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a REQUIMTE-University of Porto, Faculty of Science, Chemistry Department, University of Porto 4169-007, Portugal
b Unit of Bioinformatics and Connectivity Analysis (UBICA), Institute of Industrial Pharmacy, Faculty of Pharmacy, University of Santiago de Compostela,

Campus Universitario Sur, 15782 Santiago de Compostela, Spain
c Faculty of Pharmacy (FFUP), Organic-Chemistry Department, University of Porto 4050-047, Portugal
a r t i c l e i n f o

Article history:

Received 7 May 2008

Received in revised form

9 July 2008

Accepted 15 July 2008
Available online 22 July 2008

Keywords:

Protein structure

Graph theory

Random proteins

Python applications

GDA

S2SNet
93/$ - see front matter & 2008 Elsevier Ltd. A

016/j.jtbi.2008.07.018

esponding author. Tel.: +34 981563100; fax:

ail addresses: muntisa@gmail.com (C.R. Muntea
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a b s t r a c t

The development of the complex network graphs permits us to describe any real system such as social,

neural, computer or genetic networks by transforming real properties in topological indices (TIs). This

work uses Randic’s star networks in order to convert the protein primary structure data in specific

topological indices that are used to construct a natural/random protein classification model.

The set of natural proteins contains 1046 protein chains selected from the pre-compiled CulledPDB

list from PISCES Dunbrack’s Web Lab. This set is characterized by a protein homology of 20%, a structure

resolution of 1.6 Å and R-factor lower than 25%. The set of random amino acid chains contains 1046

sequences which were generated by Python script according to the same type of residues and average

chain length found in the natural set.

A new Sequence to Star Networks (S2SNet) wxPython GUI application (with a Graphviz graphics

back-end) was designed by our group in order to transform any character sequence in the following star

network topological indices: Shannon entropy of Markov matrices, trace of connectivity matrices,

Harary number, Wiener index, Gutman index, Schultz index, Moreau–Broto indices, Balaban distance

connectivity index, Kier–Hall connectivity indices and Randic connectivity index. The model was

constructed with the General Discriminant Analysis methods from STATISTICA package and gave

training/predicting set accuracies of 90.77% for the forward stepwise model type.

In conclusion, this study extends for the first time the classical TIs to protein star network TIs by

proposing a model that can predict if a protein/fragment of protein is natural or random using only the

amino acid sequence data. This classification can be used in the studies of the protein functions by

changing some fragments with random amino acid sequences or to detect the fake amino acid

sequences or the errors in proteins. These results promote the use of the S2SNet application not only for

protein structure analysis but also for mass spectroscopy, clinical proteomics and imaging, or DNA/RNA

structure analysis.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

One of the widely used methods for the predicting of the
protein properties is quantitative structure activity relationship
(QSAR) (Devillers and Balaban, 1999). Graph theory can be used to
obtain macromolecular descriptors named topological indices
(TIs). The branch of mathematical chemistry dedicated to encode
the DNA/protein information in graph representations by the use
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of the TIs has become an intense research area with interesting
works of Liao (Liao and Wang, 2004a, b; Liao and Ding, 2005; Liao
et al., 2006), Randic, Nandy, Balaban, Basak, and Vracko (Randic,
2000; Randic et al., 2000; Randic and Basak, 2001; Randic and
Balaban, 2003), Bielinska-Waz team (Bielinska-Waz et al., 2007)
or our group (Perez et al., 2004; Aguero-Chapin et al., 2006). Using
graphic approaches to study biological systems can provide useful
insights, as indicated by many previous studies on a series of
important biological topics, such as enzyme-catalyzed reactions
(Andraos, 2008; Chou, 1989; Chou and Forsen, 1980, 1981;
Chou and Liu, 1981; Chou et al., 1979; King and Altman, 1956;
Kuzmic et al., 1992; Myers and Palmer, 1985; Zhou and Deng,
1984), protein folding kinetics (Chou, 1990), inhibition kinetics of
processive nucleic acid polymerases and nucleases (Althaus et al.,
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1993a, b, c, 1994a, b, 1996; Chou et al., 1994), analysis of codon
usage (Chou and Zhang, 1992; Zhang and Chou, 1993, 1994), base
frequencies in the anti-sense strands (Chou et al., 1996), and
analysis of DNA sequence (Qi et al., 2007). Moreover, graphical
methods have been introduced for QSAR study (Gonzalez-Diaz
et al., 2006, 2007b; Prado-Prado et al., 2008) as well as utilized to
deal with complicated network systems (Diao et al., 2007;
Gonzalez-Diaz et al., 2007a, 2008). Recently, the ‘‘cellular
automaton image’’ (Wolfram, 1984, 2002) has also been applied
to study hepatitis B viral infections (Xiao et al., 2006a), HBV virus
gene missense mutation (Xiao et al., 2005b), and visual analysis
of SARS-CoV (Gao et al., 2006; Wang et al., 2005), as well as
representing complicated biological sequences (Xiao et al., 2005a)
and helping to identify protein attributes (Xiao and Chou, 2007;
Xiao et al., 2006b).

The actual work presents for the first time a natural/random
protein classification using only the chain sequence and amino
acid connectivity protein structural data. The data are trans-
formed into sequence and connectivity Star Graph’s TIs, which are
then used as input for a statistical linear method in the
construction of a simple classification model.
Fig. 1. Non-embedded Star Graph for the ACADCEFDGH sequence.

Fig. 2. Embedded Star Graph for the ACADCEFDGH sequence.
2. Materials and methods

2.1. Protein set

Two sets of proteins are compared in the new classification
model: a set (Nat) of 1046 natural protein chains as defined in the
pre-compiled CulledPDB list from PISCES Dunbrack’s Web Lab
(Wang and Dunbrack, 2003) and a second (Rnd) with the same
size formed by random amino acid sequences generated with
Python scripts (Rossum, 2006). The natural set is characterized by
a homology of 20%, a structure resolution of 1.6 Å and R-factor
lower than 25%. The random set is composed by the same
standard amino acid types and the average length of the chains is
the same as that of the natural set. Python scripts are used to
download PDB files from the PDB data bank (Berman et al., 2000)
and to create the correspondent DSSP file with the DSSP
application (Kabsch and Sander, 1983). The chain sequences were
extracted with a Python script from these DSSP files and were
filtered with our Prot-2S Web Tool (http://www.requimte.
pt:8080/Prot-2S/) by removing the chains that contain non-
standard amino acid (usually labelled X).

2.2. Star graph

Each protein can be considered as a real network where the
amino acids are the vertices (nodes), connected in a specific
sequence by the peptide bonds. The graph is the abstract
representation of the network and is a collection of N vertices
and the connections between them. The star graph is a special
case of trees with N vertices where one has got N�1 degrees of
freedom and the remaining N�1 vertices have got one single
degree of freedom (Harary, 1969). In addition, as a general
property, there is a unique path between any pair of vertices.
For proteins, each of the 20 possible branches (‘‘rays’’) of the star
contains the same amino acid type and the star centre is a non-
amino acid vertex.

The same protein can be represented by different forms which
are associated to distinct distance matrices (Randic et al., 2007). If
the vertices do not carry a label, the sequence information will be
lost; for that reason, the best method is to construct a standard
star graph where each amino acid/vertex holds the position in the
original sequence and the branches are labelled by alphabetical
order of the three-letter amino acid code (Randic et al., 2007).
In the present study we are using the alphabetical order of one-
letter amino acid code. The standard star graph for a random
virtual decapeptide (ACADCEFDGH) is illustrated in Fig. 1.

If the initial connectivity in the protein chain is included, the
graph is embedded (Fig. 2). In order to compare the graphs, it is
necessary to transform the graphical representation in connecti-
vity matrix, distance matrix and degree matrix. In the case of the
embedded graph, the matrices of the connectivity in the sequence
and in the star graph are combined. These matrices and the
normalized ones are the base for the TIs calculation.

http://www.requimte.pt:8080/Prot-2S/
http://www.requimte.pt:8080/Prot-2S/
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2.3. TIs for star graph

The protein chain sequences are transformed into Star Graph
representations and then characterized by several TIs using our
new Sequence to Star Networks (S2SNet) application. S2SNet is a
wxPython (Noel Rappin, 2006) GUI application with Graphviz

(Koutsofios, 1993) as a graphics back-end. The user of this
interactive tool is able to choose the level of calculations, such as:
embedded graph, additional weights for each amino acid, Markov
normalization, power of the matrix connectivity, the input files
(files with sequences, groups and weights), the output files, the
level of details (files for summary and detailed results) and the type
of graph visualization (dot, neato, fdp, twopi, circo). In particular,
the calculations presented in this work are characterized by
embedded and non-embedded TIs, no weights, Markov normal-
ization and power of matrices/indices (n) up to 5. The summary file
contains the following TIs (Todeschini and Consonni, 2002):
�

Tab
Trai

Mod

Forw

Bac

Best
Shannon entropy of the n powered Markov matrices (Shn):

Shn ¼
X

i

pi logðpiÞ, (1)
le 1
ning/predicting accuracies for the embedded (E), non-embedded (nE) and both Star Gra

el Star Graph type Train Cro

% Nat % Rnd % Total % N

ard nE 86.50 96.17 91.33 83.

E 80.00 88.65 84.32 78.

nE and E 85.86 96.17 91.01 81.

kward nE 86.11 96.68 91.40 83.

E 81.27 90.82 86.04 79.

nE and E 86.75 97.19 91.97 84.

nE 86.75 96.68 91.71 83.

E 81.40 90.05 85.72 79.
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Fig. 3. Training cases against the re
where pi are the ni elements of the p vector, resulted from the
matrix multiplication of the powered Markov normalized
matrix (ni�ni) and a vector (ni�1) with each element equal
to 1/ni;

�
 The trace of the n connectivity matrices (Trn):

Trn ¼
X

i

ðMn
Þii, (2)

where n ¼ 0–power limit, M ¼ connectivity matrix (i� i

dimension); ii ¼ ith diagonal element;

�
 Harary number (H):

H ¼
X
ioj

ðmij=dijÞw
nw
j , (3)

where dij are the elements of the distance matrix, mij are the
elements of the M connectivity matrix, wj are the weight
elements and nw is a switch to select (1) or not select (0)
weights calculations;

�
 Wiener index (W):

W ¼
X
ioj

dijw
nw
j , (4)
ph TIs

ss-validation Total

at % Rnd % Total % Nat % Rnd % Total

52 96.95 90.25 85.76 96.37 91.06

54 90.08 84.32 79.64 89.01 84.32

99 98.09 90.06 84.89 96.65 90.77

52 98.09 90.82 85.47 97.04 91.25

69 92.75 86.23 80.88 91.30 86.09

67 98.47 91.59 86.23 97.51 91.87

52 98.09 90.82 85.95 97.04 91.49

31 91.60 85.47 80.88 90.44 85.66

ber
1500 2000 2500

siduals for the full set.
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Gutman topological index (S6):

S6 ¼
X

ij

degi degj wnw
j =dij, (5)

where degiare the elements of the degree matrix;

�
 Schultz topological index (non-trivial part) (S):

S ¼
X
ioj

ðdegi þ degjÞdijw
nw
j , (6)
�
 Moreau-Broto, autocorrelation of topological structure (ATSn,
n ¼ 1�power limit), only with weights included:

ATSn ¼
X

ij

dpn
ijwiwj; (7)

where dpij
nare the elements of the pair distance matrix when

the distance is n;
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4. A zoom in the training cases against the residuals for the full set that does

include the two abnormal sequences.
�

siti

he N
Balaban distance connectivity index (J):

J ¼ ðedges� nodesþ 2Þ
X
ioj

mij sqrtð
X

k

dik

X
k

dkjÞw
nw
j , (8)

where nodes+1 ¼ AA numbers/node number in the Star
Graph+origin,

P
kdikis the node distance degree;
�
 Kier–Hall connectivity indices (nX):

0X ¼
X

i

wnw
i =sqrtðdegiÞ; (9)

2X ¼
X

iojok

mijmjkwnw
k =sqrtðdegi degj degkÞ, (10)

3X ¼
X

iojokom

mijmjkmkmwnw
m

.
sqrtðdegi degj degk degmÞ, (11)

4X ¼
X

iojokomoo

mijmjkmkmmmownw
o

.
sqrtðdegi degj degk degm degoÞ

(12)

5X ¼
X

iojokomoooq

mijmjkmkmmmomoqwnw
q

.
sqrtðdegi degj degk degm dego degqÞ,

(13)
�
 Randic connectivity index (1X):

1X ¼
X

ij

mijw
nw
j =sqrtðdegi degjÞ, (14)

All these TIs will be used to construct a natural/random
classification model by statistical methods.

2.4. Statistical analysis

General discriminant analysis (GDA) (Kowalski and Wold,
1982; Van Waterbeemd, 1995) from STATISTICA 6.0 package
vity

train 0.98 val 0.96

0.5 0.6 0.7 0.8 0.9 1.0 1.1

at/Rnd model.
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(StatSoft.Inc., 2002) has been chosen as the simplest and fastest
method. In order to decide if a protein chain is classified as natural
(if exists in the PDB database) or random, we added an extra
dummy variable named Nat/Rnd (binary values of 0/1) and a
cross-validation variable (CV). There are three often used cross-
validation methods to examine a predictor for its effectiveness in
practical application: independent dataset test, subsampling test,
and jackknife test (Chou and Zhang, 1995). Through a crystal-clear
analysis, Chou and Shen (2007, 2008) have shown that only the
jackknife test has the least arbitrariness. Therefore, the jackknife
test has been increasingly used by investigators to examine the
accuracy of various predictors (Chen and Li, 2007a, b; Diao et al.,
2007; Ding et al., 2007; Jiang et al., 2008; Jin et al., 2008; Li and Li,
2008; Lin, 2008; Lin et al., 2008; Niu et al., 2006, 2008; Wang et
al., 2008; Xiao and Chou, 2007; Zhou et al., 2007; Zhang et al.,
2008). In the actual work, the independent data test is used by
splitting the data at random in a training series (train, 75%) used
for model construction and a prediction one (val, 25%) for model
validation (the CV column is filled by repeating 3 train and 1 val).
All independent variables are standardized prior to model
construction.

Using S2SNet methodology, as defined previously we can
attempt to develop a simple linear QSAR, with the general formula

Nat=Rnd� score ¼ c0 þ
X

i¼14n

ciTi, (15)

where Nat/Rnd-score is the continue score value for the
Nat/Rnd classification, Ti ¼ TIs described above, C1�Cn ¼ TIs
coefficients, n is the number for the indices and c0 is the
independent term.

GDA models quality was determined by examining Wilk’s U

statistics, Fisher ratio (F), p-level (p), and canonical regression
coefficient (RC). We also inspected the percentage of good
classification, cases/variables ratios, and number of variables to
be explored in order to avoid over-fitting or chance correlation.
The forward, backward and best subset model types are tested for
the embedded, non-embedded and both data.
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Fig. 6. Distribution for GDA model residuals, c
3. Results

Eight variable selection methods were applied in order to find
the best GDA equation which is able to discriminate between
natural and random chain proteins. Eight models were con-
structed using embedded/non-embedded Star Graph TIs obtained
with S2SNet application and forward, backward and best subset
model types. The values obtained for the training/predicting
accuracies are presented in Table 1.

The forward stepwise selection variable method conjugated
with the nE and E TIs provides the best results for our data set
with values of correctly classified compounds of 91.01%, 90.06%
and 90.77% for the training, cross-validation and full sets,
respectively, and using a minimum number of 12 parameters
(Eq. (15)). The embedded TIs have the name of the non-embedded
ones plus ‘‘e’’ as suffix:

Nat=Rnd� score ¼ 0:1þ 4:8Sh0þ 254:9H þ 1860:2W

� 1931:0Sþ 39:4J � 139:2X0

� 73:0X3þ 146:7X4� 159:3X5

� 6:6Tr4eþ 7:1X2e, (16)

N ¼ 2092; Rc ¼ 0:79; U ¼ 0:38; F ¼ 228:58; po0:001;

where N is the number of studied protein sequences (Nat+Rnd), Rc

is the canonical regression coefficient, U is the Wilk’s statistics, F is
the Fisher’s statistics and p is the p-level (probability of error).

The present Rc value shows a high level of correlation between
the input variables and the classification of proteins. Wilk’s U is
used to measure the statistical significance of the discriminatory
power of the model and has values from 1.0 (no discriminatory
power) to 0.0 (perfect discriminatory power). The F value shows
the statistical significance in the discrimination between groups, a
measure of the extent to which a variable makes a unique
contribution to a prediction of group membership. The values of
the p-level of Fisher’s test for the GDA is less than 0.05 and show
that the hypothesis of group overlapping with a 5% error can be
rejected (Hua and Sun, 2001). The above results are typically
.0000
0.3333

0.6667
1.0000

1.3333
1.6667

2.0000

 (upper limits)

Chi-Square test = 299.39, p = 0.00
Kolmogorov-Smirnov d = 0.0845, p < 0.01

hi-square and Kolmogorov–Smirnov tests.
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considered as excellent in the literature for LDA-QSAR models
(Garcia-Garcia et al., 2004; Marrero-Ponce et al., 2004, 2005).

The parametrical assumptions such as normality, homosce-
dasticity (homogeneity of variances) and non-colinearity have the
same importance in the application of multivariate statistic
techniques to QSPR (Bisquerra Alzina, 1989; Stewart, 1998) as
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the correct specification of the mathematical form has. The
validity and statistical significance of any model is conditioned by
the above-mentioned factors.

In our study, a simple linear mathematical form of the model
has been chosen in the absence of prior information. Figs. 3
and 4 show that the training cases against the residuals did not
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present any characteristic pattern (Dillon and Goldstein, 1984).
The protein nos. 632 and 864 are the only two cases not shown
in Fig. 4 because the corresponding raw residuals are clear
distinct from the whole set, ca -7. They correspond to 1QWN,
chain A (1014 AAs) and 1JZ8, chain A (1011 AAs). One possible
reason for the apparent different statistical behaviour could
be the limitation of the model when the length of the chains is
greater than 1000 amino acids. It is possible that the star net TIs
for large proteins become similar to the TIs of the random
proteins.
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A different and better threshold for the a priori classification
probability can be estimated by means of the receiver operating
characteristics (ROC) curve (James and Hanley, 1982). As the Fig. 5
clearly shows, one can see that the model is not a random, but a
truly statistically significant classifier, since the area under the
ROC curve (for both training ¼ 0.98 and validation ¼ 0.96) is
significantly higher than the area under the random classifier
curve random ¼ 0.5 ¼ diagonal line (Morales Helguera et al.,
2007).

The validity of the GDA models depends on the normal
distribution of the sample used as well as the homogeneity of
their variances. Thus, we carried out two significant tests for
normality, chi-square and Kolmogorov–Smirnov tests, and we
have found significant statistical differences (po0.01) on the
respective values (chi-square, d). These results allow us to reject
the hypothesis of normal distribution of the sample under study
(Fig. 6) (Stewart, 1998).

The heteroscedasticity of a large set can be detected
with the simple graphical method based on the exami-
nation of the residuals of the variable included in the model.
Fig. 7(a and b) shows that the Nat/Rnd GDA model variables
against the residuals plots do not present any pattern,
which indicates that homoscedasticity assumption is fulfilled
(Stewart, 1998).

Due to the robustness of the GDA multivariate statistical
techniques, the predictive ability and interference reached by
using the proposed model should not be affected (see Fig. 8).
4. Discussion

This study extends for the first time the classical TIs to
protein Star Network TIs by proposing a model that can pre-
dict if a chain protein is natural or random. The results prove for
the first time the excellent predictive ability (90.77%) of the
simple and fast Star Network TIs and GDA statistics linear
models in the case of natural/random protein model. This
classification can help the study of the protein function by
changing some fragments with random amino acid sequences
or can detect the fake amino acid sequences or the errors in
proteins. The S2SNet application can be very useful to calculate
the protein Star Network TIs, which can be the base of a model for
any other protein property. S2SNet can also be used for mass
spectroscopy, clinical proteomics and imaging or DNA/RNA
structure analysis.
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