 4 (5.7) 4 (10.0) 0.652

HLP 24 (34.3) 7 (17.5) 0.096

COPD 4 (5.7) 3 (7.5) >0.999

Pulmonary HTN 10 (14.3) 3 (7.5) 0.451

CKD 49 (70.0) 29 (72.5) 0.953

Values are median (IQR) or n (%). Bold values indicate P values <0.05.

A-fib ¼ atrial fibrillation; AS ¼ aortic stenosis; AV ¼ aortic valve; BMI ¼ body mass index; CAD ¼ coronary
artery disease; CHF ¼ congestive heart failure; CKD ¼ chronic kidney disease; COPD ¼ chronic obstructive
pulmonary disease; DM ¼ diabetes mellitus; HLP ¼ hyperlipidemia; HTN ¼ hypertension; MDCT ¼ multi-detector
computed tomography; MI ¼ myocardial infarction; STS ¼ Society of Thoracic Surgeons.
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with those without CHIP, whether we examined the
patients with or without the DTA (DNMT3A, TET2,
ASXL1) mutations, the DT (DNMT3A, TET2) mutations,
or CHIP mutations >10% VAF. Further, in the multi-
variate Cox PH analysis (Table 2), after adjusting for
age, NYHA functional class, STS risk score, LVEF, and
N-terminal pro-brain natriuretic peptide (NT-proBNP)
level, the presence of CHIP remained a significant risk
factor for HFH (adjusted HR: 3.060; 95% CI: 1.090-
8.589; P ¼ 0.034). On the other hand, we observed that
none of all-cause mortality, CV-related mortality, or
non-CV mortality was significantly modulated by the
presence of CHIP, likely because of the overall low
postprocedural complication rates in this cohort
(Supplemental Figure 3).

We implemented the overlap weighting method to
adjust for potential confounding derived from base-
line differences between patients with or without
CHIP. Supplemental Tables 4 and 5 reported the
standardized mean differences of all patient charac-
teristics before and after overlap weighting analysis,
respectively. We could observe that in the overlap
propensity score-weighted Cox proportional hazards
analysis, CHIP was significantly associated with a
higher risk of HFH post-TAVI (P ¼ 0.013)
(Supplemental Figure 4).

MECHANISTIC INSIGHTS INTO THE INFERIOR CLINICAL

OUTCOMES OF CHIP CARRIERS. To derive potential
mechanistic insights into how CHIP may adversely
affect patient outcomes, we first examined the pre-
procedural laboratory parameters of our AS patients,
including complete blood counts, cardiac troponin,
NT-proBNP, and inflammatory markers such as C-
reactive protein (CRP), IL-6, and ferritin (Table 3). We
noted that the serum ferritin level was significantly
higher in the patients harboring CHIP than those
without CHIP (median 285.00 vs 153.53, P ¼ 0.045).
There were no significant differences in other labo-
ratory parameters between patients with or without
CHIP. We then analyzed the preprocedural echocar-
diographic findings of the patients (Table 3). We
observed that patients harboring CHIP, as compared
with those without CHIP, had significantly smaller LV
end diastolic diameter (median 45.50 vs 48.50 mm,
P ¼ 0.029), LV end systolic diameter (median 27.00 vs
30.00 mm, P ¼ 0.028), LV end diastolic volume (me-
dian 99.50 vs 110.85 mL, P ¼ 0.030), and LV end
systolic volume (median 27.75 vs 36.50 mL,
P ¼ 0.006). We also noted that patients harboring
CHIP had thicker interventricular septum (median
13.50 vs 12.00 mm, P ¼ 0.011) and LV posterior wall
(median 13.00 vs 12.00 mm, P ¼ 0.017), compared to
those without CHIP. In addition, patients with CHIP
demonstrated a trend toward an increased E/e’ ratio
(median 20.3 vs 18.3, P ¼ 0.069) and a higher per-
centage of grade 2 and 3 diastolic dysfunction (45.0%
vs 28.6%, P ¼ 0.081) suggesting more severe diastolic
dysfunction. Overall, our exploratory data analysis
revealed that in severe AS patients carrying CHIP,
systemic inflammation, LV hypertrophy, and diastolic
dysfunction may jointly contribute to the worse
clinical outcome.

DISCUSSION

In this study, we demonstrated that CHIP can be
frequently detected in an Asian cohort of severe AS
patients and provided evidence that the AS patients
harboring CHIP had higher serum ferritin levels
indicating a hyperinflammatory status, echocardio-
graphic evidence of LV hypertrophy and maladaptive
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FIGURE 2 Kaplan-Meier Analysis of Heart Failure Hospitalization in the AS Patients of

this Study

AS patients harboring CHIP had significantly higher HFH rate than those without. (5-year

HFH rate: 22.7% vs 11.7%; adjusted HR: 3.060; 95% CI: 1.090-8.589; P ¼ 0.034).

TABLE 2 Multivariate Cox Proportional Hazards Regression

Analysis of Heart Failure Hospitalization

HR
95% CI
Lower

95% CI
Upper P Value

Agea 1.016 0.949 1.087 0.650

NYHA functional class 0.847 0.359 2.002 0.706

STS score 1.116 0.978 1.273 0.103

LVEFb 4.113 0.868 19.483 0.075

NT-proBNPc 0.816 0.194 3.437 0.782

Presence of CHIP 3.060 1.090 8.589 0.034

Bold values indicate P values <0.05. aAs continuous variable. bLVEF <40% vs
>40%. cNT-proBNP >400 pg/mL vs <400 pg/mL.

CHIP ¼ clonal hematopoiesis of indeterminate potential; LVEF ¼ LV ejection
fraction; NT-proBNP ¼ N-terminal pro-brain natriuretic peptide; NYHA ¼ New
York Heart Association; STS ¼ Society of Thoracic Surgeons.
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LV remodeling, and a trend toward more severe dia-
stolic dysfunction. Importantly, we found that CHIP
was associated with an increased HFH rate even
following successful TAVI procedures (Central
Illustration). We acknowledge that in the literature,
the presence of CHIP has been correlated with an
increased risk of incident severe AS44 and both mid-
term and long-term mortality rates in AS patients
undergoing TAVI28,45; however, our study provides
additional insights by investigating potential patho-
physiological mechanisms contributing to the
compromised clinical outcome beyond the analysis of
inflammation-associated biomarkers.

In our cohort, 36.4% of the AS patients harbored
CHIP mutations. In a recent study examining the
prevalence of CHIP in a cohort of Asian AS patients,
the researchers reported that the prevalence was
39.2% or 20.0%, when the VAF cutoff was selected at
1% or 2%, respectively, which was deemed higher
than age- and gender-matched controls.46 In another
seminal study looking into the prognostic value of
CHIP in severe AS patients undergoing TAVI, the
researchers used targeted sequencing to examine
somatic mutations in DNMT3A and TET2, the 2 most
commonly affected genes in CHIP, and reported a
prevalence of CHIP at 33.3%.28 We reason that the
slightly higher prevalence of CHIP in this study, as
compared with the aforementioned studies, may be
secondary to differences in the age distributions,
ethnic groups, or AS severities among different
studies and because of the additional CHIP-associated
genes included in our targeted NGS panel.

In terms of clinical outcomes of severe AS patients,
in the aforementioned study by Mas-Peiro et al., the
researchers reported that the patients with DNMT3A
or TET2 mutations had increased medium-term all-
cause mortality in the first 8 months following
TAVI.28 In this study, 8 out of 279 (2.9%) AS patients
died due to procedure-related complications during
the first 1 month post-TAVI, and these patients were
excluded in the survival analysis to avoid confound-
ing effects directly associated with the TAVI proced-
ure. In a follow-up study, the researchers found that
CHIP was also associated with a significantly higher
all-cause mortality up to 4 years post-TAVI.45 In
contrary, we did not observe such differences in the
all-cause mortality or CV-related mortality in our
study, even after a rather prolonged follow-up period
of 55.2 months (Supplemental Figure 3). We reason
that the overall low immediate procedure-related
complication rates (no patient died or experienced
major bleeding, stroke, or other vascular complica-
tions within 30 days post-TAVI) and postprocedural
CV-related mortality in our cohort may be the major
reason why we did not observe a discernible survival
difference in AS patients with or without CHIP.
Nevertheless, we found that AS patients carrying
CHIP had indeed a higher rate of postprocedural HFH
(Figure 2) and that CHIP remained an independent
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TABLE 3 Baseline Laboratory and Echocardiographic Parameters in Aortic Stenosis Patients With or Without Clonal Hematopoiesis of

Indeterminate Potential

No CHIP
(n ¼ 70)

CHIP
(n ¼ 40) P Value

Laboratory tests

WBC (�109/L) 6.32 (5.18-7.64) 6.27 (5.17-7.94) 0.958

Hb (g/dL) 12.15 (10.53-13.40) 12.45 (10.52-13.50) 0.770

MCV (fL) 92.00 (88.32-96.27) 91.85 (88.95-94.58) 0.591

Platelet (�109/L) 178.50 (147.25-219.75) 198.00 (142.00-235.00) 0.792

LDH (U/L) 200.00 (175.00-247.00) 198.00 (168.25-220.50) 0.370

Troponin I (ng/mL) 112.00 (0.00-5,145.00) 78.00 (0.00-3,926.00) 0.411

C-reactive protein (mg/dL) 0.22 (0.08-0.54) 0.17 (0.09-0.52) 0.891

Interleukin 6 (pg/mL) 6.36 (2.80-10.74) 5.65 (2.25-10.88) 0.477

NT-proBNP (pg/mL) 1,316.00 (464.68-7,333.75) 1,627.50 (467.40-8,186.50) 0.878

Ferritin (ng/mL) 153.53 (72.10-372.72) 285.00 (143.59-522.40) 0.045

Echocardiography

AV peak PG (mm Hg) 74.60 (51.00-95.37) 71.35 (54.27-87.83) 0.869

AV mean PG (mm Hg) 40.50 (29.70-57.00) 41.00 (30.15-52.17) 0.671

AVA (cm2) 0.75 (0.63-0.88) 0.78 (0.62-0.92) 0.548

LVEF <40% 6 (8.57%) 1 (2.50%) 0.419

LVEDD (mm) 48.50 (44.00-52.75) 45.50 (41.00-49.00) 0.029

LVESD (mm) 30.00 (26.00-36.75) 27.00 (24.00-31.00) 0.028

LVEDV (mL) 110.85 (87.73-133.32) 99.50 (74.38-115.02) 0.030

LVESV (mL) 36.50 (25.00-60.43) 27.75 (19.78-37.42) 0.006

LV mass (gram) 220.35 (170.02-265.35) 214.00 (183.30-269.80) 0.697

LVOTd (mm) 2.00 (2.00-2.20) 2.00 (1.95-2.15) 0.309

LA (mm) 42.00 (37.00-46.00) 43.00 (38.00-47.00) 0.345

LA volume (mL) 74 (61.0-94.0) 70 (52.0-93.0) 0.342

IVS (mm) 12.00 (10.25-14.00) 13.50 (12.00-15.00) 0.011

PW (mm) 12.00 (10.00-13.00) 13.00 (11.00-14.00) 0.017

Mitral-E (cm/s) 88.90 (67.80-107.80) 91.70 (75.05-109.35) 0.245

Mitral-A (cm/s) 111.50 (92.42-132.45) 126.20 (97.80-142.65) 0.286

E/e’ 18.3 (14.0-22.5) 20.3 (16.9-25.1) 0.069

TR velocity (cm/s) 2.85 (2.4-3.2) 2.91 (2.58-3.1) 0.872

Grade of diastolic dysfunction 0.081

Normal þ Grade 1 50 (71.4) 22 (55.0)

Grade 2 þ Grade 3 20 (28.6) 18 (45.0)

Values are median (IQR). Bold values indicate P values <0.05.

AV ¼ aortic valve; AVA ¼ aortic valve area; Hb ¼ Hemoglobin; IL ¼ interleukin; IVS ¼ interventricular septum; LA ¼ left atrium; LDH ¼ lactate dehydrogenase; LV ¼ left
ventricle; LVEDD ¼ LV end-diastolic diameter; LVEDV ¼ LV end diastolic volume; LVEF ¼ LV ejection fraction; LVESD ¼ LV end-systolic diameter; LVESV ¼ LV end systolic
volume; LVOTd ¼ LV outflow tract diameter; MCV ¼ mean corpuscular volume; NT-proBNP ¼ N-terminal pro-brain natriuretic peptide; PG ¼ pressure gradient; PW ¼ posterior
wall; TR ¼ tricuspid regurgitation; WBC ¼ white blood cell.
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poor prognostic factor in the multivariate Cox PH
analysis taking into account other important con-
founding factors such as age, NYHA functional class,
STS risk score, LVEF, and NT-proBNP level (Table 2).
The finding that CHIP represents as yet another
important poor prognostic factor in AS and other
atherosclerotic CV diseases could be corroborated by
previous reports conducted in CAD, chronic ischemic
HF, or HF with reduced LV ejection fraction.8-10,41

Furthermore, we sought to search for underlying
pathophysiological mechanisms that could explain
the worse clinical outcomes in AS patients harboring
CHIP. In previous studies exploring the causal rela-
tionship between CHIP and atherosclerotic CV disease
development in mouse models, C-X-C motif chemo-
kines including Cxcl1, Cxcl2, Cxcl3, as well as Pf4,
Il1b, Il6, and NLRP3 inflammasome components were
found to be overexpressed in the macrophages
derived from mice carrying CHIP.8,16 In the previous
clinical study examining the clinical implications of
CHIP in AS, although inflammatory markers such as
CRP and IL-6 were not significantly different between
carriers or noncarriers of CHIP, the researchers noted
that CHIP carriers had increased pro-inflammatory
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In this study, 36.4% of the 110 severe AS patients undergoing transcatheter aortic valve implantation (TAVI) were found to harbor CHIP. The

presence of CHIP is a strong predictor for a higher HFH rate post-TAVI.
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Th17 cells and nonclassical monocytes.28 In the cur-
rent study, we observed that most of the patients’
baseline clinical characteristics, comorbidities, PB
blood counts, CRP, and IL-6 levels were not signifi-
cantly different between AS patients with or without
CHIP, similar to previous reports.28,45 Nevertheless,
we did note that patients carrying CHIP had higher
circulating ferritin levels indicating a hyper-
inflammatory status and a higher proportion of stage
D3 AS, which is often linked to LV hypertrophy, small
ventricular size, diastolic dysfunction, and poor
prognosis in the literature.47,48 In our echocardio-
graphic data analysis, AS patients harboring CHIP
indeed demonstrated evidence of maladaptive LV
remodeling, such as thicker interventricular septum
and posterior wall, smaller LV chamber volumes
either at end diastole or end systole, and increased
E/e’ ratio (Table 3). These findings indicated that AS
patients with CHIP had more pronounced LV hyper-
trophy and more severe diastolic dysfunction than
those without CHIP. As diastolic dysfunction has been
associated with increased mortality and adverse
events in AS,49 we reason that it may be one of the
main mechanisms contributing to the compromised
postprocedural outcome in severe AS patients with
CHIP. Furthermore, a recent study reported that Tet2-
mediated clonal hematopoiesis in mice would lead to
upregulation of IL-1b and maladaptive cardiac
remodeling following LAD ligation (to model
myocardial infarction in mice). In this model, the
observed cardiac remodeling included increased LV
systolic and LV diastolic volumes and decreased
LVEF.50 Although in our AS patient cohort we actually
observed thicker myocardium and smaller LV cham-
ber sizes in those harboring CHIP, we reason this
mainly reflects the unique pathophysiology of AS,
which is dominated by pressure overload secondary
to valve malfunction and LV outflow tract obstruc-
tion, instead of loss of viable myocardium and
pumping failure. It is thus plausible that in AS, CHIP
may activate proinflammatory pathways and aggra-
vate atherosclerotic fibrosis of the AV and myocar-
dium.50 The worsening pressure overload,
maladaptive LV remodeling, and diastolic dysfunc-
tion then collectively make AS patients more sus-
ceptible to HF exacerbations and HFH events, even
though TAVI has successfully relieved the hemody-
namic obstruction.

This study features the following merits. First, this
is the first study characterizing the prevalence and
landscape of CHIP in an Asian AS patient cohort, us-
ing the high throughput sequencing technique. Sec-
ond, although the patents in our study had a low
immediate procedure-related complication rate and a
low CV-related mortality rate during long-term
follow-up, we were able to demonstrate that AS
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patients with CHIP still had a higher risk of HFH even
following successful TAVI, and therefore in these
patents, a higher degree of clinical vigilance and more
intensive monitoring schedule should be exercised to
improve postprocedural patient outcomes. The char-
acterization of CHIP in AS patients may represent a
new dimension that we can leverage to refine patient
management, which is currently an unmet need in
most clinical settings. Third, we performed detailed
echocardiographic surveillance in our patients and
provided evidence that systemic hyperinflammation
and maladaptive LV remodeling may be underlying
pathophysiology for worse patient outcomes. To
counteract the negative clinical impact of CHIP on AS
patients, the following leads could be thoughtfully
evaluated. CANTOS (Canakinumab Anti-
inflammatory Thrombosis Outcomes Study) first
demonstrated that IL-1b blockade with canakinumab
could reduce major adverse cardiovascular events in
patients with stable coronary artery disease and
elevated levels of CRP, predominantly by reducing
the incidence of repeated myocardial infarction.51

Moreover, in a later follow-up study, the researchers
found that actually those patients with TET2 variants
may respond better to canakinumab than other pa-
tients without detectable CHIP mutations.52 There-
fore, the presence of CHIP seems to be a strong
predictor in terms of selecting patients with AS or
other atherosclerotic CV diseases for anti-
inflammatory therapy to improve clinical outcomes.

STUDY LIMITATIONS. We acknowledge the following
limitations in our study, including the retrospective
study design and single-center, small patient num-
ber; therefore, the findings of this study served to
establish the association of CHIP and inferior clinical
outcomes in severe AS patients, but whether there is
a causal relationship warrants further investigations.
In addition, to address the issue of potential con-
founding secondary to selection bias commonly pre-
sent in retrospective studies, we performed overlap
propensity score-weighting analysis based on base-
line characteristics of the patients in our cohort.
Although after overlap weighting analysis
(Supplemental Table 5), the number of patients in
each group was substantially reduced (6 in non-CHIP
and 8 in CHIP subgroup), the overlap propensity
score-weighted Cox proportional hazards model still
demonstrated that CHIP was a significant risk factor
for HFH post-TAVI. We also lack laboratory data on a
wider array of inflammatory cytokines or PB immune
cell subsets for more extensive correlative analysis.
CONCLUSIONS

Our study supports the clinical relevance of CHIP in
modulating the clinical outcomes of severe AS pa-
tients undergoing TAVI. The negative prognostic
impact of CHIP in AS patients is most likely driven by
systemic inflammation, maladaptive LV remodeling,
and diastolic dysfunction. Larger prospective trials
are anticipated to validate our findings and provide
further evidence whether the characterization of
CHIP in AS patients would go beyond merely being a
novel molecular risk factor and become an actionable
therapeutic target in the foreseeable future.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: In the

study, we integrated the clinical, sequencing, and echo-

cardiographic data from 110 severe AS patients under-

going TAVI and identified CHIP in up to 36.4% of this

cohort, with the most frequently mutated genes being

DNMT3A, TET2, and ASXL1. We also provided evidence for

the adverse prognostic impact of CHIP on postprocedural

patient outcomes, which could be attributed to systemic

inflammation, maladaptive LV remodeling, and diastolic

dysfunction. CHIP therefore represents a novel adverse

prognostic factor in patients with severe AS.

TRANSLATIONAL OUTLOOK: Our study serves as an

important step toward personalized management of AS.

As accumulating evidence suggests that anti-inflamma-

tory agents can improve CV outcomes in patients with

atherosclerosis, we speculate that CHIP may represent a

novel molecular biomarker that can help clinicians more

appropriately select the subset of patients that would

derive direct benefits from anti-inflammatory therapy.

Further prospective studies are warranted to validate our

findings and investigate whether CHIP holds the potential

of being an actionable therapeutic target in AS.
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