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Abstract

Social media has made it possible to manipulate the masses via disinformation and fake

news at an unprecedented scale. This is particularly alarming from a security perspective,

as humans have proven to be one of the weakest links when protecting critical infrastructure

in general, and the power grid in particular. Here, we consider an attack in which an adver-

sary attempts to manipulate the behavior of energy consumers by sending fake discount

notifications encouraging them to shift their consumption into the peak-demand period.

Using Greater London as a case study, we show that such disinformation can indeed lead to

unwitting consumers synchronizing their energy-usage patterns, and result in blackouts on

a city-scale if the grid is heavily loaded. We then conduct surveys to assess the propensity

of people to follow-through on such notifications and forward them to their friends. This

allows us to model how the disinformation may propagate through social networks, poten-

tially amplifying the attack impact. These findings demonstrate that in an era when disinfor-

mation can be weaponized, system vulnerabilities arise not only from the hardware and

software of critical infrastructure, but also from the behavior of the consumers.

Introduction

Social media has dramatically altered the ways in which conflicts are fought. By allowing bellig-

erents to command the public narrative, these technologies have created a paradigm wherein

the most viral information can influence the outcome of wars [1]. This phenomenon has been

exacerbated by social media algorithms that value virality over veracity [2, 3]. Unsurprisingly,

many notable skirmishes in recent years have used disinformation to manipulate peoples’

behavior [1, 4]. Such campaigns have become particularly effective due to the ever-increasing

prevalence of big data and machine learning techniques that allow the behavioral patterns of

the masses to be analyzed with unprecedented precision. Among the clearest manifestations of

such campaigns are the alleged Russian interference into the 2016 US presidential election and

the Brexit referendum [5, 6]. These incidents suggest that the microtargeting capabilities pro-

vided by companies such as Cambridge Analytica [7] can be weaponized [8] to influence the
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long-term decisions of a society. While many studies have analyzed campaigns targeting long-

term social behavior manipulation [2, 9–12], little attention has been given to targeted attacks

that use disinformation as a weapon to manipulate social behavior within a limited time span.

One particularly sensitive target that is vulnerable to behavioral manipulation is critical

infrastructure, the attack of which may have drastic implications nationwide. For instance,

despite high levels of security, human operators proved to be the weakest link during the Stux-

net attack on the Iranian nuclear program, unwittingly introducing malware into the facilities

[13, 14]. Another attack of this kind that drew concern from governments worldwide was the

Ukrainian power grid cyberattack of 2015 [15, 16]. In this incident, attackers deliberately cut

off the power supply for 230,000 residents for several hours using operator credentials har-

vested through one particular form of disinformation, namely, spear-phishing [17].

In this study, we focus on the power grid—a choice motivated by the devastation caused by

historical power outages including human casualties and massive financial losses [18–20]. Yet,

while numerous blackout prevention and mitigation strategies have been proposed in the liter-

ature [21–32], the link between disinformation and blackouts has never been studied to date.

Driven by this observation, we seek to answer the following question: can an adversary bring

down a city’s power grid using disinformation without any physical or cyber intrusions? The

main contribution of this analysis is to assess whether an adversary could attack the power

distribution system not by targeting its hardware or software infrastructure, but by focusing

entirely on manipulating individual consumers’ behavior.

The rest of the paper is organized as follows. We begin by describing the mechanism of a

disinformation attack on the power grid, and then evaluate the impact of such an attack con-

sidering the distribution network of the Greater London area as a case study. Subsequently, to

quantify the risk posed by disinformation attacks, we perform analyses to estimate what disin-

formation follow-through rates could be achieved by an adversary in reality. We conclude by

highlighting the implications of our study.

Attack impact on the power grid

We consider an attack in which an adversary attempts to manipulate the behavior of citizens

by sending fake discount notifications encouraging them to shift their energy consumption

into the peak-demand period. Such a shift may result in the tripping of overloaded power

lines, leading to blackouts (see Methods). An overview of this attack and the disinformation

message are shown in Fig 1. Ultimately, the success of such an attack depends on the follow-
through rate, i.e., the fraction of people who behave as intended by the attacker. We analyze

the impact caused by such behavioral manipulation on the power grid. To this end, we mod-

eled the power grid of Greater London (see S1 Note in S1 File) and simulated the behavior of

residential energy consumers. Importantly, our model considers residential electric vehicle

(EV) adoption since the owners of such EVs control a substantial amount of deferrable energy,

and thus can cause greater harm when manipulated by an adversary. We vary the EV adoption

level in the city, and model the capacity upgrades that are necessary for the grid to support

the demand corresponding to each such level [33–35]; see Methods. Note that although the

EV charging demand is only one component of the total deferrable demand, it nevertheless

accounts for a significant part of the latter. Therefore, in the following analysis, we use increas-

ing EV adop-tion level as a synecdoche for the increasing amount of deferrable demand in the

grid.

We consider a scenario where the grid is heavily loaded and any distribution line can sus-

tain at a maximum a 10% increase in the peak demand through it (see Methods). Fig 2a pres-

ents the percentage of consumers who experience a blackout given varying follow-through and
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EV adoption rates. As can be seen, increasing the EV adoption up to 20% increases the system

vulnerability to the attack, whereas beyond 20% the system resilience increases, i.e., it requires

a greater follow-through rate to achieve the same attack magnitude. This trend is caused by

two opposing forces: (i) increased vulnerability due to the consumers controlling more defer-

rable energy, and (ii) increased resilience due to the grid’s upgraded capacity to cope with the

Fig 1. An overview of a disinformation attack on the power system. Illustrating how the disinformation attack is launched from an attacker, thereby altering the energy

consumption patterns of a portion of the population. Importantly, not every recipient follows-through on the notification.

https://doi.org/10.1371/journal.pone.0236517.g001

Fig 2. Impact of an attack on the power distribution network of Greater London. a: The percentage of consumers suffering from

a blackout as a result of the attack given different follow-through rates and EV adoption rates. The figure also highlights the columns

corresponding to projected EV adoption rates for the UK in the years 2020, 2030, 2040, and 2050. b: Visualization of the status of

every power distribution line in the system for a follow-through and EV adoption rates of 0.17 and 0.20, respectively. Grey indicates

active lines, whereas red indicates lines that have tripped as a result of overloading. c: The same as (b), but for follow-through and EV

adoption rates of 0.12 and 0.20, respectively.

https://doi.org/10.1371/journal.pone.0236517.g002
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increased number of EVs. When the EV adoption is smaller than or equal to 20%, the former

force outweighs the latter, and hence we see an increase in the system vulnerability. The oppo-

site is true when the EV adoption exceeds 20%, leading to the observed increase in resilience.

Next, to get a sense of the distribution of the blackout across the city, we depict the state of

the system corresponding to two different cells in the heat map; see Fig 2b and 2c. As can be

observed, the impact is dispersed throughout the city rather than being concentrated in very

few massive pockets.

We then study how the grid’s vulnerability depends on the peak overloading capacity of the

distribution lines. Say the overloading capacity is increased from 10% to 15%. Simulating the

system for follow-through and EV adoption rates of 0.17 and 0.20 respectively, we find that the

attack results in only 5.9% of consumers being offline. This is in contrast to 35.4% of consum-

ers that were affected by the blackout when the line capacity was 10% (see Fig 2b). Further

increasing the overloading capacity to 20% reduces the size of the blackout to 1.4% of the con-

sumers. The heat maps corresponding to these scenarios are presented in S2 Note in S1 File.

To obtain more insight, we analyze the grid in terms of the line capacity upgrades that are nec-

essary to support increasing EV adoption. The results shown thus far are for the case where,

for any given EV adoption rate, the grid is assumed to be upgraded to support exactly that rate.

However, if the grid is upgraded to support more than this rate, the impact of the attack will be

substantially alleviated, and vice versa. Taking the year 2025 as an example, if by then the grid

was not upgraded since 2020, then a mere 5% follow-through rate can bring the grid down

completely. On the other hand, if the grid in 2025 was upgraded to support the projected EV

adoption until 2030, then even a 100% follow-through rate would cause a blackout for less

than 20% of the residents. These results highlight the need for future grid upgrades to not only

be dictated by the technical aspects governed by physical laws, but also consider the behavioral

aspects of the consumers who may act unpredictably and irrationally, especially when sub-

jected to disinformation. However, since grid upgrades come at a high cost to the power utility

[35], perhaps a more realistic solution would be to focus on increasing the awareness of the

consumers and immunizing them against disinformation.

Estimating disinformation follow-through

Having assessed how the power grid is affected by the consumers who follow-through on

the fake notification, we now estimate what follow-through rates could be achieved by an

attacker in reality. Here, the social aspect could play an important role, since people may

unknowingly amplify the attack by forwarding the disinformation notification to their

friends; see Fig 3a for an illustration. (Note that the term “friend” is borrowed from the

context of social media to refer to any “acquaintance”.) In this context, Goel et al. [36] ana-

lyzed a billion diffusion events, and found that (dis)information is unlikely to become viral
through social media, since the vast majority of the studied events terminated either right

after the initial broadcast itself, or after a single step of propagation through social media.

As such, assuming that the attack considered here has similar limitations, our analysis con-

siders only a single step of propagation, whereby the initial recipients of the notification

consider forwarding it to some of their friends.

To model the spread of disinformation, we use two standard models of influence propaga-

tion, namely, independent cascade [37], and linear threshold [38]. In both models, a person

may receive the same notification from more than one friend, but the main difference between

the two models lies in the way in which that person is influenced by such repeated exposure to

the notification. In the independent cascade model, every exposure has an independent proba-

bility to persuade the recipient to modify their behavior—these probabilities constitute the
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main parameters of the model. In contrast, each person in the linear threshold model has a

“threshold” specifying the number of exposures required for them to modify their behavior—

these thresholds constitute the main parameters of the model; see Methods for more details. In

our simulations, the values of these parameters cannot readily be taken from existing studies

since the diffusion models had to be modified to accommodate the specifics of our scenario;

Fig 3. Attack diffusion. a: An illustration of how disinformation can propagate through a social network. b: The

disinformation notifications shown to participants in different conditions, which vary depending on whether or not

the notification contains an external link, and whether the sender is a stranger (assumed to be the attacker who uses

spoofing services to mask the sender as SMSAlert) or a friend (named John Smith in the survey). c: Given different

percentages of initial recipients (10%, 20% and 30%), and different values of k (representing the number of friends to

whom each recipient considers forwarding the notification), the subfigures depict the follow-through rates after a

single step of propagation in social networks consisting of 1 million individuals. The networks were generated using

four network models: Barabási-Albert (BA), Erdős-Rényi (ER), Watts-Strogatz (WS), and Newman Configuration

(NC). The propagation is simulated using two influence propagation models: independent cascade (IC) and linear

threshold (LT). The participants’ propensities to follow-through or forward the notification (which were reported on a

Likert scale from 0 to 10) were mapped to actually probabilities (from 0 to 1) using three functions: linear, squared, and

cubic. Results are shown for two cases, one where the notification contained an external link (marked as an ‘X’ in the

subfigures), and one where it did not (marked as an ‘O’).

https://doi.org/10.1371/journal.pone.0236517.g003
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see Methods. One possible way to determine the parameters of our models is to use random

values, but the resulting model may be unrealistic. Arguably, a more realistic model would be

one whose parameters are determined based on survey responses.

Driven by this observation, we surveyed 5,124 participants who were recruited through

Amazon Mechanical Turk. Specifically, the participants were shown a message notifying them

of a discount of 50% in their electricity rate from 8PM to 10PM. They were then asked to spec-

ify the likelihood of them changing their electricity-use patterns to take advantage of this dis-

count, and the likelihood of them forwarding this message to their friends. We tested two

factors that may influence the behavior of the participants: (i) the notification sender, and (ii)

the notification content. As for the first factor, while such notifications are typically received

from the power utility, we analyzed the cases when they are instead received from either a

stranger or a friend. We considered these two possibilities since some people may receive the

spoofed message directly from the attacker (who is a stranger to them), while others may

receive it indirectly through friends who forward it to them. As for the second factor—the

notification content—we analyzed two variants: one where the discount can only be availed by

clicking on an external link, and another where the discount is unconditional. This manipula-

tion allows us to understand the differences, if any, between the context of phishing and spam

attacks—which require the recipients to click on an external link embedded in the message—

and the context of our disinformation attack—where no such link is necessary. Accordingly,

the participants were randomly assigned to one of four conditions: (i) receive a notification

with a link from a stranger; (ii) receive a notification without a link from a stranger; (iii)

receive a notification with a link from a friend; (iv) receive a notification without a link from a

friend. The corresponding messages that were displayed to participants are depicted in Fig 3b.

They were then asked questions to determine how they would react to these messages. Here,

participants were further split into two groups depending on the influence model being stud-

ied, since the parameters of each model require the questions to be framed differently. The

complete survey along with a summary of the results is provided in S3 Note in S1 File.

The research was approved by the Institutional Review Boards of the New York University

Abu Dhabi (#025-2019) and the National University of Singapore (ref. S-19-162), and all

research was performed in accordance with the relevant guidelines and regulations. Written

informed consent was obtained from all survey participants.

Admittedly, the survey instrument is not ideal, as the respondents’ behavior in a real-life sit-

uation may not be exactly what is reported in the survey. Nevertheless, it provides important

clues to how participants may behave in reality. For example, consider two arbitrary partici-

pants p1 and p2 that state their follow-through propensity to be n1 and n2, respectively, such

that n1 > n2. It seems reasonable to assume that, in a real-life situation, p1 is more likely to fol-

low-though than p2. Otherwise, it would be strange to claim that, on average, those who state a

greater propensity in the survey are less likely to follow-through in real-life. As such, while

the participants’ actual propensity is unknown to us, it seems reasonable to claim that there

exists some monotonic function that maps the participants’ stated propensity to their actual

(unknown) probability to either follow-through or forward the notification. An intuitive can-

didate for this is a linear mapping function that translates the participants’ response on a Likert

scale from 0 to 10 to the corresponding probability in [0, 1], e.g., if a participant states that

their propensity is “5”, then their probability to follow-through is simply 50%. In addition to

the linear mapping, we also consider squared and cubic alternatives (see Methods), which pro-

vide more conservative estimates to reflect the fact that survey participants may over-report

their propensity to follow-through or forward the notification, e.g., given a participant who

reports their willingness to follow-through to be 5 out of 10, the cubic mapping implies that

their probability of following in real-life is only 12.5%.
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Next, the probabilities obtained from the survey were used to evaluate the overall follow-

through rates that could be achieved by an attacker. To this end, we conducted simulations

on 100 randomly generated networks based on four network models—Barabási-Albert [39],

Erdős-Rényi [40], Watts-Strogatz [41], and Newman Configuration [42]—with each network

consisting of 1 million nodes (see S4 Note in S1 File). For each node in a network, its probabil-

ity to follow-through and forward the notification is set to match that of a randomly-chosen

survey participant. Within our simulations, nodes that receive the notification forward it to

k of their friends with a probability that corresponds to their respective preferences. For

instance, if k = 3 and a participant specifies their likelihood of forwarding the message to be

50%, then the corresponding node chooses 3 friends at random, and forwards the notification

to each of them with a probability of 50%. Every simulation proceeds in time steps as follows.

The nodes that receive the notification in a time step t may decide to follow-through (depend-

ing on their preferences), and may forward it to their friends (i.e., the other nodes that are

connected to them in the network) who would then receive it in time step t+ 1. Since we are

focusing on a single step of propagation, we analyze the follow-through rates at the end of the

first time step, i.e., after the initial recipients have had the chance to forward the notification to

their friends.

Given four network models, two influence propagation models, and three values of k, Fig

3c depicts the average number of people who follow-through, assuming that the initial notifi-

cation is sent to 10%, 20% and 30% of the individuals in the network. As can be seen, the final

follow-through rates range from 3.2% to 26.8%. The rates could be greater in reality, since our

simulations consider k 2 {1, 2, 3}, whereas the value of k in reality could be far greater, e.g., if a

person considers posting the notification on Facebook or Twitter, then k would be equal to the

number of people following that person, which could be in the hundreds or even more. Finally,

recall that unlike the case of phishing and spam attacks, the disinformation attack considered

in our scenario does not require the recipient to click on an external link. To evaluate how this

difference affects the impact of the attack, we run similar simulations based on the responses

of participants who were shown a message containing an external link. We found that the

omission of the link always increases the follow-through rate (see Fig 3c); depending on the

model, the increment ranges from 3.4% to 9.8% at the end of one step of propagation.

Now, consider the case when the EV adoption rate in the power grid is 15%. In this case, if

30% of the population were targeted by the attacker initially, then our results in Fig 3c show

that the resultant follow-through rate ranges from 9.4% to 26.8%. Our power grid simulations

shown earlier in Fig 2a indicate that these follow-through rates would result in a blackout

for 5.6% to 100% of the residents, respectively. To put it differently, behavioral manipulation

through disinformation can indeed lead to a full blackout in a heavily loaded grid.

Discussion

While the literature on power grids focuses on the advantages of increasing the active con-

sumer engagement (through demand response programs) and coordinating their consump-

tion patterns [34, 35, 43, 44], we demonstrated that such engagement makes the grid more

vulnerable to behavior manipulation attacks. In particular, we showed how an adversary can

use disinformation to manipulate the behavior of energy consumers by sending them fake

notifications that encourage them to shift their energy usage into the peak demand period. We

quantified the impact of such an attack on a city-scale, taking Greater London as an example

and considering the additional demand flexibility introduced due to residential EV adoption.

We also analyzed how the attack impact varies with the overloading capacity of the distribu-

tion lines, showing that heavily loaded grids are particularly vulnerable to such attacks. Our
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surveys showed that people are willing to not only follow-through on such notifications, but

also forward them to their friends, thereby amplifying the attack. This is partly attributed to

the fact that such notifications, unlike those used in spam and phishing attacks, do not include

any external links in the message. Moreover, consumers who participate in demand response

programs and regularly respond to utility requests by changing their demand patterns are

likely to believe tailored disinformation notifications, thereby increasing the overall follow-

through rate.

Policymakers need to plan effective mitigation strategies to address the vulnerability

highlighted in this study. For instance, after the fake notifications are sent out and before a

blackout happens, law enforcement and other governmental agencies have a window of oppor-

tunity to act, e.g., by broadcasting notices on local TV stations to warn the general public of

the attack. In our scenario, to allow for the fake notification to propagate in the social network,

the attacker was assumed to send the notification a few hours before the peak demand period,

which is the time available for the authorities to act. However, we have shown that just a single

step of propagation can result in a high enough follow-through rate to fully blackout the grid.

Moreover, if the fake notifications are sent out to a sufficiently large number of people to begin

with, then the attacker need not rely on propagation at all. This, in turn, allows the attacker to

send the notifications only a few minutes before the peak demand period, thereby reducing

the authorities’ window of opportunity even further. As such, it is critical that any such attacks

are detected as soon as possible, and any proposed mitigation strategy can be implemented at a

short notice.

Our analysis has four main limitations which will be discussed next. First, the responses

obtained in our survey may not be fully representative of consumer reactions in reality. One

alternative to a survey-based approach would be to run a field experiment where we send fake

notifications to actual energy users and assess their responses. Such an experiment would

require us to register the reactions of the recipients, e.g., by getting them to click on a link

embedded in the notification itself, which would lead them to a website where we can register

their actions. However, as we noted earlier, the notification considered in our disinformation

scenario does not contain an external link; the absence of such a link renders the experiment

futile. Moreover, even if we were able to somehow register whether the recipients follow-

through, e.g., by monitoring their energy usage, we will not be able to know whether they have

forwarded the notification to their friends. Instead, we opted for a survey-based approach

whereby we can register the participants’ propensity to follow-through and forward to their

friends, while accounting for the possibility that the participants may have over-reported their

propensity in the survey. This was achieved by considering mapping functions that yield con-

servative probability estimates, e.g., selecting “5” on a Likert scale from 0 to 10 would yield a

probability of just 12.5% given the cubic mapping function. Further, we note here that while

the experimenter demand effect is a frequent criticism in survey-based approaches, recent

studies (e.g., see [45]) suggest that this effect is small, and hence, we do not consider it in our

analysis.

Second, our simulations focus on residences while disregarding commercial, industrial, and

critical buildings. However, the latter are likely to have their own blackout protection schemes

such as the installation of backup generators. This is unlike residences which typically lack

such protection, making them especially vulnerable to the attack considered in our study.

Third, we disregard the possibility that power utilities react to the sudden increase in the

demand either by increasing the available generation or through load shedding [46]. As for

the former reaction, it would be ineffective since the primary cause of the blackout in our

simulation is the violation of the line capacity limits rather than a generation deficit. The

latter reaction may also be ineffective in protecting the residential loads considered in our
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study since power utilities typically prioritize commercial, industrial and critical loads dur-

ing such contingencies.

Finally, our disinformation scenario is not applicable to households equipped with auto-

mated energy management systems. Such systems optimize the energy consumption by auto-

matically scheduling appliances based on price signals sent by the power utility. As such, they

reduce the need to incentivize residents to change their consumption patterns. Nevertheless,

such systems can be inadequate in reducing the system peak demand, and are still uncommon

to date (e.g., see [47–49]). In contrast, the schemes that we consider here, which focus on

incentivizing people to change their behavior, have proven to be effective and are more wide-

spread among residential consumers [50, 51].

In conclusion, we demonstrated that an adversary can cause blackouts on a city scale, not

by tampering with the hardware or hacking into the control systems of the power grid, but

rather by focusing entirely on behavior manipulation. On a broader note, our study is the first

to demonstrate that in an era when disinformation can be weaponized, system vulnerabilities

in critical infrastructure arise not only from the hardware and software, but also from the

behavior of the consumers.

Materials and methods

Disinformation content

The lines in the power grid have limited capacity that cannot easily be expanded due to finan-

cial constraints. Consequently, legacy networks are often highly loaded and unable to support

extremely unlikely scenarios, e.g., when the peak demand increases abruptly in a totally unex-

pected manner as in the scenario considered in our paper. This limitation is further exacer-

bated by the inclusion of EVs, which have the highest real power consumption compared to

household appliances. Given this limitation, an adversary may engineer a scenario aimed at

breaching the capacity limits of the power lines. One way to achieve this goal is to persuade as

many people as possible to shift their energy consumption into the peak demand period, when

the grid is already at its most vulnerable state. In our setting, this is achieved by spreading a

fake discount message informing people of a discount effective during the peak period.

The effectiveness of the disinformation in persuading recipients to follow-through depends

on its content, which needs to be tailored to fit the schema of legitimate communications that

the consumer receives from the power utility. Designing effective disinformation notifications

may not be hard for a sophisticated adversary who monitors existing utility-consumer com-

munication channels, and given the fact that utilities routinely publish their consumer engage-

ment strategies online (e.g., see [50]). Further, even in a deregulated scenario, each city is

usually served by at most a few utility companies, which allows the adversary to target entire

neighbourhoods with a given design of the fake notification. High levels of disinformation

follow-through can be expected if the recipients are consumers who are already enrolled in

active consumer engagement or demand response programs, and routinely respond to utility

requests by changing their energy usage patterns.

Power grid specifications

Due to its sensitivity, comprehensive data describing the power distribution network of

Greater London is not publicly available. We therefore built our own model based on data

obtained from OpenStreetMap [52], under the reasonable assumption that power lines (i.e.,

overhead lines or cables) are laid alongside roads. In particular, we start by extracting the road

network and the location of every building therein. Next, we obtain the locations of the 9 high-

voltage transmission-level substations that supply the low-voltage power distribution network

PLOS ONE Disinformation attacks on the power grid

PLOS ONE | https://doi.org/10.1371/journal.pone.0236517 August 12, 2020 9 / 14

https://doi.org/10.1371/journal.pone.0236517


of Greater London as reported by the transmission line operator, National Grid [53]. Note that

each building is electrically connected to a single substation, which is typically the one closest

to it. With this in mind, we divide the road network of Greater London into 9 subnetworks,

one per substation, and construct 9 spanning trees connecting the buildings within each sub-

network to the corresponding substation. We construct these spanning trees using a modified

version of Kruskal’s algorithm [54] while taking into consideration various technical and

economical constraints. The edges in these spanning trees represent the power lines in our

simulations. As for the loading of each line in the power grid, we assume that every building

represents a household, the energy consumption of which is modelled using statistics obtained

from [55, 56]. For more details, see S1 and S5 Notes in S1 File.

Power grid simulations

Since the energy consumption of a residence depends on its occupancy [55], residences in our

simulation were assigned occupancy values based on UK National Statistics [56]. As for the

EVs, we restrict our attention to residential rather than commercial EVs since the charging

times of the former align more closely to the overall system peak demand period [57] and can

be easily deferred by the consumers according to the fake notification. In each simulation, EV

owners and notification recipients were selected randomly based on the EV adoption rate and

disinformation propagation rate in the simulation, respectively. Each resident was assigned a

daily load profile depending on whether they own an EV and whether they follow-through on

the notification (see S1 Note in S1 File for how these load profiles were generated). Note that

in our simulations, the same residents who own an EV in the baseline scenario (i.e., the sce-

nario where no resident receives the fake notification) also own an EV in the attack scenario.

Also note that the EV adoption rate is varied in our simulations. As such, the power grid is ini-

tially assumed to be capable of supporting the residential demand with no EV adoption. Then,

as we increase the EV adoption rate, the grid is “upgraded” to support this EV adoption, and

the lines are now capable of supporting the increased EV demand under normal circum-

stances, i.e., in the baseline scenario (by “upgrade” we simply mean increasing the line capac-

ity). Power flows within the grid were then calculated accordingly.

Finally, we analyze how the distribution network is affected by the attack. In this analysis,

among the many variables that could be considered such as voltage and reactive power flows,

we focused on line capacity limits since they are the most dominantly affected by peak demand

growth, and are critical to power system stability [33, 35]. For the results shown in Fig 2, we

make the assumption that the capacity of each line in the distribution network is limited to

10% over the peak power flow in that line under regular circumstances when no resident

receives the notification from the attacker. By this, we mean that overcurrent relays are set to

trip the distribution lines if the power flows result in currents exceeding the 10% threshold.

More formally, we assume that a distribution line is overloaded if the following condition is

satisfied:

Ppeak ;attack � Ppeak ;normal

Ppeak;normal
> 10%; ð1Þ

where Ppeak,normal and Ppeak,attack represent the peak demand through the line under the normal

and attack scenarios, respectively. S2 Note in S1 File analyses four alternative scenarios: three

where the threshold is changed to 5%, 15%, and 20%, and one where non-uniform loading

across the grid results in thresholds varying between 5% to 15% for the different lines. Once a

line over-loads it goes offline, leading all lines below it in the power distribution tree to go off-

line as well. By averaging over 100 such simulations, we obtained the fraction of residences
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suffering from a blackout that were depicted in Fig 2a. The illustrations in Fig 2b and 2c repre-

sent a single simulation each.

Models of influence

We use two fundamental models of influence propagation in social networks, namely, inde-

pendent cascade [37] and linear threshold [38]. Both models start with an “active” subset of

nodes, called the seed set. Then, the influence of these active nodes propagates through the

network in time steps. Formally, let V denote the set of nodes in the network, and Nv denote

the neighbors of node v 2 V. Moreover, let A(t)âŠ†V be the set of active nodes at time step t,
implying that A(1) is the seed set. The mechanism of influence propagation depends on the

model being used. In the independent cascade model, every pair of nodes has an activation

probability, p: V × V! [0, 1]. Then, in each time step t> 1, every node v that became active

at time step t − 1 activates every inactive neighbor w 2 Nv\A(t − 1) with probability p(v, w).

The propagation terminates when A(t) = A(t − 1). On the other hand, in the linear threshold

model, every node v 2 V is assigned a threshold, kv, such that 0� kv� |Nv|. Then, in each time

step t> 1, every node v 2 V\A(t − 1) becomes active if the following holds: |A(t − 1) \ Nv|�

kv. Again, the propagation terminates when A(t) = A(t − 1).

In our analysis, we disregard the potential effects of negative opinions propagating within

the network. This is because the energy consumers who follow-through on the fake notifica-

tion may realize that they were manipulated only when they do not receive the promised price

discount, which happens after the propagation process ends and when the power utility gener-

ates energy receipts in the monthly billing cycle.

We introduced three modifications to the influence propagation models in order to reflect

the attack scenario being considered. First, we decoupled the state of being activated from the

state of influencing others. Specifically, being activated in our setting means deciding to fol-

low-through on the notification being received. In contrast, influencing neighbors means

forwarding the notification to one’s friends. As such, one may be activated without necessarily

influencing others, and vice versa. The second modification involved distinguishing between

those who receive the notification from a stranger (who is the attacker in our case) and those

who receive it from their friends (who forwarded the notification to them). This distinction

matters, since the way in which recipients react to the notification is affected by the identity of

the sender, as evident from the outcome of our surveys (see S3 Note in S1 File). The third mod-

ification involved allowing the individuals to influence only a subset of their friends. This

makes the model more realistic, since people are usually not restricted to forwarding a message

to either all or none of their friends. It should be noted that for an individual to be included in

the seed set, it is not sufficient for them to simply receive the notification from the stranger;

they have to also decide to forward it to their friends. This is especially important in the linear

threshold model, since our definition of the seed set means that the model cannot be parame-

terized solely based on thresholds; it also needs parameters specifying the likelihood of the

nodes to forward a notification received from a stranger.

The influence propagation models used in our simulations were parameterized based on

the survey outcomes. In particular, for the independent cascade model, each participant speci-

fied (i) their likelihood to follow-through, and (ii) their likelihood to forward the notification,

when the participant received it either from a stranger or a friend (note that an individual may

first receive the notification from the stranger, and then again from a friend at a later time

step). On the other hand, for the linear threshold model, participants specified (i) their likeli-

hood to follow-through and forward the notification when received from a stranger, and (ii)

the number of friends that they need to receive the notification from in order for them to
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follow-through and forward it to others (see S3 Note in S1 File). Participants specified their

likelihoods on a Likert scale from 0 to 10. Each response, x 2 [0, 10], was then converted to

the probability x
10

� �
, ( x

10
Þ

2
�

, or x
10
Þ

3
�

depending on whether the mapping was linear, squared, or

cubic, respectively. Finally, in our simulations, the number of friends that each individual con-

sidered forwarding the notification to was determined based on a parameter k 2 {1, 2, 3}.
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