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Abstract: Coastal wetlands provide many critical ecosystem services including carbon storage. Soil
organic carbon (SOC) is the most important component of carbon stock in coastal salt marshes.
However, there are large uncertainties when estimating SOC stock in coastal salt marshes at large
spatial scales. So far, information on the spatial heterogeneity of SOC distribution and determinants
remains limited. Moreover, the role of complex ecological interactions in shaping SOC distribution is
poorly understood. Here, we report detailed field surveys on plant, soil and crab burrowing activities
in two inter-tidal salt marsh sites with similar habitat conditions in Eastern China. Our between-site
comparison revealed slight differences in SOC storage and a similar vertical SOC distribution pattern
across soil depths of 0–60 cm. Between the two study sites, we found substantially different effects
of biotic and abiotic factors on SOC distribution. Complex interactions involving indirect effects
between soil, plants and macrobenthos (crabs) may influence SOC distribution at a landscape scale.
Marked differences in the SOC determinants between the study sites indicate that the underlying
driving mechanisms of SOC distribution are strongly system-specific. Future work taking into account
complex interactions and spatial heterogeneity is needed for better estimating of blue carbon stock
and dynamics.

Keywords: carbon cycle; soil organic carbon; soil properties; structural equation model; trophic
interaction; wetland

1. Introduction

Coastal areas account for only 4% of the Earth’s land surfaces, yet accommodate over one third of
the world’s total population [1]. Coastal wetlands are among the most important ecosystems, providing
a wide range of critical ecosystem services to human well-being, including climate mitigation, flood
control, shoreline stabilization, storm protection, sediment and nutrient retention, fishery production
and biodiversity conservation [2,3]. In recent years, there has been increasing recognition that coastal
wetlands, as a long-term carbon sink (referred to as a major component of “blue carbon”), play a
key role in climate change mitigation [4]. Previous studies have shown that many coastal wetland
ecosystems, such as salt marshes, mangroves and seagrass beds, are storing a considerable amount of
carbon with high densities. These coastal ecosystems only account for 0.07%–0.22% of the Earth’s Land
surfaces, but can capture up to 0.08–0.22 Pg carbon every year [5]. Particular interest has been given to
coastal salt marshes because they have shown a surprisingly high capability of carbon sequestration,
as reflected by an average rate of around 245 g C·m−2

·per year, approximately 40 times of that of
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temperate forest ecosystems [6,7], making coastal salt marshes one of the most important carbon pools
at regional and global scales.

Soil organic carbon (SOC) represents a major proportion of the carbon pool in coastal salt marshes
as well as in many other ecosystems [2]. SOC concentration in salt marshes can serve as a useful
indicator of climate change [8]. In the meantime, changes in SOC storage in salt marshes are expect to
produce profound impacts on the global carbon cycle [9]. However, so far, accurate information on SOC
distribution in coastal salt marshes remains limited, resulting in uncertainties when estimating SOC
stock, especially at broad spatial scales [10–13]. SOC stock is determined by many factors, ranging from
climate conditions at a macro scale to soil properties and microbial activities at a micro scale [14,15].
Extensive research effort has been devoted to mapping SOC distributions across a range of spatial
scales and to elucidating the determinants in coastal salt marshes [13,16–18], as they are essential
to understanding and predicting the dynamics of blue carbon. Estimation of SOC distribution at
landscape and regional scales has been strongly dependent on spatial extrapolation from site-level
data and/or ecosystem process modelling, whose accuracy also relies on validation based on field
data [13,18]. While information from field observations is critical, sampling points of field data are
often sparse, largely restricted by the labor-intensive nature of SOC measurements. For the sampling
design of SOC surveys, a generally adopted approach is that much of the resource (sampling density)
is allocated to account for the difference between distinct habitat or ecosystem types, while only very
few sampling points are allocated between similar systems (in terms of habitat conditions, vegetation
type, species composition and structure, etc.) based on the assumption that such similar systems
would have slight differences. However, it is unclear if, and under what conditions, this important
assumption holds. Previous work has suggested that even between seemingly homogeneous habitat
conditions, horizontal and vertical distributions of SOC, as well as of their driving mechanisms, could
vary to a substantial degree [16]. When it comes to coastal salt marshes that are strongly subject to
complex hydrological and sedimentation processes, it has been documented that SOC distribution had
significant spatial variations between different systems with similar habitat conditions [16]. However,
information on between-site differences in SOC distributions and their driving factors remains lacking.
More importantly, complex ecological interactions, especially indirect effects and trophic interactions,
have been increasingly demonstrated to play important roles in many aspects (e.g., species co-existence,
spatial patterning, non-linear vegetation dynamics, ecosystem functioning and resilience, etc.) of
salt marsh ecosystems as well as other ecosystem types [19–27]. Yet, it remains poorly understood if
and to what extent such between-site SOC differences can be attributed to those complex ecological
interactions, as reflected by the lack of consideration of those interactions in a majority of existing studies
on the estimation of SOC stock. This knowledge gap leaves important uncertainties for estimating blue
carbon stock and dynamics in the face of rapid changes in the climate and in anthropogenic activities.

To address this gap, in this study, we conducted detailed field investigations to compare SOC
distribution and determinants between two salt marsh sites along the Yellow Sea coast of Eastern
China. We selected two representative inter-tidal mudflat sites in the core area of two national nature
reserves, respectively. These sites, with a spatial distance of 65 km, have similar ecosystem properties
in terms of climate, tidal location, vegetation type, species composition, and anthropogenic activities,
making them a suitable natural experimental system for our study. Here, we focus on the horizontal
and vertical distributions of SOC at a landscape scale. We used regression analysis to examine the
effects of a set of biotic and abiotic environmental factors on SOC distribution. To quantify the role of
complex ecological interactions, we used structural equation modeling to infer the direct and indirect
effects of those factors on SOC distribution. We expect to provide a better understanding of carbon
cycle in costal salt marshes, with useful implications for more accurate estimations of blue carbon at
landscape scales.
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2. Materials and Methods

2.1. Study Area

Our two study sites are located in the core areas of the Yancheng National Nature Reserve
(YNNR, 120.58◦E, 33.59◦N) and Dafeng Milu National Nature Reserve (DMNNR, 120.84◦E, 33.04◦N),
respectively (Figure 1). This region has a mean annual temperature of 13.7–14.6 ◦C and a mean
annual precipitation of 980–1070 mm [28]. Irregular tidal flooding occurs twice a day. The YNNR
was established in 1983, aiming at protecting red-crown cranes (Grus japonensis) and their habitats.
The DMNNR was established in 1986, aiming at protecting Père David’s Deer (Elaphurus davidianus,
Milu in Chinese pinyin) and their habitats. Both nature reserves are now under administration at the
national level (the highest level in the Chinese nature reserve system) with implementation of strict
protection. Human activities are strictly forbidden in the core areas of the reserves.
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Figure 1. Locations and photos of the study sites. Left column: Landsat 8 OLI remotely sensed image
acquired on December 5, 2017; right column: drone photos taken above the study sites in October, 2018,
showing the Suaeda salsa vegetation patches in red color (photo credit: Xin-Yu Miao). (a) Landsat image
of the YNNR site, (b) drone photo of the YNNR site, (c) Landsat image of the DMNNR site, (d) drone
photo of the DMNNR site.
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These two nature reserves accommodate the largest and most intact natural inter-tidal mudflat
ecosystems in China. Distinct vegetation types with clear boundaries are present along the spatial
gradient from the sea to the land. The pioneer species Spartina alterniflora dominates the low-tidal
zone, while reeds (Phragmites australis) are the dominant vegetation (with other plant species such as
Aeluropus sinensis, Imperata cylindrical, and Scripus karuizawensis in presence) in the high-tidal zone [29].
In between, Suaeda salsa, as the dominant species [29], forms spatially extensive vegetation patches (see
the photos in Figure 1).

2.2. Soil Analyses

We set up one study site in the YNNR and one in the DMNNR. Both sites are located in the S.
salsa marshes, and present homogeneous habitat conditions, with a similar elevation of 7 m above
the sea level and similar tidal conditions. We conducted field sampling during the peak growing
season (July-September) in 2018. In each site, we randomly selected 30 quadrats sized 1 × 1 m2 with
nearest-neighboring distances of 2–10 m. Within each quadrat, we collected soil samples at the depths
of 0–10 cm, 10–30 cm and 30–60 cm. At each depth, three subsoil samples of 200 g were collected,
bagged and stored within ice boxes. These three subsoil samples were then fully mixed, passed
through 2-mm sieves and dried. For the measurement of SOC, they were grinded and passed through
a 100-mesh sieve. Aboveground biomass (AGB) in each quadrat was collected, bagged and dried for
12 h to a constant weight in an 80 ◦C oven. In addition, previous studies have suggested that crabs can
play an important role as ecosystem engineers, with important effects on many aspects of salt marsh
ecosystems including plant performance and SOC accumulation [20,30,31]. Considering that spatial
patterns can serve as useful indicators for inferring ecological process in many cases [24,26,32], we
characterized local spatial patterns (within the quadrats) of crab (Chiromantes dehaani was the dominant
species in our study sites) burrows to quantify the effects of crab activities in a comprehensive and
simple way. To this end, we used two variables including crab burrowing density (BUD, measured by
burrow number per m2) and mean distance of nearest neighboring burrows (MDNN, as an indicator
of spatial pattern in terms of scatter vs. clump).

While SOC concentration could be influenced by numerous soil factors, it is only feasible to
measure a limited set of soil variables in most field work due to the restriction of cost [33]. Here, we
aimed to assess if and how the most fundamental soil properties can shape SOC distribution at a
landscape scale. We therefore focused on the most commonly used variables that are readily available
in almost all soil surveys, including bulk density (BD), pH, and electrical conductivity (EC, an indicator
of saline condition). We did not include soil nutrient factors (such as N and P) in the subsequent
statistical modeling, because they are often not readily available in all soil survey datasets and usually
have highly system-specific relationships with soil carbon. Nor did we include soil moisture, because
it is strongly dependent on fast-changing hydrological (tidal) conditions. We used standard methods
to measure the soil variables following the protocols in [34].

2.3. Statistical Analyses

As a first step, we compared SOC density as well as the biotic and abiotic habitat factors between
the YNNR site and the DMNNR site. We then conducted multiple ordinary least square regression
analysis to assess if these factors have direct effects on SOC distribution. We used the adjusted R2 of
the full models to assess the predictive power of the selected variables for SOC distribution. We did
not use stepwise-like model selection to avoid potential bias [35]. To further assess if indirect effects
could possibly shape the SOC distribution, we used structural equation modeling to take into account
the indirect effects of abiotic soil variables and crab burrows. Based on previous studies [20,30,31,36],
we tested for the indirect effects of soil properties (BD, pH and EC) on SOC through affecting plant
performance (AGB) and crab burrowing, and the indirect effects of crab burrowing on SOC through
affecting plant AGB. These effects were represented by the following three specific causal pathways,
(1) soil properties → plant AGB → SOC, (2) soil bulk density (hardness for burrowing) → crab
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burrowing→ SOC and (3) soil bulk density→ crab burrowing→ plant AGB→ SOC. We assumed
that plant AGB and SOC may affect each other (forming a feedback). The explanatory variables
showed a low VIF (variance inflation factor) value < 5, indicating a low level of multi-collinearity. All
statistical analyses were conducted with R 3.3.1 [37] with the piecewiseSEM package [38] for structural
equation modeling.

3. Results

3.1. Between-Site Difference in SOC Distribution

Our results from the field investigation on 60 sampling quadrats showed that SOC density was
3.76 ± 1.26 g·kg−1 in the YNNR site and 3.15 ± 0.69 g·kg−1 (mean ± std) in the DMNNR site. The
difference in the mean SOC density was less than 20%, but statistically significant (t test, p = 0.023).
For all three soil layers, the DMNNR site presented slightly lower (but non-significant) SOC densities
than the YNNR site (Figure 2). Both sites showed a similar vertical distribution pattern of SOC density,
characterized by a higher density at the topsoil layer (0–10 cm) and lower densities at the subsoil layers
(10–30 cm and 30–60 cm).
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Figure 2. SOC densities (unit: g·kg−1, mean ± standard error) at the three soil layers of 0–10 cm,
10–30 cm and 30–60 cm in the two study sites. Different letters (a vs. b) above the error bars indicate
significant differences (two-way ANOVA). n = 30.

We also observed significant differences in the abiotic and biotic environmental factors between
the two study sites (Figure 3). For example, the YNNR site presented higher EC, AGB and crab burrow
numbers, but lower BD and pH than the DMNNR site. In addition, some factors such as EC showed a
consistent vertical distribution pattern with SOC density. We then conducted statistical analyses to
quantify the relationships between SOC density and the environmental factors.
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Figure 3. Soil properties (a–c), plant aboveground biomass (d), crab burrow number (e) and mean
distance of nearest neighboring burrows (f) in the two study sites (mean ± standard error). In the upper
panels, different letters (a vs. b) above the error bars indicate significant differences (two-way ANOVA).
*: p < 0.05; **: p < 0.01; ns: p > 0.05; n = 30.

3.2. Multiple Regression Analyses

While the visual between-site comparison may provide an impression that the between-site
similarities and differences of the environmental factors coincide with the observed SOC distribution
patterns, the result from the multiple regression analyses suggests that they generally had weak power
(indicated by the adjusted R2 of the full model) in explaining the SOC distribution, especially in the
YNNR site. Importantly, the total explanatory power and the effects of the individual environmental
factors (as explanatory variables) strongly varied between the two study sites. In the DMNNR site, BD
and EC were significantly correlated with SOC at the 30–60 cm soil layer, and BUD was significantly
correlated with SOC at the 0–10 cm layer. In contrast, only EC and MDNN had marginally significant
correlations with SOC (p < 0.1) in the YNNR site.

In short, the multiple regression models suggested that soil properties and crab burrowing could
have significant effects on SOC distribution, but their effects were highly site-specific. Surprisingly,
we did not find a significant effect of plant performance in terms of aboveground biomass in either
study site.

3.3. Inferring Complex Interactions from Structural Equation Modeling

Considering that indirect effects cannot be explicitly taken into account in multiple regression
models, we constructed structural equation models to test for the indirect effects of soil properties and
crab burrowing on SOC distribution. The results from the structural equation models showed that
these indirect effects were indeed possibly at play (all models have overall p value lager than 0.05,
suggesting that the causal pathways were possibly present, Figure 4). Looking at all soil layers as a
whole, the direct and indirect effects can jointly explain 50% (in the DMNNR site) and 13% (in the
YNNR site) of the observed variance in SOC distribution. The results suggested that taking into
account the indirect effects can substantially increase the explanatory power, compared with regression
models that only consider the direct effects.
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Figure 4. Results from structural equation models assuming complex interactions between soil, plants
and crab activities. Solid arrows: p < 0.05; dashed arrows: p > 0.05; blue arrows: positive effects; red
arrows: negative effects; n = 30.

An important finding is that the explanatory power of the structural equation models substantially
varied across different soil layers and between different study sites. There was a consistent pattern
where the topsoil layer of 0–10 cm had the greatest explanatory power. However, closer scrutiny of the
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different soil layers between the two study sites reveal marked differences in the potential pathways
of the environmental factors shaping SOC distribution. For example, the effect of the soil physical
property (BD) was much more pronounced in the DMNNR site, while soil salinity (EC) presented a
pronounced effect in the YNNR site. The two variables representing crab activities generally had weak
effects on SOC density and plant performance (AGB).

In brief, the assumed complex interactions were indeed possible for shaping SOC distribution,
but they displayed remarkable differences between the two study sites.

4. Discussion

In this study, we conducted a detailed comparison between two inter-tidal sites to assess if
and to what extent landscape-scale SOC distribution, as well as its driving mechanisms, can vary
between natural salt marsh ecosystems with similar habitat conditions. Between the two study sites,
we found an overall difference in SOC density of <20% (all soil layers in combination) and a similar
vertical SOC distribution pattern (i.e., higher densities in topsoil and lower densities in subsoil).
Despite these similarities, we found markedly different effects of biotic and abiotic environmental
factors with complex interactions, suggesting that the driving mechanism of SOC distribution was
strongly system-specific.

Our finding on the vertical distribution pattern of SOC density agrees with many previous studies
showing that SOC distribution tends to exhibit a decreasing trend towards deeper soil layers [17,18].
This pattern was robust across the two study sites with a spatial distance of 65 km. This result is in line
with the view that, under natural conditions, aboveground plant residuals as the source of SOC input
play a major role in driving this pattern. While this simple vertical distribution pattern makes intuitive
sense, the potential underlying mechanisms and determinants are complex, as various factors could
influence plant growth and decomposition rate, and in turn influence SOC density. This raises an
important question: does this complexity hamper our ability to predict and estimate SOC distribution
at large spatial scales? It has been suggested that it is indeed feasible to estimate SOC distribution using
a set of common soil variables, including pH, salinity and soil texture, as they can well explain the
spatial variance of SOC distribution in particular systems [17]. However, our work demonstrated that
the relationships between the environmental factors and SOC density can be strongly system-specific,
and sometimes can be rather weak. This finding provides an important caveat for extrapolating SOC
density to a large scale from soil properties alone.

Probably the foremost finding of this work is that complex interactions between soil, plants and
crabs involving indirect effects can jointly shape SOC distributions in the investigated study systems.
Our modeling results suggest that the consideration of indirect effects can improve model performance
for predicting SOC distribution by up to 16% in terms of explanatory power (for instance, for the
10–30 cm soil layer in the DMNNR site, the multiple regression model had R2 of 0.22, (Table 1), whereas
the structural equation model had R2 of 0.38 (Figure 4e)). The importance of such indirect effects,
particularly those operating through trophic interactions, has been well documented in coastal salt
marshes as well as in many other ecosystems [20,21,27,39]. For example, it has been documented that
crabs can forage for fallen leaf litter and relocate this source of soil organic carbon to deeper burrow
chambers [40]. This process can significantly alter SOC stock and increase the spatial heterogeneity
of SOC distribution. However, so far, few attempts have incorporated indirect effects when it comes
to the estimation of SOC distribution and dynamics. Our work suggests that burrowing density,
reflecting the intensity of crab activities, can produce significant effects on SOC density in some cases
(Table 1). One could expect that the micro-scale spatial pattern of burrows would influence SOC
density as well, in the sense that clumped burrowing (corresponding with lower MDNN) might lead
to strong intraspecific competition between crabs, thus reducing relocation of plant litter and SOC.
However, this expectation is not supported by our data, as the observed effect of MDNN seems quite
weak and elusive. One possibility is that the simple spatial patterning variable used in this study
may be not sufficient to capture the effect. It is also possible that burrowing depth (not measured
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in the field) can act as a confounding factor, because it determines the vertical relocation of SOC. A
better understanding of the crab effects requires further studies based on thoughtful experiments on
burrowing activities.

Table 1. Results from multiple regression models explaining soil organic carbon distributions.

Site DMNNR YNNR

Soil Depth 0–10 cm 10–30 cm 30–60 cm 0–10 cm 10–30 cm 30–60 cm

BD −0.23 ± 0.18 0.29 ± 0.21 −0.51 ± 0.23 * −0.06 ± 0.19 −0.01 ± 0.25 −0.21 ± 0.20
pH −0.20 ± 0.16 −0.11 ± 0.20 0.08 ± 0.20 0.07 ± 0.19 0.02 ± 0.26 0.09 ± 0.25
EC 0.43 ± 0.16 * 0.40 ± 0.20 † 0.45 ± 0.20 * 0.35 ± 0.19 † −0.12 ± 0.23 0.17 ± 0.27

AGB 0.22 ± 0.16 −0.06 ± 0.18 −0.16 ± 0.17 −0.02 ± 0.20 −0.16 ± 0.22 0.07 ± 0.22
BUD 0.37 ± 0.17 * 0.42 ± 0.20 * 0.03 ± 0.25 0.20 ± 0.18 −0.03 ± 0.24 0.23 ± 0.22

MDNN −0.14 ± 0.16 −0.20 ± 0.20 −0.18 ± 0.19 0.33 ± 0.18 † −0.12 ± 0.26 −0.44 ± 0.25 †

Adjusted R2 0.40 0.22 0.21 0.19 0.00 0.00

Standardized coefficients ± std are shown for the explanatory variables; † p < 0.1; * p < 0.05; BD: bulk density; EC:
electrical conductivity; AGB: plant aboveground biomass; BUD: burrow density; MDNN: mean distance of nearest
neighboring burrows; n = 30.

An important caveat should be noted when it comes to the interpretation of the model results.
In our study, as well as in a majority of existing relevant studies (e.g., [15,17]), the measured soil
properties and plant biomass only represent static situations. In a relative sense, SOC stock is a
slow variable, driven by the long-term dynamics of soil and biotic variables, some of which are fast
variables (e.g., soil salinity and crab burrowing activities). This long-standing problem of temporal scale
mismatch may lead to weak correlations between SOC density and biotic and abiotic environmental
variables, making it difficult to unravel the underlying mechanisms. In recent years, the development
of ‘Internet of Things Technology’, combined with automatic monitoring equipment for environmental
monitoring, has given rise to rapidly increasing high-resolution time-series data on ecosystem dynamics.
These emerging technologies and big data combined with newly developed mathematical and modeling
tools (e.g., Bayesian-network-based causal inference methods [41]) are expected to largely overcome
the problems of data sparsity and scale mismatch.

Taken together, our study paves the way towards disentangling the complex interactions shaping
SOC distribution in coastal salt marshes. It points to the necessity of incorporating these indirect effects
for better understanding the mechanisms underlying carbon stock in coastal ecosystems. It also calls
attention to spatial heterogeneity and system specificity for estimating blue carbon stock and dynamics.

5. Conclusions

By comparing between two inter-tidal salt marsh sites with similar habitat conditions in Eastern
China, we observed minor differences in SOC storage and a similar vertical SOC distribution pattern
across the soil depths of 0–60 cm. Despite these similarities, we found strongly different effects of biotic
and abiotic environmental factors on SOC density distribution between the two study sites. Complex
interactions involving indirect effects between soil, plants and macro-benthos (crabs) can provide
important additional explanatory power to the models explaining SOC distribution, suggesting that
these interactions may underpin SOC distribution at a landscape scale. Marked differences in the
SOC determinants between the study sites indicate that the underlying driving mechanisms of SOC
distribution are strongly system-specific. Future work, taking into account spatial heterogeneity and
system specificity, is needed for improving the accuracy of estimates of blue carbon stock and dynamics.
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