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Abstract: In this paper, we present the role of autologous and allogeneic monocytes from healthy
individuals and those of the cancer patients, with a number of distinct cancers, in activating the
function of natural killer (NK) cells, in particular, in induction of IFN-γ secretion by the NK cells and
the functional capability of secreted IFN-γ in driving differentiation of the tumor cells. In addition,
we compared the roles of CD16 signaling as well as sonicated probiotic bacteria AJ2 (sAJ2)-mediated
induction and function of IFN-γ-mediated differentiation in tumor cells. We found that monocytes
from cancer patients had lower capability to induce functional IFN-γ secretion by the autologous
CD16 mAb-treated NK cells in comparison to those from healthy individuals. In addition, when
patient monocytes were cultured with NK cells from healthy individuals, they had lower capability
to induce functional IFN-γ secretion by the NK cells when compared to those from autologous
monocyte/NK cultures from healthy individuals. Activation by sAJ2 or addition of monocytes from
healthy individuals to patient NK cells increased the secretion of functional IFN-γ by the NK cells
and elevated its functional capability to differentiate tumors. Monocytes from cancer patients were
found to express lower CD16 receptors, providing a potential mechanism for their lack of ability
to trigger secretion of functional IFN-γ. In addition to in vitro studies, we also conducted in vivo
studies in which cancer patients were given oral supplementation of AJ2 and the function of NK cells
were studied. Oral ingestion of AJ2 improved the secretion of IFN-γ by patient derived NK cells
and resulted in the better functioning of NK cells in cancer patients. Thus, our studies indicate that
for successful NK cell immunotherapy, not only the defect in NK cells but also those in monocytes
should be corrected. In this regard, AJ2 probiotic bacteria may serve to provide a potential adjunct
treatment strategy.

Keywords: NK cells; IFN-γ; monocytes; differentiation; AJ2; CD16 receptor

1. Introduction

Natural killer (NK) cells are known as the first line of defense against infections and
neoplasia, and they were identified and characterized in the early 1970s [1]. NK cells
participate in innate immune function and constitute 10–15% of human peripheral blood
lymphocytes [2]. They are identified by their surface expression of CD56 and CD16 and
lack of CD3 on their surface. Based on the surface expressions, two distinct populations of
NK cells of CD56dimCD16bright and CD56brightCD16dim were identified having cytotoxicity
via perforin–granzyme pathway and immunoregulatory properties via cytokine secretion,
respectively [3]. Our previous studies demonstrated that in addition to their cytotoxic
function, NK cells have a significant role in promoting differentiation of cancer stem cells
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(CSCs) by providing critical signals via secreted and membrane bound IFN-γ and TNF-
α [4–7]. IFN-γ produced by NK cells was shown to have great anti-tumor activity due to
tumor differentiation [8,9], as well as in an increase expression of CD54 and MHC-class
I on tumor cell surfaces [10]. Differentiation of tumors by NK cell-derived IFN-γ was
previously shown to directly correlate with the cancer cells’ increased resistance to NK
cell-mediated cytotoxicity, their increased sensitivity to chemotherapeutic drugs, and the
growth inhibition of tumor cells [10,11].

Monocytes appear to be recruited to tumors and are found to play an important role
in cancer progression and metastatic spread of cancer [12–15]. Human monocytes express
CD16, HLADR, CD11b, and CD86, and are classified in three subsets based on CD14 and
CD16 surface expression [16,17]. We and other laboratories showed close interactions
between NK cells and monocytes, especially their role in the recruitment and activation
of NK cells within the tumor microenvironment (TME) [18–21]. Monocyte-derived IL-15
signaling was found to be required for cytotoxic NK cell-recruitment to the tumor sites [18],
and the preliminary activation of monocytes was essential for NK cell proliferation [22].
We also previously demonstrated that monocytes synergize with NK cells in the presence
of a combination of eight strains of sonicated probiotic bacteria, sAJ2, to induce CSCs
differentiation [5]. Depending on whether monocytes will interact with NK cells first or
directly with the tumors, the outcome could be completely different. In the former by
activating NK cells monocytes can aid in elimination of the tumor, however, if they interact
directly with the tumors, monocytes will deliver survival signals to the tumors providing
protection for the tumors [23].

In our previous study, we demonstrated that NK cells’ function, and expansion were
suppressed in mice at preneoplastic and neoplastic stages as well as in cancer patients
(Supplementary Table S2) [24–27]. Cancer patients exhibit lower NK cell proliferation and
demonstrate decreased production of IFN-γ and TNF-α (Supplementary Table S3) [27–29].
NK cells express several important activating and inhibitory surface receptors, including
CD16, and the balance between activating and inhibitory signals which NK cells receive
through their surface receptors determines NK cells’ functional fate [30–32]. CD16 receptor
plays a significant role not only in cytotoxicity and increased secretion of IFN-γ by the
NK cells but also in mediating antibody-dependent cellular cytotoxicity (ADCC) by NK
cells [33–36]. In cancer patients, impairment of NK cells’ CD16 surface expression and
function was demonstrated [37–39]. Studies also showed that NK cells associated with
TME are unresponsive to CD16 receptor stimulation, resulting in diminished NK cell-
mediated cytotoxicity against tumors [40]. In addition, NK cell mediated secretion of IFN-γ
and TNF-α as well as their percentages were found to be impaired in association with
tumor-associated monocytes/macrophages [40].

In this study, we sought to focus on identifying the mechanisms responsible for the
lack of IFN-γ secretion by the patient derived NK cells, which is responsible for the inability
to drive the differentiation of cancer stem cells. In this regard, we studied the role of
autologous and allogeneic monocytes from healthy individuals and those of the cancer
patients in activating the function of NK cells; in particular, activation of IFN-γ secretion
by the NK cells and the functional capability of secreted IFN-γ in driving differentiation
of the tumor cells. We compared the role of CD16 signaling as well as bacteria-mediated
induction and function of IFN-γ-mediated differentiation of the tumor cells. Although the
majority of patients recruited to the study had pancreatic cancer, we also selected to include
cancer patients with other types of cancers since, in previous studies, most if not all cancer
patients were shown to have defective NK function [41–43].

2. Materials and Methods
2.1. Cell Lines, Reagents, and Antibodies

Oral squamous carcinoma stem cells (OSCSCs) were isolated from patients with
tongue tumors at the University of California, Los Angeles (UCLA) [11] and were cultured
in RPMI 1640 (Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal bovine
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serum (FBS) (Gemini Bio-Product, CA, USA). RPMI 1640 supplemented with 10% FBS was
used to culture human NK cells and monocytes. Anti-CD16 mAbs, and flow cytometric an-
tibodies were purchased from Biolegend (San Diego, CA, USA). Recombinant human IL-2
was obtained from Hoffman (La Roche, NJ, USA). AJ2 is a combination of seven different
strains of gram-positive probiotic bacteria: Streptococcus thermophiles, Bifidobacterium longum,
Bifidobacterium breve, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum,
and Lactobacillus casei. AJ2 were sonicated as described previously [5]. RPMI 1640 supple-
mented with 10% FBS was used to re-suspend sonicated AJ2 (sAJ2). Human ELISA kits for
IFN-γ were purchased from Biolegend (San Diego, CA, USA). Phosphate buffered saline
(PBS) and bovine serum albumin (BSA) were purchased from Life Technologies (Carlsbad,
CA, USA).

2.2. Purification of Human NK Cells and Monocytes

Written informed consents approved by the UCLA Institutional Review Board (IRB)
were obtained from healthy donors and cancer patients. The study was conducted ac-
cording to the guidelines of the Declaration of Helsinki and approved by the Institutional
Review Board of the University of California, Los Angeles (#11-000781, expiration date 1
December 2021). We used in total 40 cancer patients with 10 different types of cancer, and
all cancer patients were at stage 4 (Table S1). Peripheral blood mononuclear cells (PBMCs)
were isolated from peripheral blood as previously described [44]. Briefly, PBMCs were ob-
tained after Ficoll-hypaque centrifugation and were used to isolate NK cells and monocytes
using the EasySep® Human NK cell and EasySep® Human Monocytes enrichment kits,
respectively, purchased from stem cell technologies (Vancouver, BC, Canada). Isolated NK
cells and monocytes were stained with anti-CD16 and anti-CD14 antibodies, respectively,
to measure the cell purity using flow cytometric analysis.

2.3. Enzyme-Linked Immunosorbent Assays (ELISAs) and Multiplex Cytokine Assay

Single ELISAs were performed as previously described [44]. To analyze and obtain the
cytokine and chemokine concentration, a standard curve was generated by either two- or
three-fold dilutions of recombinant cytokines provided by the manufacturer. For multiple
cytokine array, the levels of cytokines and chemokines were examined by multiplex assay,
which was conducted as described in the manufacturer’s protocol for each specified kit.
Analysis was performed using a Luminex multiplex instrument (MAGPIX, Millipore,
Billerica, MA, USA), and data were analyzed using the proprietary software (xPONENT
4.2, Millipore, Billerica, MA, USA).

2.4. 51Cr Release Cytotoxicity Assay

The 51Cr release cytotoxicity assay was performed as previously described [45]. Briefly,
different numbers of effector cells were incubated with 51Cr–labeled target cells. After a 4 h
incubation period, the supernatants were harvested from each sample, and the released
radioactivity was counted using the gamma counter. The percentage specific cytotoxicity
was calculated as follows:

%cytotoxicity =
Experimental cpm − spontaneous cpm

Total cpm − spontaneous cpm
(1)

Lytic units (LU) 30/106 is calculated by using the inverse of the number of effector
cells needed to lyse 30% of tumor target cells ×100.

2.5. Enzyme-Linked Immunospot (ELISpot) Assay

The ELISpot were conducted according to manufacturer’s instructions. Briefly, the
plate was coated with primary antibody overnight at 4 ◦C. After washing the plate with
PBS twice, desirable cell number were added into each well (40,000 cells/well for PBMCs,
NK cells, and NK+monocyte coculture experiments) and incubate at 37 ◦C for 16–18 h.
The plate was washed with PBS and wash buffer twice after the incubation period and
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detection antibody was added into each well and incubated at room temperature for 2 h.
After the incubation period, the plate was washed three times with wash buffer (0.05%
Tween20/PBS). Tertiary solution was added into each well and the plate was incubated
at room temperature in dark for 30 min. The plate was washed twice with wash buffer
and twice with DI water before the blue development solution was added into each well
and was incubated for 15 min in dark at room temperature. The reaction was stopped
by gently rinsing the plate with water three times, and the plate was then air-dried for
24 h before being read. The number of IFN-γ secreting cells was analyzed using Human
IFN-γ Single-Color Enzymatic ELISPOT Assay, ImmunoSpot® S6 UNIVERSAL analyzer
and ImmunoSpot® SOFTWARE (all CTL Europe GmbH, Bohn, Germany).

2.6. Differentiation of OSCSCs Tumors

Human NK cells and monocytes were purified from healthy individuals’ and can-
cer patients’ PBMCs as described above. NK cells and monocytes were treated with
IL-2 (1000 U/mL) alone or with a combination of IL-2 (1000 U/mL) and anti-CD16 mAb
(3 µg/mL) or with a combination of IL-2 (1000 U/mL) and sAJ2 (NK cells:sAJ2, 1:2).
A crisscross NK cells and monocyte cocultures were performed. After 18 h of coculture,
supernatants were harvested. Differentiation of OSCSCs was conducted by adding 100 µL
supernatant on day 0 and day 1, respectively. On day 3, tumor cells were rinsed with 1×
PBS, detached, and used to detect CD54 and MHC-class I on their surfaces using flow
cytometer.

2.7. AJ2 Dosage to Cancer Patients

Cancer patients were given oral supplementation of 125 billion CFU/capsule, and in
total, three capsules/day for four weeks.

2.8. Surface Staining Assay

For surface staining, the cells were washed twice using ice-cold PBS + 1%BSA. Prede-
termined optimal concentrations of specific human monoclonal antibodies were added to
1 × 105 cells in 50 µL of cold PBS + 1%BSA and were incubated on ice for 30 min. Thereafter,
cells were washed in cold PBS + 1%BSA and brought to 500 µL with PBS + 1%BSA. Flow
cytometric analysis was performed using the Beckman Coulter Epics XL cytometer (Brea,
CA, USA), and the results were analyzed in the FlowJo vX software (Ashland, OR, USA).

2.9. Statistical Analyses

All statistical analyses were performed using the GraphPad Prism-8 software. An un-
paired or paired, two-tailed Student’s t-test was performed for experiments with two groups.
One-way ANOVA with a Tukey posthoc test was used to compare different groups for
experiments with more than two groups. (n) denotes the number of human donors or
number of samples for each experimental condition. Duplicate or triplicate samples were
used in the in vitro studies for assessment. The following symbols represent the levels of
statistical significance within each analysis: **** (p value < 0.0001), *** (p value < 0.001),
** (p value 0.001–0.01), * (p value 0.01–0.05).

3. Results
3.1. Significantly Decreased CD19+ and Increased CD14+ Cells in Cancer Patients’ PBMCs;
Decreased IFN-γ, GM-CSF, IL-1β, IL-7, IL-12, and IL-13 Secretion in Cancer Patients’
Peripheral-Blood Derived Sera

To evaluate the proportions of immune cell subsets in peripheral blood of cancer
patients and those of the healthy individuals, we performed flow cytometric analysis using
peripheral blood-derived mononuclear cells (PBMCs). Slightly increased percentages of
CD16+ NK cells and decreased percentages of CD3+ T cells were found in cancer patients’
PBMCs although there was no statistical significance (Figure S1A,B). Significantly decreased
percentages of CD19+ B cells and increased percentages of CD14+ monocytes were found in
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cancer patients’ PBMCs (Figure S1C,D). Moreover, decreased levels of IFN-γ, GM-CSF, IL-
1β, IL-7, IL-12, and IL-13 secretion were seen in cancer patients’ peripheral-blood derived
sera when compared to those from the healthy individuals (Figure S1E–J).

3.2. Suppressed NK Cell-Mediated Cytotoxicity and Secretion of IFN-γ by Cancer
Patients’ PBMCs

We next assessed the NK cell-mediated cytotoxicity against oral squamous carci-
noma stem cells (OSCSCs), and IFN-γ secretion from PBMCs obtained from cancer pa-
tients and healthy individuals. PBMCs were left untreated, treated with IL-2, or with
the combination of IL-2 and anti-CD16 mAbs, or with the combination of IL-2 and anti-
CD3/28 mAbs, or with the combination of IL-2 and probiotic bacteria sAJ2 before they
were used in 4 h chromium release assay (Figure 1A,D), or in ELISpot (Figure 1B,E), or
in ELISA (Figure 1C,F). Cancer patients’ PBMCs mediated significantly lower levels of
cytotoxicity against OSCSCs (Figure 1A,D), and secreted significantly lower amounts of
IFN-γ (Figure 1B,C,E,F). These findings indicated that cancer patients’ PBMCs exhibited
substantially lower cytotoxicity against cancer stem cells (CSCs) and decreased secretion of
IFN-γ in comparison to those from healthy individuals. Due to significant variability in
the results from day-to-day experiments, we selected to present the results from patient
and age/sex matched healthy donors as the representative experiment since they were
run on the same day using the same reagents, which is more representative of differences
observed (Figure 1A–C). We also compiled all the patients and healthy donor results in the
scatter plot, even though the variability is likely to mask the significant differences which
were seen between the patients and the healthy donors (Figure 1D–F).

3.3. Cancer Patients’ Monocytes Suppressed the Cytotoxic Activity of Both Autologous and
Allogeneic Healthy NK Cells, whereas Healthy Individuals’ Monocytes Increased Cytotoxic
Activity in NK Cells

To determine the functional interaction between NK cells and monocytes from can-
cer patients and those from the healthy individuals, we cocultured autologous and al-
logeneic NK and monocytes derived from cancer patients and healthy individuals. In
the absence of monocytes, NK cells from cancer patients exhibited decreased cytotoxic
function when treated with IL-2 alone (Figures 2A and S2A), or IL-2+anti-CD16 mAbs
(Figures 2B and S2B), or IL-2 + sAJ2 (Figures 2C and S2C). In the presence of cancer pa-
tients’ monocytes, the cytotoxic function was suppressed both in autologous and allogeneic
healthy NK cells when they were treated with IL-2 alone (Figures 2A and S2A), or with
IL-2 + anti-CD16 mAbs (Figures 2B and S2B), or with IL-2 + sAJ2 (Figures 2C and S2C)
when compared to that of NK cells in the absence of monocytes.

In the presence of healthy individuals’ monocytes, the cytotoxic function was increased
in autologous healthy NK cells when treated with IL-2 alone Figures 2A and S2A), or
IL-2 + anti-CD16 mAbs (Figures 2B and S2B) or IL-2 + sAJ2 (Figures 2C and S2C). However,
when healthy monocytes were cocultured with cancer patients’ NK cells, the cytotoxic func-
tion of NK cells was slightly suppressed when treated with IL-2 alone (Figures 2A and S2A)
and was increased when treated with IL-2 + anti-CD16 mAbs (Figures 2B and S2B) or
IL-2 + sAJ2 (Figures 2C and S2C) when compared to that of patient NK cells in the absence
of monocytes. Overall, these results indicated that cancer patients’ monocytes failed to
increase NK cell cytotoxicity both in patient and healthy NK cells.
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in functional assays. NK cell-mediated cytotoxicity of PBMCs was determined using standard 4 h 
51Cr release assay against OSCSCs. Lytic units (LU) 30/106 cells were determined using inverse num-
ber of PBMCs required to lyse 30% of OSCSCs × 100 (A,D). Number of cells secreting IFN-γ in 
PBMCs were determined as spot counts using ELISpot assay (B,E). Supernatants were harvested 
from PBMCs and the secretion of IFN-γ were determined using ELISA (C,F). A representative ex-
periment is shown in (A–C) and the data are presented as Mean ± SD. Compiled data are shown in 
(D–E) (n = 20 to 49), and the data are presented as Mean ± SEM. Student t tests were performed. *** 
(p value < 0.001), ** (p value 0.001–0.01), * (p value 0.01–0.05). 
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ity in NK Cells  

To determine the functional interaction between NK cells and monocytes from cancer 
patients and those from the healthy individuals, we cocultured autologous and allogeneic 
NK and monocytes derived from cancer patients and healthy individuals. In the absence 
of monocytes, NK cells from cancer patients exhibited decreased cytotoxic function when 

Figure 1. Peripheral blood mononuclear cells obtained from cancer patients exhibited lower NK
cell-mediated cytotoxicity and IFN-γ secretion. PBMCs were isolated from cancer patients’ and those
of the healthy individuals’ peripheral blood as described in Section 2. PBMCs were left untreated
or treated with IL-2 (1000 U/mL) or with a combination of IL-2 (1000 U/mL) and anti-CD16 mAbs
(3 µg/mL), or with a combination of IL-2 (1000 U/mL) and anti-CD3/28 mAbs (25 µL/mL), or with
a combination of IL-2 (1000 U/mL) and sAJ2 (PBMC:sAJ2, 1:20) for 18 h before using in functional
assays. NK cell-mediated cytotoxicity of PBMCs was determined using standard 4 h 51Cr release
assay against OSCSCs. Lytic units (LU) 30/106 cells were determined using inverse number of
PBMCs required to lyse 30% of OSCSCs × 100 (A,D). Number of cells secreting IFN-γ in PBMCs were
determined as spot counts using ELISpot assay (B,E). Supernatants were harvested from PBMCs and
the secretion of IFN-γ were determined using ELISA (C,F). A representative experiment is shown in
(A–C) and the data are presented as Mean ± SD. Compiled data are shown in (D–E) (n = 20 to 49),
and the data are presented as Mean ± SEM. Student t tests were performed. *** (p value < 0.001),
** (p value 0.001–0.01), * (p value 0.01–0.05).
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3 and S3), and secretion using ELISA (Figure 4). In the absence of monocytes, NK cells 
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Figure 2. Cancer patients’ monocytes suppressed cytotoxicity in NK cells, whereas increased cytotox-
icity in NK cells was seen when they were cultured with healthy individuals’ monocytes. NK cells
and monocytes of cancer patients and healthy individuals were isolated from PBMCs as described
in Section 2. NK cells and monocytes were treated with IL-2 (1000 U/mL) alone (A) or with a
combination of IL-2 (1000 U/mL) and anti-CD16 mAbs (3 µg/mL) (B), or with a combination of IL-2
(1000 U/mL) and sAJ2 (NK:sAJ2, 1:2) (C). Co-cultures of NK cells with autologous and allogeneic
monocytes from both the patient and healthy donor were performed. NK cell-mediated cytotoxicity
was measured after 18 h of coculture using standard 4 h 51Cr release assay against OSCSCs. Lytic
units (LU) of 30/106 cells were determined using inverse number of NK cells needed to lyse 30% of
target cells OSCSCs × 100. A representative experiment is shown in (A–C), and data are presented as
Mean±SD. Student t tests were performed to determine statistical significance. **** (p value < 0.0001),
*** (p value < 0.001), ** (p value 0.001–0.01), * (p value 0.01–0.05).

3.4. Cancer Patients’ Monocytes in Comparison to Healthy Individuals’ Monocytes Induced Lower
Increase in IFN-γ Secretion Both in Autologous and Allogeneic NK Cells

To assess cancer patients’ and healthy individuals’ monocyte-induced effect on NK cell-
mediated increase in IFN-γ secretion, we cocultured autologous and allogeneic NK and mono-
cytes and determined the number of IFN-γ spots using ELISpot assay (Figures 3 and S3), and
secretion using ELISA (Figure 4). In the absence of monocytes, NK cells from cancer patients
exhibited suppressed IFN-γ secretion when treated with IL-2 alone (Figures 3A,B, 4A and S3),
or IL-2 + anti-CD16 mAbs (Figures 3A,C, 4B and S3), but increased IFN-γ secretion in cancer
patients’ NK cells were seen when treated with IL-2 + sAJ2 (Figures 3A,D, 4C and S3). Al-
though the presence of both cancer patients’ and healthy individuals’ monocytes increased
IFN-γ secretion, the higher increase in IFN-γ secretion was seen by healthy individu-
als’ monocytes cultured with both autologous and allogenic NK cells in the presence
of IL-2 + anti-CD16 mAbs treatment when compared to that of IL-2 treatment alone.
(Figures 3A–C and 4A,B). Treatment with IL-2 + sAJ2 increased the IFN-γ secretion in both
patients and healthy individuals’ NK cells. Likewise, increased levels of IFN-γ were seen
when IL-2+sAJ2 treated NK cells were cultured with either cancer patients’ or healthy
individuals’ monocytes (Figures 3A,D and 4C). Lower IFN-γ secretion was seen in patient
NK cells alone or in the presence of monocytes when secretion levels were determined
using multiplex luminex assay (Table S4). Collectively, these findings indicated that cancer
patients’ monocytes have lower NK activating capacity to secrete IFN-γ when compared to
those from healthy individuals.
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Figure 3. Cancer patients’ monocytes in comparison to healthy individuals’ monocytes are less
capable of inducing IFN-γ secretion by autologous and allogeneic healthy NK cells. NK cells and
monocytes of cancer patients and those of the healthy individuals were isolated from PBMCs as
described in Section 2. NK cells and monocytes were treated with IL-2 (1000 U/mL) alone (A,B) or
with a combination of IL-2 (1000 U/mL) and anti-CD16 mAbs (3 µg/mL) (A,C) or with a combination
of IL-2 (1000 U/mL) and sAJ2 (NK cells:sAJ2, 1:2) (A,D). Co-cultures of NK cells with autologous
and allogeneic monocytes from both the patient and healthy donor were performed. After 18 h of
coculture, number of IFN-γ secreting cells were determined using ELISpot assay as spot counts. A
representative experiment is shown in (A). Compiled data are shown in (B–D) (n = 11 to 28), and data
are presented as Mean ± SEM. Student t tests were performed to determine statistical significance.
*** (p value < 0.001), ** (p value 0.001–0.01), * (p value 0.01–0.05).
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patients and those of the healthy individuals were isolated from PBMCs as described in Section 2.
NK cells and monocyte were treated with IL-2 (1000 U/mL) alone (A), or with a combination of IL-2
(1000 U/mL) and anti-CD16 mAbs (3 µg/mL) (B), or with a combination of IL-2 (1000 U/mL) and
sAJ2 (NK cells:sAJ2, 1:2) (C). Co-cultures of NK cells with autologous and allogeneic monocytes
from both the patient and healthy donor were performed. After 18 h of coculture, supernatants were
harvested and used in ELISA to measure IFN-γ secretion. A representative experiment is shown, and
data are presented as Mean ± SD. Student t tests were performed to determine statistical significance.
**** (p value < 0.0001), *** (p value < 0.001), ** (p value 0.001–0.01), * (p value 0.01–0.05).

3.5. Cancer Patients’ NK Cells when Cocultured with Healthy Monocytes and Treated with sAJ2
Induced Higher IFN-γ and Elevated Surface Receptor Expressions Associated with the
Differentiation of Tumor Cells

As previously described, NK cells play important roles in differentiating CSCs, leading
to slower tumor growth, and decreased tumor metastasis [26,46]. Therefore, we cocultured
autologous and allogeneic NK and monocytes and used their supernatants to differentiate
OSCSCs. The surface expressions of CD54 and MHC-class I were determined on the surface
of oral tumors three days after treatment with the supernatants. We observed higher surface
expression of CD54 (Figures 5A and S4A), and MHC-class I (Figures 5B and S4B), when
cocultures were treated with IL-2 + sAJ2 in comparison to IL-2 alone or IL-2 + anti-CD16
mAbs. Also, higher surface expressions of CD54 (Figures 5A and S4A), and MHC-class I
(Figures 5B and S4B) on tumor cells were found when supernatants from both healthy
and patient NK cells cultured with healthy monocytes were used to differentiate tumors
in comparison to using patient monocytes. Next, we determined the ratios of the density
of surface expressions for CD54 and MHC class I (as represented by MFI) in anti-CD16
mAbs or sAJ2 treated NK cells in the presence and absence of autologous and allogeneic
monocyte cocultures treated with and without sAJ2 (Figure 5C,D). The fold change in the
expression levels between NK cells alone and those cultured with the monocytes when
autologous patient NK cells are used in the cocultures after activation with IL-2 and anti-
CD16 mAbs (1.16-fold for CD54 expression and 1.2-fold for MHC-class I expression) was
much less when compared to that of NK cells and autologous monocyte cocultures from
healthy individuals (1.74-fold increase for CD54 and 1.8 for MHC-class I) (Figure 5C,D).
Addition of sAJ2 to cocultures highly improved the fold change between NK cells alone
and those cultured with monocytes between patients and healthy individuals (1.7-fold
change for CD54 and 2.2-fold change for MHC-class I expression in patient cocultures
vs. 2.0-fold change for those from healthy individuals for CD54 expression, and 1.55-fold
change for MHC-class I for those from healthy individuals) (Figure 5C,D). The addition
of monocytes from healthy individuals to patient NK cells increased the levels of IFN-γ
secretion and augmented the levels of differentiation in OSCSCs (Figures 3–5). Supernatants
from patient monocytes cultured with healthy NK cells demonstrated decreased ability
to differentiate tumor cells, when compared to those from healthy NK cells cultured with
autologous monocytes; however, the levels of tumor differentiation were higher when
compared to autologous patient NK cocultures with monocytes (Figure 5). Therefore, either
the addition of monocytes from the healthy individuals to patient NK cells or treatment of
patient NK cells with autologous monocytes with sAJ2 improved patient NK cell-mediated
differentiation of tumor cells substantially.
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Figure 5. Supernatants harvested from autologous cancer patients’ NK and monocytes coculture
treated with IL-2 + sAJ2 induced higher differentiation of oral squamous carcinoma stem cells
(OSCSCs) in comparison to those treated with IL-2 alone or IL-2 + anti-CD16 mAbs. OSCSCs
differentiation assay were conducted as described in Section 2 using supernatants collected from NK
cell and monocyte coculture experiment. Surface expression of CD54 (A) and MHC-class I (B) on
supernatant treated OSCSCs were determined using flow cytometry. MFI are shown in figures
(A,B). MFI ratio of (Nk+monocyte/NK) for CD54 (C) and MHC-class I (D) surface expression were
determined after treatment of tumor cells with supernatants collected from IL-2 + anti-CD16 mAbs
or IL-2 + sAJ2-treated cells. One of two representative experiments is shown in this figure.

3.6. Decreased CD16 Surface Expression on Monocytes Obtained from Cancer Patients

To further understand the mechanism contributing to decreased monocyte-induced
NK cell activation, we next determined the levels of CD16 surface expression on CD14+
monocytes of healthy individuals and those of the cancer patients using flow cytometry.
There was a slight decrease in the percentages of CD16-positive monocytes in cancer pa-
tients (Figure 6A,B); however, even though all monocytes from cancer patients exhibited
some CD16 membrane expression, the intensity and levels of expression were significantly
lower in patient monocytes when compared to those from healthy individuals, as evi-
denced by significantly decreased mean channel fluorescence (MFI) (Figure 6A,C). We
also determined HLADR, CD33, and CD11b surface expression on CD14+ monocytes and
found lower HLADR, higher CD33, and similar levels of CD11b surface expressions on
patient monocytes in comparison to those of healthy monocytes (Figure S5). Thus, lower
expression of CD16 and HLADR surface receptors were observed on patients’ monocytes
when compared to those from healthy individuals.
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Figure 6. Monocytes obtained from cancer patients exhibited lower CD16 surface receptor expression.
Monocytes of cancer patients (n = 5) and healthy individuals (n = 10) were isolated from PBMCs as
described in Section 2. Surface expression of CD16 within CD14+ population was determined using
flow cytometry. One representative experiment is shown in (A). Compiled experiments are shown in
(B,C), and data are presented as Mean ± SD. Student t tests were performed to determine statistical
significance. ** (p value 0.001–0.01).

3.7. Increased IFN-γ Secretion, and NK Cell-Mediated Cytotoxicity in Cancer Patients’ Peripheral
Blood-Derived NK Cells in Response to AJ2 Oral ingestion

After four weeks of oral ingestion of AJ2 probiotic bacteria (125 billion CFU/capsule:
three capsules per day) NK cells from pancreatic cancer patients demonstrated increased IFN-
γ secretion (Figures 7A and S6A,C), and NK cell-mediated cytotoxicity (Figures 7B and S6B) in
peripheral blood-derived NK cells. Significantly decreased NK cell function was observed
before AJ2 ingestion in cancer patients (Figure S6A,B). Indeed, the fold difference in the NK-
mediated IFN-γ secretion between healthy and patient before oral supplementation was
very high at 2.9-fold, whereas after supplementation the difference became much less at 1.2-
fold (Figure 7A). The fold difference in the NK cell-mediated cytotoxicity between healthy
and patient before oral supplementation was 2.7-fold, whereas after supplementation it
was 1.4-fold (Figure 7B). Therefore, AJ2 resulted in improvement of IFN-γ secretion and
cytotoxicity by the NK cells in cancer patients.
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healthy individuals were treated with IL-2 (1000 U/mL) for 18 h before supernatants were harvested
to determine IFN-γ secretion using ELISA (Pre-AJ2). Cancer patients were on oral supplementation of
AJ2 for four weeks before we analyzed their NK cells. NK cells were treated with IL-2 (1000 U/mL) for
18 h before supernatants were harvested to determine IFN-γ secretion using ELISA (Post-AJ2). Ratio
of secreted IFN-γ between healthy and patient NK cells were determined at pre- and post-AJ2 oral
supplementation (n = 4) (A). Freshly purified NK cells (1 × 106 cells/mL) from cancer patients and
those of the healthy individuals were treated with IL-2 (1000 U/mL) for 18 h before they were used as
effectors in cytotoxicity against OSCSCs using standard 4 h 51Cr release assay. LUs were determined
as described in Figure 2. (Pre-AJ2). Cancer patients were on oral supplementation of AJ2 for four
weeks before analysis of their NK cells. NK cells were treated with IL-2 (1000 U/mL) for 18 h before
they were used as effectors in cytotoxicity against OSCSCs using standard 4 h 51Cr release assay. LUs
were determined as described in Figure 2. (Post-AJ2). Ratio of cytotoxicity between healthy and
patient NK cell-mediated cytotoxicity were determined at pre- and post-AJ2 oral supplementation in
cancer patients (n = 4) (B). **** (p value < 0.0001), * (p value 0.01–0.05).

4. Discussion

Previous studies from our laboratory and those of the others demonstrated defects
in NK cell function in cancer patients (Supplementary Table S2); however, the underlying
mechanisms for such defects was not clearly delineated, nor is it known whether other
immune effectors such as monocytes that are known to activate NK cells are also defective
in their function in cancer patients [7,47]. Therefore, in this paper, we show that NK cell-
mediated cytotoxicity and induction of IFN-γ in PBMCs of cancer patients are significantly
defective when compared to those obtained from healthy donors. Although the defect
can be seen in most in-vitro treatments tested including those triggered by IL-2 or the
combinations of IL-2 with anti-CD16 mAbs, or IL-2 with anti-CD3/28 mAbs or IL-2 with
sAJ2 in PBMCs, the most significant defect was seen in those treated with IL-2 and anti-
CD16 mAbs, and the least in those treated with IL-2 and sAJ2. Since we previously observed
decreased expression of CD16 on patient NK cells [46] and significant differences in the
function of PBMCs when they were activated with IL-2 and anti-CD16 mAbs, we undertook
studies to understand the underlying mechanisms of the insufficient NK cell activation
by anti-CD16 mAbs. We purified peripheral blood NK cells and studied their functions
following cocultures with autologous and allogeneic monocytes obtained from cancer
patient and those of the healthy individuals in the presence of IL-2 and anti-CD16 mAbs
activation and compared the effect to those activated with IL-2 and sAJ2. As presented in
the Section 3, the levels of cytotoxicity were decreased when cancer patients’ or healthy
individuals’ NK cells were cultured in the presence of patient monocytes, as compared to
those of healthy monocytes in a representative experiment. However, when we compiled
the data from different donors, the differences were less dramatic, but the patterns remained
consistent in the presence of IL-2 treatment. This is likely due to the large variability we
see in the values between the donors and due to experimental procedures performed on
different days. Interestingly, treatment with sAJ2, unlike anti-CD16 mAbs, maintained
higher NK cell-mediated cytotoxicity in the patient and healthy NK cells cultures with
both patient and healthy monocytes. Healthy and patient NK cells in the presence of
healthy monocytes generally had higher cytotoxicity, when compared to those cultured
with patient monocytes and treated with IL-2 or IL-2 with anti-CD16 mAbs. However, the
experimental conditions were optimized to observe the differences between NK cultures
with monocytes and not NK cells alone. Treatment with anti-CD16 mAbs induced split
anergy in NK cells, leading to decreased cytotoxicity in the presence of increased IFN-γ
secretion [48]. Furthermore, sAJ2 treatment maintained or increased cytotoxicity, especially
in patients’ NK cells with autologous and allogeneic monocytes. This could be due to
internalization or shedding of CD16 receptors, as compared to toll-like receptors (TLR).
We previously hypothesized and showed that decreases in CD16 receptors and inhibition
of NK cell-mediated cytotoxicity could be a physiological programming for NK cells to
switch their phenotype from CD16bright/+ to CD16low/− to increase secretion of IFN-γ and
TNF-α, while decreasing their cytotoxicity to differentiate tumor cells that were selected
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by the NK cells [4]. Such physiological conditioning of NK cells is not only important
for defense against infections, trauma, and other injuries, but also against tumor cells. By
increasing differentiation of tumors, this change in the phenotype of the NK cells can lead
to growth inhibition of tumor cells and lower rate of tumor expansion, while increasing
tumor susceptibility to a number of other therapeutic strategies, such as chemotherapy,
radiotherapy, effect by checkpoint inhibitors, and T cell-mediated effects. The downside of
such NK conditioning is the potential survival of some differentiated tumors since these
tumors are not targeted or killed by the primary NK cells; however, such tumors should be
killed by CD8+ T cells, since they exhibit higher levels of MHC-class I surface expression.

When cultured with monocytes, NK cells also either decrease, maintain the same level,
or in very few cases slightly increase the lysis of tumor cells [7]; however, they always
substantially increase the levels of induction and secretion of IFN-γ. Indeed, the only
time an increase in NK cell-mediated cytotoxicity by monocytes was seen was when the
cocultures were treated with sAJ2; however, the differences were not statistically significant.
Therefore, monocytes can also be regarded as important effectors in inducing split anergy
in NK cells as a mechanism to drive differentiation of tumor cells.

Our results demonstrate that patient monocytes induced lower levels of IFN-γ spots,
as well as IFN-γ secretion, when cultured with autologous or allogeneic NK cells in ELISpot
and ELISA assays, respectively. Monocytes from healthy individuals induced higher levels
of IFN-γ spots in cultures with both autologous and allogeneic NK cells from patients.
Therefore, monocytes obtained from healthy individuals were capable of increasing and
restoring the IFN-γ induction of patient NK cells in IL-2 or IL-2 and anti-CD16 mAbs-treated
groups. Thus, infusing allogeneic monocytes from healthy individuals to cancer patients
could be another strategy to increase patient NK cell function. Interestingly, treatment with
sAJ2 was also able to increase and restore IFN-γ induction in patient NK cells cultured with
autologous monocytes. On average, the differences between patient NK cells cultured with
either healthy or patient monocytes and healthy NK cells cultured with patient and healthy
monocytes when treated with sAJ2 as opposed to anti-CD16 mAbs were very slight when
assessed using the ELISpot assay. In agreement with the much-improved results seen in
patient NK cells when they were treated with sAJ2 in the presence of monocytes, patients
after ingesting AJ2 probiotic bacteria exhibited improved NK cell-mediated cytotoxicity and
secretion of IFN-γ when compared to those from healthy individuals (Figures 7 and S6).
Whether such improved profiles of NK cell-mediated cytotoxicity and secretion of IFN-γ in
patients have long lasting effect on disease reversal or delay in disease progression requires
further studies.

We previously established that differentiated OSCSC tumors express higher levels of
CD54, MHC-class I, and B7H1, but lower levels of CD44 (Supplementary Table S3) [48]. We
also showed that equal amounts of IFN-γ secreted from patients’ NK cells as opposed to
those from healthy individuals have much lower ability to increase differentiation of tumor
cells demonstrating defect in the function of secreted IFN-γ by patients’ NK cells [29]. Thus,
we sought to determine the functional ability of IFN-γ produced by patient NK cells in
comparison to those obtained from healthy individuals in the presence and absence of
autologous and allogeneic monocytes. Similar to the profiles obtained by ELISpot and
ELISA, we saw decreased levels of induction of CD54 and MHC-class I on tumor cells
by supernatants of patients as compared to those from the healthy individuals when the
NK cells were treated with the combination of IL-2 and anti-CD16 mAbs. As mentioned
above, CD54 and MHC-class I are the markers of tumor differentiation that we established
previously in a great number of papers (Supplementary Table S3) to correlate with the NK
cell-mediated differentiation of tumors. Indeed, the fold change in the expression levels
between NK cells alone and those cultured with the monocytes when autologous patient
NK cells are used in the cocultures after activation with IL-2 and anti-CD16 mAbs was
much less when compared to NK cells and autologous monocyte cocultures from healthy
individuals. Addition of sAJ2 to cocultures highly improved the fold change between NK
cells alone and those cultured with monocytes between patients and healthy individuals.



Cells 2022, 11, 697 14 of 18

The addition of monocytes from healthy individuals to patient NK cells increased the levels
of IFN-γ secretion and augmented the levels of differentiation in OSCSCs. Supernatants
from patient monocytes cultures with healthy NK cells demonstrated decreased ability
to differentiate tumor cells when compared to those from healthy NK cells cultured with
autologous monocytes; however, the levels of tumor differentiation were higher when
compared to autologous patient NK cocultures with monocytes. Therefore, either the addi-
tion of monocytes from the healthy individuals to patient NK cells or supplementation of
patient NK cells with autologous monocytes with sAJ2 improved patient NK cell-mediated
differentiation of tumor cells substantially. The effect of sAJ2 on the cultures of NK cells
with monocytes is different from those of CD16-mediated effects in patients, since it appears
that treatment with anti-CD16 mAbs either does not improve or improves only moderately
the differentiation markers of tumors by IFN-γ from the patients’ NK/monocyte cocultures,
when compared to those from healthy individuals. At present it is not clear whether the
ineffectiveness of CD16-mediated effect in patient NK/monocyte cocultures is unique to
CD16 or other key NK/monocyte receptors are equally defective in their function. There-
fore, the decreased capacity of NK cells to differentiate tumors should be regarded as one
of the major causes of survival and expansion of poorly differentiated tumors in cancer
patients, since lack of adequate differentiation of the tumors will allow the survival and
expansion of poorly differentiated tumors and promotion of metastasis. Indeed, it is possi-
ble that what is known by dormant tumor niches in different organs are the consequences
of immune cell function such as NK cells in increased differentiation of these tumors [49].
Thus, treatment with sAJ2 may partly serve to restore the loss in ability of patient NK cell
derived IFN-γ to differentiate tumors. In addition, higher increase in MHC-class I on tumor
cells with the supernatants from the combination of sAJ2 treated NK-monocyte cocultures
not only decreases the proliferation and expansion of differentiated tumors, but also these
tumors are likely to regulate the function of NK cells by inhibiting additional signaling,
potentially leading to cessation of inflammation, which allows NK cells to recover from
over activation. Whether the secreted IFN-γ in patients is complexed by its shed receptors
or that IFN-γ is bound to an inhibitor to prevent their differentiation function in patients
requires future investigation.

We next determined the levels of CD16 receptors on monocytes and found that CD16
receptor expression was significantly decreased on the surface of patient monocytes, when
compared to those of healthy individuals. Downmodulation and/or shedding of CD16
receptors from NK cells [46] compounded with the same effects in monocytes may present
one of the underlying mechanisms of dysfunction in NK cells. Currently, we are in the
process of delineating the role of such downmodulation in the function s of NK cells.

Ingestion of AJ2 by patients demonstrated improvement in the NK function both
in terms of IFN-γ secretion as well as NK cell-mediated cytotoxicity after four weeks of
consumption. Increased function of NK cells seen both in in vitro and in vivo studies points
to the significance of bacteria-mediated increase in immune activation, and restoration
of immune function in patients. Whether longer consumption of probiotic bacteria will
maintain increased NK function requires future studies. In addition, we showed in vivo
previously in the humanized-BLT mouse model that the ingestion of AJ2 probiotic bacteria
increased NK cell function and correlated with the decrease or elimination of oral and
pancreatic tumors [25,26].

We previously found that monocytes are one of the major cell types in imparting
resistance to cell death in tumor cells [50]. This observation is of utmost significance, since
depending on which cell type monocytes initially interact with, i.e., immune cells or the
tumor cells, the fate of the tumor cells may be different. If they interact with the competent
NK and T cells, it is likely monocytes will increase the functional capabilities of immune
cells to target the tumor cells. However, if monocytes interact with tumor cells, they may
elevate tumor resistance to NK and T cell-mediated cell death. Therefore, elevation in
monocyte expansion in the absence of NK or T cell expansion and function in cancer
patients may be detrimental since there may be a greater chance of monocytes to interact
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with tumor cells than the immune cells, which will likely cause the resistance and survival
of tumor cells. Indeed, NK cells are not only activated by monocytes, but during such
interaction they also eliminate these cells. Therefore, it is imperative to have great numbers
of functionally competent NK cells to bind to and interact with monocytes, since such NK
cells will not only eliminate the cancer stem cells/poorly differentiated tumors, but also
eliminate monocytes and do not allow them to interact with tumors directly within the
tumor microenvironment. If the number of monocytes rise in patients in the presence of
decreased numbers of functionally competent NK and T cells, this could be a troubling
sign since monocytes may end up aiding the tumors to survive instead of helping NK
or CD8+ T cells to increase their respective functions. Indeed, we observed such profiles
in terminally ill cancer patients at the later stages of cancer progression [51]. Therefore,
the roles of NK cells are several fold within the tumor microenvironment. Such complex
interactions within the tumor microenvironment and peripheral blood of patients are the
focus of our future studies to predict clinical outcomes in cancer patients.
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Abbreviations

ADCC Antibody-dependent cellular cytotoxicity
CSCs Cancer stem cells
ELSIAs Enzymatic-linked immunosorbent assays
ELISpot Enzymatic-linked immunospot assay
IFN-γ Interferon-gamma
LU Lytic unit
MHC-Class I Major histocompatibility complex molecule class I
NK cells Natural killer cells
OSCSCs Oral squamous cancer stem cells
PBMCs Peripheral blood mononuclear cells
rhIL-2 Recombinant human IL-2
sAJ2 Sonicated AJ2
TNF-α Tumor necrosis factor-alpha
TAMs Tumor-associated macrophages
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