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Abstract The term cytokine storm has become a popular de-
scriptor of the dramatic harmful consequences of the rapid
release of polypeptide mediators, or cytokines, that generate
inflammatory responses. This occurs throughout the body in
both non-infectious and infectious disease states, including the
central nervous system. In infectious disease it has become a
useful concept through which to appreciate that most infec-
tious disease is not caused directly by a pathogen, but by an
overexuberant innate immune response by the host to its pres-
ence. It is less widely known that in addition to these roles in
disease pathogenesis these same cytokines are also the basis of
innate immunity, and in lower concentrations have many es-
sential physiological roles. Here we update this field, includ-
ing what can be learned through the history of how these
interlinking three aspects of biology and disease came to be
appreciated. We argue that understanding cytokine storms in
their various degrees of acuteness, severity and persistence is
essential in order to grasp the pathophysiology of many dis-
eases, and thus the basis of newer therapeutic approaches to
treating them. This particularly applies to the neurodegenera-
tive diseases.
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Introduction

As previously discussed [1, 2], the term cytokine storm ap-
pears to have been first used to describe the chaotic patho-
physiological state encountered during an acute graft-
versus-host disease [3]. The term has caught the popular imag-
ination, with >160,000 hits on a search engine. A flood of
harmful polypeptides bursting forth from our cells making
us very ill, as if we had severe influenza, is a powerful and
accurate image, one clearly worth understanding. Over the
intervening 24 years the activity of these cytokines has
encompassed a much wider array of biology than dreamed
of in 1993, and it is now timely to step back and examine
the concept again. In order to provide a wider understanding
of the phenomenon of a cytokine storm, we have recounted
the history of researchers’ awareness of the main mediators
whose release initiates the process. Although the popular con-
cept of a cytokine storm is about dramatic illness and disease,
these mediators also have essential roles in normal physiology
and innate immunity. The principles are the same throughout,
but site of production, cytokine concentration and persistence,
as well as generation of countering cytokines, determine out-
come. The perspectives now possible thus allow us to develop
a better understanding of both of these aspects in health and in
sickness, as well as focus on the therapeutic possibilities of
this knowledge, which is a main theme of this text. We also
extend the concept of a cytokine storm into the chronic neu-
rodegenerative states. These diseases remind us that unrelent-
ing moderate rain can destroy, just as surely as a massive
storm that causes a flash flood.
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Cytokines, the raw material of a cytokine storm

Some 50 years ago the idea of unsuspected secreted poly-
peptides, mediators akin to hormones but arising through-
out the body from cells with other primary functions rather
than from specialized secretory organs, and communicat-
ing with many other cells, was quite new. The word cyto-
kine became a generic term for these molecules once im-
munologists realized that classifying them according to
their cell of origin, such as lymphocytes releasing lympho-
kines [4] and monocytes releasing monokines [5] was quite
inadequate, particularly since a single mediator could have
many cellular origins, as well as pleotropic activity. By
1991, for example, tumor necrosis factor (TNF) had been
documented to possess, or at least initiate, 50 biological
functions, most demonstrated quite soon after it had been
cloned and made available in a recombinant form [6]. TNF
[7] is one of the cytokines that kept its original function-
based name. Others include interferons (IFNs) [8] – IFN-γ
[9] being particularly relevant – lymphotoxins (LTs) [10]
and the transforming growth factors (TGFs) [11]. We
should acknowledge here the insight of the authors of a
1979 Letter-to-the-Editor in the Journal of Immunology
[12] who proposed the interleukin (IL) form of nomencla-
ture as a way to rescue order out of chaos by suggesting
that a number of acronyms describing observed activities
could be grouped under a numerical system, beginning
with IL-1 and IL-2. This suggestion proved its worth with
the increased molecular definition of entities previously
known only as activities. Currently IL-1 to IL-37 are rec-
ognized, and most, if investigated, are likely to be released
in a severe cytokine storm. From what is known of their
proinflammatory links to TNF, the cytokines IL-1, IL-12
[13] and IL-17 [14] are particularly likely to contribute to
the dramatic outcome of a full-blown storm, but this is the
topic of a much wider ranging review. This text is largely
restricted to TNF and IL-1, cytokines that conspicuously
are released early, and readily induce others. A broad can-
vas of the array of mediators that can, in excess, form a
cytokine storm can be impressive, as can the mathematical
models of its dynamics [15], but their known interactions
are still in a state of flux. In order to tell the story of the
storm rather than the raindrops, we focus here on studies
that have contributed to allowing the master initiators,
which are released early and set the process going, to be
understood, and thus become therapeutic targets.

The biological antiquity of two main players, TNF
and IL-1

When a molecule present in mammals proves also to be found
in earlier, particularly very early, life forms it is generally

taken to denote that it has been conserved in the biological
repertoire because it is essential to life. Cytokines can be good
examples. For instance, although TNF is large in the mamma-
lian literature it is also found in the marine sponge,
Chondrosia reniformis [16], and the reef-building corals,
Acropora spp. [17]. Remarkably, these authors found that cor-
al TNF has a mutual receptor cross-reactivity with human
TNF. Similarly, IL-1 is present in the starfish, Asterias forbesi
[18]. Among insects, cells from at least two genera of moths
contain IL-1 and TNF [19], so conceivably all Lepidoptera are
similarly endowed. Lower vertebrates such as fish also gener-
ate both of these cytokines [20, 21], as well others such as IL-6
[22], IL-8 [23], IL-12 [24] and IL-17 [20].

The discovery of TNF and IL-1 arose
from investigating endotoxicity

The earliest published record relevant to this story seems to
have been the observation by Maegraith in his 1948 mono-
graph [25] that the functional effects of parenteral bacterial
endotoxin, in the form of the typhoid vaccine of the day
[26], can be equated with the range of clinical changes ob-
served in falciparum malaria. The clinical non-specificity of
malaria, which can mimic rickettsial, bacterial, viral, and non-
infectious diseases, carrying with it implications of equal non-
specificity of disease mechanism, has been documented for
many decades [27]. Predictably, therefore, whatever mediates
the complex illness seen in endotoxicity is acting in these
other diseases as well. This conceptual framework has
persisted, and continues to be strengthened. The circum-
stances to which it has now been extended go far beyond its
conceptual origins, where gram-negative bacteria, the walls of
which contain endotoxin, are present. A crucial next advance
was the argument, in 1957, that the pathophysiology of
endotoxicity, traumatic shock and hemorrhagic shock are re-
markably identical, even to the point of experimentally induc-
ing tolerance to any one of these states protecting against all
three [28, 29]. The first arises in bacterial infection, but the
other two are decidedly non-infectious.

Although cytokines now loom large in immunology,
awareness of them emerged from curiosity about the useful
and harmful (endotoxic) effects of bacterial endotoxin.
Originally found, as noted above, in cell walls of gram-
negative bacteria, endotoxin proved to be a form of lipopoly-
saccharide (LPS). The term was used interchangeably with
LPS for many years, the later taking precedence in recent
times. Endotoxin/LPS influences larger life forms in what
can seem a bewildering number of ways. Intriguing early phe-
nomena included the in vivo tolerance to its effects observed
after a second and subsequent injections [30]. Another major
development in 1955 was the capacity of typhoid vaccine,
inevitably, we now know, containing LPS, to generate a
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mediator termed endogenous pyrogen in the serum of rabbits
[31]. This was argued to be of leukocyte origin, to be trans-
ferable to other rabbits, and not to cross-tolerize with typhoid
vaccine [32]. In due course this was one of the paths that led to
the recognition of IL-1, as discussed below.

Further complexity arose from the long history of experimen-
tal anti-tumor activity [33] of bacterial LPS implying a biological
relevance beyond bacterial disease. Others [34] had achieved
similar outcomes with an attenuated form of Mycobacterium
bovis termed Bacillus Calmette-Guérin (BCG), which greatly
sensitizes mice to LPS [35]. Combining these anti-tumor ap-
proaches eventually led, in 1975 [7], to the term tumor necrosis
factor (TNF), currently with over 135,000 PubMed hits, far
more than any other cytokine, entering the scientific lexicon.
Until the insights that arose from this work, endotoxin/LPS
had been assumed to be directly responsible for its tumor-
killing activities. The next year the hypoglycemia induced by
LPS [36] proved to arise, as did TNF, through the actions of a
macrophage-origin, LPS-induced, polypeptide the authors
termed glucocorticoid antagonizing factor (GAF) [37]. As far
as its purification was taken, GAF mirrored TNF [38]. These
two lines of research pointed the way to appreciating that endo-
toxin, of itself, is not, as had been thought, directly active against
tumors or has the ability to change blood glucose levels, but
induces soluble mediators of host origin that have these proper-
ties. In other words, mice exposed to parenteral endotoxin gen-
erate molecules with anti-tumor and hypoglycemic activity. This
opened minds to wondering how many of these mediators
existed, and what they did.

Work on the identity of endogenous pyrogen (see [31],
above) lay dormant for many years, until 1979, when LPS
was appreciated to induce serum amyloid A (SAA) frommac-
rophages indirectly, through the action of another
macrophage-origin mediator the authors appropriately termed
SAA-inducer [39]. Soon after, this product was found to be
identical to both endogenous pyrogen and lymphocyte acti-
vating factor (LAF) [40, 41], one of the many names sub-
sumed into the term IL-1 [12]. Hence endogenous pyrogen
was evidently identical to IL-1.

What controls TNF increases in innate immunity
and disease?

As we have recently reviewed in this context [42], from the
late 1980s interest in the evolution of the immune system
fostered ideas on how the cytokines that caused innate immu-
nity and disease pathogenesis could arise, and be controlled, in
non-infectious as well as infectious disease states. The models
that this era generated [43, 44] are still in place. In brief,
pathogen-associated molecular patterns (PAMPs) are released
by pathogens, and damage-associated molecular patterns
(DAMPs) by tissue damaged by trauma, hypoxia, and metals

such as lead, which hypomethylate host DNA. This has the
same PAMP activity as do mitochondrial DNA and bacterial
DNA, which are innately hypomethylated. Both PAMPs and
DAMPs are agonists for non-specific pattern recognition re-
ceptors (PPRs) on or inside most cell types, the best described
of which are the toll-like receptors, or TLRs [45]. In this way,
a disparate collection of signals triggering the same functional
outcome fits within a framework that provides these signals
with the ability to trigger the release of proinflammatory cy-
tokines. For instance, within this nowwidespread terminology
the LPS discussed in the previous section is one of the PAMPs
that are agonists for TLR4 [46]. These cytokines, through the
processes of innate immunity, have the capacity to kill the
pathogen that provided the PAMP. Also, when in excess, these
cytokines initiate pathological processes shared by both infec-
tious and non-infectious diseases.

Some physiological roles of TNF and IL-1
outside the brain

While the principles governing cytokines in innate immunity
and disease pathogenesis were being elucidated it was not yet
appreciated that TNF and IL-1 are crucial for physiological
homeostasis [47]. IL-1 is generally less reported in this con-
text than is TNF, arguably because IL-1-specific reagents are
less freely available. Nevertheless, normal hematopoiesis is
known to depend on these two cytokines [48, 49], as does
normal sleep regulation [50]. Mitochondrial function depends
on TNF [51], and it has, as we have reviewed, homeostatic
effects on the normal reproduction rate of various progenitor
cells, of particular clinical importance those of endothelial
cells in severe malaria and sepsis [52]. Clearly, much physi-
ology is controlled by small fluctuations in TNF and IL-1
acting as signaling molecules. The above examples suffice
to demonstrate the now established principle that the key cy-
tokines mediating innate immunity and disease pathogenesis
are, as next discussed, normally present, and indeed necessar-
ily present, in healthy individuals, fulfilling physiological
roles unrelated to inflammation. Thus we advocate not rou-
tinely referring to TNF and IL-1 as proinflammatory cyto-
kines, since this terminology often leads this closely linked
pair to be regarded simply as biomarkers for the presence of
inflammation, a link not made until over 10 years after TNF
had been first described [53], and in any event relatively minor
within the range of broad biological effects of these cytokines.

Roles of TNF and IL-1 in innate immunity
and disease pathogenesis

As has been reviewed [54], in the mid-1970s our laboratory
had been seeking a plausible explanation for our observation
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that mouse hemoprotozoan parasites die inside circulating
erythrocytes during the immune response [55], an unpopular
finding in certain quarters, since it was inconsistent with
antibody-based dogma on which malaria vaccine research
was then based. We were also wondering why a two week
prior infection of mice with BCG, administered on the advice
of a colleague, Jean-Louis Virelizier, created a milieu inimical
to these parasites, causing their death, in the same intra-
erythrocytic location, some 12 h after their injection into the
mice [56]. An additional puzzle was why the illness and pa-
thology caused by these organisms, was, as Maegraith had
argued in human malaria decades earlier [25], so similar to
endotoxicity. Importantly, we had found we could mimic the
mouse disease as well as the death of parasites inside erythro-
cytes by injecting small amounts of endotoxin/LPS [57].
Remarkably, these changes happened of their own accord in
undisturbed self-limiting infections, arguably induced by a
stimulus functionally similar to LPS that was provided by
the increased parasite load as the infection progressed. Thus
we began to search for explanations based on LPS-induced
macrophage products that might make sense of these obser-
vations. The essential revelation that awakened us to the pos-
sibility of TNF being responsible came from reading the then
new1975 Sloan Kettering paper [7] on the use of BCG and
LPS, reagents we had been using with the same timing, but in
our case to understand the relationship between an infectious
agent and its host rather than tumor killing. With their collab-
oration in assaying TNF, we began to develop our then novel
view that infectious disease is caused not directly by the in-
vading pathogen, but by what were effectively the side effects
of the host’s over-exuberant innate immune response to it. We
had evidence, albeit now regarded as rudimentary because of
the pre-recombinant assays of the day, that TNF and lympho-
cyte activating factor (LAF), an old name for IL-1, could be
involved [58].

This proposal could not, of course, be properly tested until
peptides such as cytokines became available in recombinant
form, and in sufficient quantity for in vivo use. Since TNFwas
first recognized for its tumor killing properties, ambitions
were high in the late 1980s that rTNF [59] would be therapeu-
tically valuable to cancer patients. In hindsight, we know that
severe side-effects [60–62] of the type now attributable to a
cytokine storm, were inevitable. To these researchers’ minds
the side effects of rTNF they produced resembled an
influenza-like disease [63], but to us, with our malaria back-
ground, they were also profoundly malaria-like. This general-
ly unanticipated outcome of treatment with rTNF was ex-
tremely instructive for our theories on the cytokine origins
of the illness of malarial disease and bacterial sepsis [58,
64], and we and others had already been injecting rTNF into
animal models for this purpose [65, 66]. In the next year,
1988, these principles were incorporated into the original de-
scription of sickness behavior [67], which we subsequently

described, in its extreme form, as being the basis of the syn-
drome seen in severe systemic protozoal, bacterial, viral dis-
ease, as well as post-trauma [68].

Thus developed the view that infectious disease is caused
not directly by the invading pathogen, but by the host’s exces-
sive innate immunity to it. The concept eventually spread
across the board to include both innate immunity and disease
pathogenesis in, for example, infection with Mycobacterium
spp. [69, 70], Brucella abortus [71, 72], Salmonella spp. [73,
74], Listeria monocytogenes [75, 76], Leishmania spp. [77,
78], Toxoplasma gondii [79, 80], and influenza [81, 82].
This pattern of cytokines being useful in low concentrations
but harmful in high, first reviewed in 1987 in a malaria context
[83], is now generally accepted in infectious disease. It is not,
however, at all restricted to pathogen-induced conditions, as
discussed below.

Many reports link high circulating levels of TNF and IL-1,
arguably the original hallmarks of a cytokine storm, with the
biochemical details of the pathogenesis of clinical markers of
critically ill patients. A random illustration is hypoalbumin-
emia, an independent marker of poor outcomes in severely ill
patients with various diagnoses [84], as recently investigated
in critically ill children in intensive care [85]. As reviewed
[68], hypoalbuminemia is also a characteristic of malaria, sep-
sis, acute viral diseases, and severe trauma, all conditions with
high TNF. They are, indeed, prototype examples of the effects
of a cytokine storm. Reduced albumin is to be expected in all
these circumstances, since the liver-specific albumin gene is
positively regulated by Dbp [86], one of the circadian genes
that TNF and IL-1 suppress [87]. Picomolar concentrations of
TNF have been demonstrated to reduce albumin production
by human hepatocytes [88]. Whether it does so by inducing
IL-1, or independently, or whether they act synergistically,
appears, as in too many other circumstances, yet to be
determined.

Persistent cytokine storms in the ill brain

Moderate, but persistent, cytokine storms are typical of the
chronic neurodegenerative states, including post-stroke,
post-traumatic brain injury, and Alzheimer’s disease (AD).
In the weather analogy, cytokines are what water is to life.
Light falls of rain, like low levels of TNF and IL-1, keep
physiology ticking over and organisms alive. In moderate
amounts rain improves outcome, as does self-limiting innate
immunity, but in acute excess, or unrelenting moderate
amounts, both rain and cytokines can kill. Both the acute
and unrelenting patterns are valid cytokine storms. Acute sys-
temic cytokine excesses, ie those outside the central nervous
system (CNS), typically arise from the effects from bacterial
or viral PAMPs, and are, if not acutely fatal, generally tran-
sient. In contrast, when excess cytokine is generated within
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the brain in sufficient quantities, as distinct from entering from
outside, the usual type of cytokine storm is an unrelenting
moderately raised activity that leads to non-resolving
inflammation.

This non-resolving pattern of inflammation in the brain is
consistent with the consequences of injecting LPS, the proto-
type TNF inducer, and a TLR4 agonist, in order to generate
models of neurodegenerative disease in rodents [89].
Following a single systemic LPS injection, TNF production
in mouse brain remains high for at least ten months [90]. In
contrast, serum TNF levels peaked at the expected nine hours.
Why this difference? These authors argue that an acute sys-
temic injection of LPS activates brain microglia through TNF
receptors that initiate sustained activation of brain cytokine
synthesis and neuroinflammation. These studies are consistent
with earlier work in which the TNF switch-off that occurs
systemically after a second LPS injection, which demonstrates
the presence of LPS tolerance, proved to be absent in the
intracisternal space [91]. Evidently TNF generation is
inhibited differently systemically and cerebrally, conceivably
mediated either through failure of the anti-inflammatory cyto-
kines IL-4 or IL-10 to increase as they do systemically, and, as
noted above, LPS tolerance being weak or absent inside the
blood brain barrier (BBB). It is also consistent with the acti-
vated state of microglia many years after brain ischemia [92]
or brain trauma events [93, 94], as well as with evidence for a
positive feedback loop for microglial activation via TNF [95].
Thus the central nervous system is especially vulnerable to
cytokine storms that arise when TNF is generated within the
brain, from many cell types, particularly microglia and astro-
cytes but also including neurons [96], and leads to loss of
homeostasis in such vulnerable sites as synapses. One predict-
able consequence is the loss of the subtle homeostasis we
depend on for learning, memory, and normal behavior, as seen
in chronic neurodegenerative states. As discussed below, se-
vere changes include neuronal death through excitotoxicity.

Since brain function determines subtleties such as person-
ality, behavior, executive function, mood, willpower, learning
and memory, we can expect the effects of brain TNF excess to
be much more nuanced than the same change in the rest of the
body. This is indeedwhat happens. For example, mice without
certain TNF receptors do not become aggressive [97]. The
origins of delirium, in which a seriously ill patient shows
transient disorientation, confusion and memory loss as part
of an exaggerated sickness behavior, remain controversial
[98], but it is certainly part of a cytokine storm. It is now
considered to be best understood in terms of peripheral TNF
being increased sufficiently for enough to cross the BBB for a
limited period [99]. Dementia, in contrast, reflects continual
TNF production within the brain. Likewise, the coma that is
often part of an encephalopathy accompanying sepsis, influ-
enza or malaria can also be rationalized in cytokine terms,
with associated coma argued to arise through increased

cerebral TNF reducing orexin levels [100]. See reference
[101] for a review.

Some key physiological roles of TNF and IL-1
inside the brain

As we have noted [42], physiological roles of TNF and IL-1
inside the brain include their release during physiological neu-
ronal activity and, as has been reviewed [102], playing a cru-
cial role in regulating the strength of normal synaptic trans-
mission. TNF, of itself rather than through the inflammatory
cascade it can trigger, is also involved in normal transmission
via modulating excitatory neurotransmission [103], traffick-
ing of AMPA receptors [104], homeostatic synaptic scaling
[105], long-term potentiation [106], and maintaining normal
background levels of neurogenesis [107]. As noted earlier, and
of particular relevance in the brain, which requires much ox-
ygen, mitochondrial function depends on TNF [51]. So too
does regulation of the neurotransmitter orexin [100], which, as
we recently reviewed in a brain disease context [101], controls
sleep, motor control, focused mental effort, appetite and water
intake. TNF also regulates neuronal type-1 inositol trisphos-
phate receptors (IP3R), which are central to neuronal Ca++

homeostasis, and thus the ionic signaling cascades on which
normal function of these cells depends [108]. Likewise,
glycine receptors, which are structurally related to γ-
aminobutyric acid (GABA) receptors and have a similar in-
hibitory role, are influenced by proinflammatory cytokines
[109].

Some key pathophysiological roles of TNF and IL-1
inside the brain

As we have recently reviewed [110], high brain TNF levels
increase harmful cerebral glutamate concentrations through
enhancing both glutaminase activity and glutamate re-entry
proteins, but evidence implies that IL-1 does not [111].
Clearly, these brain functions are susceptible to TNF and/or
IL-1 being above their homeostatic range during a cytokine
storm, and consequent change can be expected in the subtle-
ties as well as the gross consequences of excitotoxicity in
circumstances when the proinflammatory cytokine load is
high and prolonged. Neurogenic pain [112] and insulin resis-
tance in AD brains [113] are examples.

Much relevant material on TNF and the brain that space
considerations preclude here is contained in our 2010 review
[114]. This text developed from our view that the riddle of
malarial encephalopathy (cerebral malaria, (CM)) could be
understood only by getting engrossed in understanding how
TNF influences brain function in other states, such as AD
[115]. We felt that in both of these conditions the historical
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histological hallmarks – sequestered parasitized erythrocytes
in CM, and amyloid (Aβ)plaques in AD – had somehow been
allowed, in the absence of other contenders, to evolve into
primary mechanisms that researchers were comfortable with,
conceivably because they could point them out under a mi-
croscope. Increasingly, each hallmark has fallen from the spot-
light because of developments in the cytokine storm literature.
Importantly, CM has been reported recently to respond dra-
matically after treating affected mice with the glutamine ana-
log 6-diazo-5-oxo-L-norleucine (DON) [116], lowering the
brain glutamate and thus excitotoxicity, that excess brain
TNF generates [110].

Likewise, developments in cytokine biology have meant
that Aβ, for decades almost universally argued to be central
to understanding AD, has lost momentum as the key to this
disease as well as its proposed importance in post-stroke syn-
dromes [117] and traumatic brain injury [118]. Over two de-
cades ago TNF was reported to alter synaptic transmission in
hippocampal slices [119]. Five years later [120] it was shown
that this earlier observation explained the ability of Aβ,
through TNF, to do the same. Other laboratories expanded
the roles of TNF in this context [103]. The capacity of Aβ
to act as a ligand for CD14 and TLR2 indicates that these
findings with Aβ [120] are consistent with basic immunology,
since occupancy of CD14 and TLRs is how the usual bacterial
and protozoal-origin inducers of TNF operate [121]. Key sup-
port for this concept has been provided by the recent demon-
stration that the release of pro-inflammatory cytokines from
astrocytes is necessary for either Aβ to be neurotoxic or tau
phosphorylation to be initiated [122]. Importantly, a recent
large epidemiological study, in which administering regular
subcutaneous etanercept, a specific anti-TNF biological agent
in common clinical use, over an extended period in treatment
of rheumatoid arthritis (RA), was reported to reduce incidence
of AD [123] in these patients. This further greatly enhances
the likelihood of TNF, and correspondingly decreases the like-
lihood of Aβ, being the key to AD pathogenesis. These and
related arguments are discussed in our reviews [42, 52, 110,
124–128].

More recently a technically impressive study [129] has
identified changes in the dynamics of re-uptake proteins,
and thus of glutamate, in the extracellular microenviron-
ment near Aβ plaques in the brain of a high Aβ mouse
model of AD. Unfortunately, presenting these data as evi-
dence for a direct functional link between Aβ and cogni-
tive impairment and neuronal loss through excitotoxicity,
as these authors do, ignores the literature on the essential
intermediary role of TNF in these observations [120, 130].
The outcome is actually a strong case for AD arising
through a chronic cerebral cytokine storm, since TNF, as
well as being induced by many TLR agonists, including
Aβ, is well known [110] to influence glutamate dynamics
in the way described above [129].

Clinical usefulness of this knowledge

The obvious inference from the literature reviewed here is that
patients suffering from cytokine storms should be treated by
neutralize the offending cytokines, mainly TNF. It was, how-
ever, established quite early in mice [131] and baboons [132],
when knowledge of post-TNF pathways was in its infancy,
that specific anti-TNF neutralizing agents have to be admin-
istered 1–2 h before TNF induction, while animals are still
perfectly healthy, in order to save them. An example of a
useful application of this principle has been the successful
treatment of the life-threatening Jarisch-Herxheimer reaction
that can be induced by the PAMPs released from damaged and
dead Borrelia duttonii, the cause of African East Coast
Relapsing Fever, as a consequence of treating patients with
penicillin [133]. Treatment consisted of pre-penicillin expo-
sure to a polyclonal Fab antibody fragments against TNF-
alpha (anti-TNF-alpha Fab). In contrast, when someone is
acutely ill from sepsis the TNF that made them ill has largely
come and gone, having set in train many harmful pathways.
This is presumably what prevents specific anti-TNF neutral-
izing agents from being clinically useful in patients who are
acutely ill from sepsis [134]. There is also the practical con-
sideration of anti-TNF agents reducing the efficacy of innate
immunity in acute infections, albeit first recognized in treat-
ment of RA patients harboring chronic infections such as tu-
berculosis, in which innate immunity is an important compo-
nent [135].

Chronic inflammation is quite another story. Some 5 years
ago Karl Nathan reviewed the therapeutic challenge represent-
ed by resolving compared to non-resolving inflammatory dis-
eases [136]. Specific anti-TNF biologicals have made their
mark in a number of these non-resolving inflammatory states,
and their influence is set to expand. They are well-established
in the treatment of RA, psoriasis and Crohn’s disease, three
non-resolving conditions affecting different anatomical sites
in the periphery. Although for historical reasons these three
diseases are the province of three different medical specialties,
this has not prevented a common approach to treatment.
Moreover, treating the non-resolving inflammatory states that
constitute the neurodegenerative diseases by this same ap-
proach has, for some time now, awakened great interest in
some quarters. Unfortunately, this enthusiasm for treating
the brain for excess TNF is, to date, largely restricted to neu-
roscientists and medical specialists with prior anti-TNF expe-
rience in their field [123, 137–139]. It has yet, it seems, to
extend to neurologists [128], conceivably in part for
commercial-in-confidence reasons [140]. Nevertheless, the
value for patients in bridging this knowledge gap has been
compelling for some years, particularly with recent awareness
that brain TNF levels are a main cause of variation in synaptic
activity of glutamate, which, across the neurodegenerative
diseases, is manifested when in excess as excitotoxicity
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[110]. As discussed [110], this approach gives an important
new level of understanding on the use of not only anti-TNF
biologicals, but also nilotinab, 6-diazo-5-oxo-norleucine
(DON), 3,6 dithio-thalidomides, ceftriaxone, riluzole, and
cannabidiol (CBD) in neurodegenerative states. It also ex-
plains [141] the capacity of certain stem cells release to im-
prove post-stroke disabilities through creating an anti-
inflammatorymilieu by generating large amounts of fibroblast
growth factor rather than by replacing dead cells [142].

Relative importance of TNF and IL-1
as pharmaceutical targets

A useful starting point to discussing this topic is the 1986
report [143] that TNF induces production of IL-1. This is
consistent with later studies surrounding the first demonstra-
tion of clinical success of infliximab [144], the original spe-
cific anti-TNF biological agent, being reported to reduce IL-1
as well as TNF levels [145–147]. It also reduced IL-6 [146,
148], and IL-8 [146]. During these studies this group appears
to have been the first to described the concept of a cytokine
cascade [146, 148].

Nevertheless, while this literature provides an excellent ra-
tionale for the therapeutic use of specific anti-TNF biological
agents, there may be an opportunity, particularly regarding IL-
1, that is still relatively neglected. There is ample evidence that
in certain circumstances IL-1, induced by TNF [143], can
itself induce TNF, and the shared and unshared functions of
these two cytokines have been discussed at length [149].
These include the membrane-associate IL1 (IL-1α) [150], as
well as circulating IL-1, or IL-1β [151, 152]. In addition, TNF
and IL-1 can synergize [153–155], for example in causing
illness and pathology [156, 157]. Thus, although neutralizing
excess TNF has become the dominant pharmacological ap-
proach in this field, excess IL-1 is receiving, and certainly
warrants, further attention as a target molecule.

TNF and IL-1 received roughly equal prominence in the
earlier literature, but neutralizing the effects of TNF has
largely dominated the therapeutics literature. In part this
may be because specific anti-TNF biologicals have been
freely available laboratory and clinical tools, since the mid
1980s and mid 1990s respectively. Two specific anti-IL-1β
biologicals, canakinumab [158] and another termed
P2D7KK [159], as well as a recombinant form of a natu-
rally occurring antagonist to IL-1 receptor, Anakinra [160,
161], are available. We feel it can fairly be said to date,
however, that these agents have proved to be less potent
in treating inflammatory disease than are the specific ant-
TNF biological agents. In 2013 Dinarello [162] extensively
reviewed why this was apparently so. Nevertheless, various
applications are still vigorously explored. For example one
group has been capitalizing on their finding that IL-1

receptor antagonis t ( IL-1ra) i s an endogenous
neuroprotectant that is increased rapidly in a rat model of
focal ischemia. This has led them to enhance this antagonist
by supplementing its in vivo levels with the recombinant
form, Anakinra [163]. They have since reported that, despite
a large molecular weight that would preclude its passage
through the normal BBB after subcutaneous injection in
the rat, Anakinra entered the CSF for a therapeutic window
of up to 24 h after the stroke event, and prevented subse-
quent damage by a reported 33% [164]. This delivery meth-
od was also successful after a range of intravenous injection
protocols in patients, although clinical outcomes were not
measured [165]. An initial controlled trial produced no
harm, and was considered too underpowered to achieve
positive outcomes [166]. The most likely target for this
treatment has been considered to be to increase cerebral
blood flow. As noted previously, this group had earlier re-
ported that IL-1ra did not influence glutamate release into
synaptosomes [111].

In conclusion, we note that these recent implications of
cytokine storms for understanding encephalopathies usefully
allow disease pathogenesis to be appreciated as a single entity
through bridging the gap between TNF in systemic disease
and the brain, as well as encompassing infectious and non-
infectious disease on both sides of the blood-brain barrier.
This promises new therapeutic perspectives for important ce-
rebral disorders, particularly chronic neurodegenerative states,
as exemplified by new data linking cerebral TNF and extra-
cellular glutamate referred to earlier in this text. As we have
summarized [110], cerebral TNF and consequentially extra-
cellular cerebral glutamate are both chronically increased in
Alzheimer’s disease, post-stroke syndromes, traumatic brain
injury, and Parkinson’s disease, Huntingdon’s disease,
amylotropic lateral sclerosis, septic encephalopathy, poor
post-operative cognition, poor post-irradiation cognition,
HIV dementia, cerebral malaria and viral encephalitides.
Cerebral palsy also fits this pattern [167, 168]. As noted
[110], this relationship between TNF and glutamate is consis-
tent with excitotoxicity and synaptic shutdown being major
consequences of chronic cerebral cytokine storms, albeit with
different anatomical locations, initiators and kinetics. We sug-
gest that the physiological roles of TNF in the brain are suffi-
ciently diverse to generate, when homeostasis of this cytokine
and therefore glutamate are lost, most of the overlapping syn-
dromes encompassed by the above array of disease states.
Logical therapeutic approaches include specific anti-TNF or
anti-IL-1 agents that enter the CSF, whether through their
route of administration [139] or size [110]. With these ad-
vances, our understanding of cytokine storms is much closer
to coming of age.
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