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Angiogenesis describes the formation of blood vessels from an existing vascular network.
Anti-angiogenic drugs that target tumor blood vessels have become standard of care in
many cancer entities. Though very promising results in preclinical evaluation, anti-
angiogenic treatments fell short of expectations in clinical trials. Patients develop
resistance over time or are primarily refractory to anti-angiogenic therapies similar to
conventional chemotherapy. To further improve efficacy and outcome to these therapies,
a deeper understanding of mechanisms that mediate resistance to anti-angiogenic
therapies is needed. The field has done tremendous efforts to gain knowledge about
how tumors engage tumor cell and microenvironmental mechanisms to do so. This review
highlights the current state of knowledge with special focus on the metastatic tumor site
and potential therapeutic relevance of this understanding from a translational and
clinical perspective.
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INTRODUCTION

Angiogenesis is a biological process that describes the formation of new blood vessels from an
existing vascular network. It is essential in many physiological processes including embryonical
development or the female reproductive system (1). It is furthermore highly relevant in
many diseases.

When a developing malignant lesion reaches a critical size, diffusion does not sufficiently cover
the increased demand for nutrients and oxygen. The core of this lesion becomes hypoxic leading to
the stabilization of HIF-1 alpha. This induces the upregulation of many target genes that foster
tumor progression. Among them are several so-called pro-angiogenic genes that orchestrate the
‘angiogenic switch’ by which the tumor recruits blood vessels from the surrounding healthy tissues
enabling exponential tumor growth (2, 3). Besides this ‘classical’ mode of sprouting angiogenesis
tumors engage other mechanisms of vascularization such as intussusceptive angiogenesis or
vasculogenic mimicry (4, 5).

Long before tumor angiogenesis was viewed ‘officially’ as one central ‘hallmark of cancer’ that is
crucial for tumor progression at the primary tumor site and metastatic dissemination (6–8), Judah
Folkman in the 1970s coined the hypothesis that a malignant tumor could be forced to regression by
attacking its vasculature (9, 10). Propelled by this postulation many growth factors and signaling
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pathways that mediate (tumor-) angiogenesis have been
discovered and plethora of substances were developed to
inhibit or modulate angiogenic cascades in tumors in the
following. Studies from Hurwitz and Kabbinavar 2003 and
2004 first demonstrated that Bevacizumab, a monoclonal
antibody against vascular endothelial growth factor (VEGF)
improved response rates and prolonged survival in patients
with metastatic colorectal cancer (11, 12). Accordingly, anti-
angiogenic therapies, mainly bevacizumab and recently
ramucirumab, an anti-VEGFR2 antibody, have become an
important part of many tumor therapies including in colorectal
cancer, gastric cancer, renal cell cancer, ovarian cancer and non-
small-cell lung cancer (13). Until now most of the clinically
approved ant i -ang iogenic drugs targe t the VEGF
signaling pathway.

Compared to initial prospects which based on very promising
experimental basic research and preclinical data (14–16) as well
as pivotal clinical trials (11, 12), anti-angiogenic therapies fell
short of expectations regarding efficacy, both as a single agent
and in combination with chemotherapy. Correspondingly,
patients develop resistance towards anti-angiogenic therapies
that clinically present in the same way as refractoriness against
conventional chemotherapy which occurs during disease
progression (17). In this light, one of the major challenges of
(tumor)-angiogenesis research is to identify modes of resistance
and develop strategies to overcome them.

In parallel to the Hurwitz Trial researchers sought to find
prove and insights in how VEGF blockade with bevacizumab
exactly works to inhibit tumor growth and progression. It
became clear that the main mode of action of pharmacological
VEGF withdrawal is the correction of functional and structural
tumor blood vessel abnormalities. This has been summarized by
Jain under the term ‘vascular normalization’ (18).

It became clear that not only different tumor cell derived pro-
angiogenic growth factors contribute to resistance against VEGF
blockade, but also tumor stromal cells crucially mediate the
efficacy and response to VEGF targeted therapies.

Preclinical evaluation studies in mice exploring the efficacy of
anti-angiogenic therapies have mainly been performed in disease
models that only partially mimic clinical cancer situations. Many
experimental findings are based on subcutaneous tumor models
that involve a large primary tumor at best with metastasis at a
single organ site and often without metastasis. Clinical
evaluation and application of anti-angiogenic therapy, beside
very few indications, take place in stage IV situations, often as
second- or third-line therapy. This altogether makes preclinical
and clinical findings often difficult to compare. Still cancer
patients for the most part die from disseminated metastatic
disease and anti-angiogenic therapy is mostly used in this
disease stage. It is therefore very likely that metastatic lesions
and their tumor microenvironment significantly contribute to
resistance to anti-angiogenic therapies. This review will give a
focused overview over the current state of knowledge of
mechanisms of resistance that is mediated by the tumor
microenvironment with specific respect to the metastatic
tumor site and its potential clinical implications.
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ALTERNATIVE PATHWAYS

The simplest concept of resistance to VEGF inhibition is the
compensatory upregulation of alternative pathways.
Accordingly, several dual or multi-targeting approaches that
involve mainly the angiopoietin-2 (ANG-2)/TIE2 axis, platelet
derived growth factor receptor beta (PDGFR-beta) signaling and
fibroblast growth factor receptor (FGFR) signaling (19–25) have
been developed and tested preclinically and are e.g. with drugs
such as regorafenib or nintedanib clinically approved concepts.
Combined VEGF/PDGF signaling blockade has also been tested
in a phase I/II trial with promising efficacy and acceptable
toxicities, but further clinical studies are lacking until now (26).

Targeting the Angiopoietin/TIE2 Axis
Targeting or manipulating ANG-2/TIE2 signaling has been
demonstrated to show beneficia l effects on tumor
vascularization, vascular normalization and prolonged survival
in murine models of multimodal treatment strategies (27, 28)
(29). Clinical studies testing ANG-2/angiopoietin-1/TIE2
inhibition with various substances failed to mirror the
promising preclinical results which is presumably due to the
complex context-dependent impact of the angiopoietin/TIE2
axis on the endothelium and other tumor stromal cells such as
myeloid derived cells (30).

Targeting both VEGF and ANG-2 had additive effects on
tumor growth, vascularity and vascular normalization in
preclinical models by various mechanisms (13, 15, 17, 23–25).
The eagerly awaited McCAVE trial failed to demonstrate a
relevant advantage of combined ANG-2 and VEGF blockade
with vanucizumab, a dual humanized monoclonal antibody
binding both, VEGF and ANG-2, compared to bevacizumab
when both drugs were combined with mFOLFOX-6 in
previously untreated metastatic colorectal cancer (31). These
results were unexpected based on previous trials and have to
be further substantiated (32).

One of the perennial questions also here remains how
findings from preclinical models that focus on primary tumor
growth can be translated into stage IV clinical diseases. One
phenomenon highly relevant for systemic cancer disease that
seems to be tightly connected to resistance to anti-VEGF therapy
that can potentially overcome by ANG-2 inhibition or ANG-2/
TIE2 manipulation is the recruitment of myeloid cells to primary
tumors and metastatic lesions.
TUMOR-INFILTRATING IMMUNE CELLS

Tumor-infiltrating myeloid cells constitute the majority of the
cellular tumor stroma. They can hinder or foster tumor
progression depending on the disease entity, stage and
treatment modality, specifically in the context of anti-
angiogenic treatment (17, 24, 28–30). Accordingly, with respect
to angiogenesis tumor-infiltrating macrophages and neutrophils
contribute to resistance to anti-angiogenic therapy in multiple
ways (33, 34).
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CD11b+ GR1+ Cells
A broad spectrum of neutrophils, macrophages and myeloid-
derived suppressor cells (MDSCs) characterized by positivity for
CD11b and GR1 (Ly6G/C) have been found to be associated with
refractoriness to anti-VEGF therapy in multiple murine tumor
models (35). This was at least partially mediated by a cross-talk
between granulocyte colony-stimulating factor (G-CSF) and bone-
marrowderivedBombina variegatepeptide 8 (Bv-8) (33).Targeting
Bv-8 with a specific antibody in conjunction with metronomic
gemcitabine improved outcomes in a murine model of pancreatic
cancer by counteracting pro-angiogenic and pro-metastatic effects
of tumor-infiltrating MDSCs (36), compare Figure 1.

Whether targetingbone-marrowderived sourcesof resistance to
anti-angiogenic therapy can be translated into the clinic warrants
further careful investigation specifically in the context ofmetastasis.

Tumor-Infiltrating Macrophages/
Neutrophils Primary Tumor
Versus Metastasis
The role of tumor-infiltrating neutrophils apparently seems to be
divergent depending on the tumor stage. While their occurrence
is beneficial at early stages of CRC tumorigenesis (37), increased
infiltration of local lymph node or distant organ metastasis with
CD177+ neutrophils predicted poor outcome to bevacizumab
containing chemotherapy in patients with stage IV colorectal
cancer (25). Resistance to anti-angiogenic therapy in an anti-
VEGF therapy refractory murine model could be overcome by
combined inhibition of anti-VEGF and ANG-2 inhibitory
treatment (25). There are several potential explanations how
ANG-2 blockade can render anti-VEGF treatment induced
neutrophil recruitment. First, a specific subset of tumor-
infiltrating immune cells express TIE2 (TIE2 expressing
Frontiers in Oncology | www.frontiersin.org 3
monocytes, TEMs) which would directly be targeted by ANG-2
blockade (38). Second, ANG-2 renders the endothelium more
sensitive to immune cell binding and infiltration towards the
parenchyma/tumor (39, 40).Third, combined anti-VEGF and
ANG-2 inhibition enhanced anti-tumor activity of CD8+

cytotoxic T-cells and showed complementary effects with
immunotherapy (41). Furthermore, blockade of VEGF
enhances endothelial adhesion molecules which most likely
acts synergistically with the above named mechanisms (42, 43).
All mentioned mechanism can be seen as relevant for an
unresected primary tumor and for metastatic lesions.

There is ample evidence that VEGF inhibition triggers the
recruitment and priming of neutrophils fueling metastasis and
progression. An increased neutrophil/lymphocyte ratio predicts
outcome of patients with colorectal cancer independent of anti-
VEGF treatment (44). VEGF blockade in an experimental model of
neutrophil-driven metastasis promoted disease progression (45).
Furthermore, increased systemically circulating neutrophils were
associated with poor prognosis in patients receiving bevacizumab
containing chemotherapy (46). A particular role of metastasis-
infiltrating macrophages was recently defined in colorectal cancer
metastasis. Proangiogenic VEGFR1+ macrophages in colorectal
liver metastases predicted survival in patients, which was also true
for circulating VEGFR1+ monocytes in these individuals (47).

The exactmechanisms how circulating andmetastasis infiltrating
neutrophils/macrophages promote cancer progression remain to be
elucidated, but certainly more studies that discriminate between
primary tumor and metastatic site (25, 47) are urgently needed.

T-Cells/Immunotherapy
Immunotherapy against cancer mostly with immune checkpoint
inhibitors (IT)hasbeen integrated into treatment regimensofmany
FIGURE 1 | Graphical summary of immune microenvironmental interactions involved in resistance to antiangiogenic therapies. GR1+ cells (i) infiltrate tumors as
response to AAT-induced hypoxia and secrete proangiogenic factors; (ii) Furthermore these immune cells are suspected to suppress T-cell activity mitigating anti-
tumor immunity. Together with insufficient trafficking of immune cells along structurally and functionally insufficient blood vessels theses mechanisms provide a
rational for complementary anti-tumor activity of vascular normalizing AAT and immunotherapy. AAT, antiangiogenic therapy; EC, endothelial cell.
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cancerentities (48).There is strongevidence that efficacyof theanti-
tumor immune response is significantly hampered by specific
characteristics of the tumor vasculature and the pro-angiogenic
microenvironment. For example, CD8+ T-cell infiltration into
tumors is disturbed in part due the structural defective and
dysfunctional vascular system, T-cell effector functions are
manipulated and pro-angiogenic molecules can promote CD8+

T-cell exhaustion (49–51) whereas M2-like macrophages and
certain subtypes of T-cells secrete proangiogenic factors thereby
directly foster tumor angiogenesis (52), see also Figure 1.

Accordingly, based on many preclinical studies, combining IT
and anti-angiogenic therapy has been suggested as a promising
synergistic concept (53). Which patients and to which cost
regarding side effects will benefit from combining anti-
angiogenics and IT will be deciphered in clinical trials that are
currently running for several indications, in general these
combinations have already been approved by the FDA (54)
(see also Table 1). One potential factor that might influence
tumor entity specific response to this combination therapy is the
sheer abundance of immune cells (e.g. macrophages, T-cells)
which differs rigorously between different types of cancer (55).
VESSEL CO-OPTION

Tumors do not exclusively engage neoangiogenesis to recruit and
hold a vascular system available. Tumor cells can also grow along
existing vasculature of the diseased organ without inducing
neoangiogenesis, a term called vessel co-option 38,39.

Accordingly, the main target for current clinically approved
anti-angiogenic therapy is far less relevant as the vasculature is
not dependent on VEGF.

Vessels histologically proliferate less and exert an increased
pericyte coverage as indicators for a mature, non-activated
vascular systems. It is very important to notice that the simplest
measure of tumor vascularity, the microvessel density, does not
indicate which type of vascularization, angiogenesis or vessel co-
option is present in a tumor (56)

Vessel Co-Option as Challenge to Target
Metastatic Vessels
Especially in metastatic lesions vessel co-option is a frequently
observed characteristic of tumor progression and a long-
suspected cause of resistance to anti-angiogenic therapy (57).
The occurrence of vessel co-option was demonstrated for lung
Frontiers in Oncology | www.frontiersin.org 4
metastasis (58), liver metastasis (59) and brain metastasis (60)
among others.

Frentzas and colleagues were able to connect histopathological
growth patterns of thesemetastases that involve vessel co-option to
poor response to bevacizumab (61). They could demonstrate that
nearly half of the examined CRC liver metastases were vascularized
byvessel co-optionnot ‘classical’ angiogenesis and that patients that
suffer from metastatic disease which is driven by vessel co-option
have a poor histopathological response andparticularly detrimental
outcome to bevacizumab containing oncologic treatment.

This work furthermore demonstrated that tumor cells require
actin-related protein 2/3 complex (Arp2/3) to successfully
perform vessel- co-option. Accordingly, knockdown of ARPC3
a subunit of Arp2/3 blocked cancer cell motility thereby
inhibiting vessel co-option and re-sensitizing tumors to anti-
angiogenic therapy containing cytostatic treatment (61).

Summarizing, vessel co-option might be a major cause why
anti-angiogenic treatment is ineffective for example in a large
proportion of patients with CRC liver metastases.

Future efforts should focus on two things: (i) to design clinical
trials to prospectively prove that response to and outcome after
bevacizumab containing chemotherapy depends on
histopathological growth patterns involving vessel co-option, (ii)
develop treatment strategies that inhibit both vessel co-option and
neoangiogenesis, especially in the context of metastatic disease.
Furthermore, it is highly relevant to further clarify the role of anti
VEGF therapy with bevacizumab or other drugs in multi-modal
treatment strategies. The notion that upfront surgery followed by
chemotherapy plus bevacizumab improves patients overall survival
compared to upfront surgery plus chemotherapy without
bevacizumab in patients with metastatic colorectal cancer
underscores how relevant this might be (62).

Another challenge is to develop and clinically evaluate techniques
that can pre-therapeutically define the histopathological growth
pattern which could guide clinical treatment decisions, e.g. in
individual multimodal treatment concepts involving chemotherapy
+/- targeted therapy prior surgery (e.g. resection of colorectal liver
metastasis) or vice versa (63).
METABOLIC REPROGRAMMING OF THE
TUMOR MICROENVIRONMENT

Endothelial Cell Metabolism
From a metabolic perspective (neo)-angiogenesis is a highly
demanding cellular process. Endothelial cells (ECs) that under
TABLE 1 | overview of some currently recruiting clinical trials investigating anti-angiogenic therapy in conjunction with cancer immunotherapy.

Entity Interventional arm NCT number year of registration

Hepatocellular carcinoma Ablative therapy* + Bevacizumab + Atezolizumab NCT04727307 2021
Breast cancer Paclitaxel + Bevacizumab + Atezolizumab NCT04732598 2021
Melanoma Nivolumab+ Axitinb NCT04493203 2020
Breast Cancer Paclitaxel + Bevacizumab + Atezolizumab NCT04408118 2020
Rectal cancer atezolizumab + bevacizumab NCT04017455 2019
NSCLC sintilimab + bevacizumab NCT04213170 2019
May 2022 | Volum
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quiescent, steady state conditions line the inner surface of each
blood vessel, maintain their cellular homeostasis under opulent
conditions. They consume low amounts of energy while being
exposed to the most comprehensive environment, the blood
stream. When a growing malignant lesion secretes
proangiogenic signaling molecules that activate endothelial
cells this relation between supply and demand is completely
shifted. The growing vessel, initially mainly constituted by the
endothelial sprout, elongates towards a nutrient poor and
hypoxic, acidic environment. To execute this challenging task,
endothelial cells undergo a ‘metabolic’ switch that involves
upregulation of key metabolic pathways. The knowledge of
endothelial specific metabolic features is just beginning to be
expanded, especially the specific role of tumor endothelial cells.
From a clinical perspective endothelial cell metabolism offers
many opportunities to explore novel therapeutic targets that
might contribute to overcome resistance to growth factor
targeted strategies.

Endothelial Cell Predilection for Glycolysis
Glycolysis is until now the best characterized metabolic pathway
in endothelial cells. Specifically, tumor endothelial cells
upregulate their glucose metabolism by several mechanisms.
This is noteworthy as tumor cells are also considered to use
mainly ‘aerobic’ glycolysis as energy resource and to fuel side
pathways. Among other things the following: i) tumor ECs
upregulate the glucose transporter GLUT-1 (64), ii) tumor ECs
directly or indirectly upregulate the expression of rate limiting
glycolytic enzymes, e.g. Phosphofructokinase-2/fructose-2,6-
bisphosphatase (PFKFB), specifically its isoenzyme PFKFB3
(65) and iii) ECs express high amounts of lactate transporters
(e.g. MCT1) (66).

Knockdown of endothelial cell PFKFB3 inhibited vessel
sprouting in vitro and vivo. The fact that manipulation of the
endothelial cell glycolytic metabolism was able to alter
endothelial cell sprout differentiation showed the immense role
of endothelial cell metabolism that might overrule even growth
factor receptor signals (67). This suggested that endothelial cell
metabolism as a growth factor independent engine of vessel
sprouting and angiogenesis might contribute to resistance to
anti-angiogenic therapy (68).
PFKFB3 as Novel Anti-Angiogenic Target
Indeed, PFKFB3 has then been proven to represent a promising
target to reduce pathological angiogenesis in tumors and other
diseases (58, 62, 63). Partial genetic or pharmacological
inhibition of PFKFB3 was shown to normalize the tumor
vasculature and reduce invasiveness in several tumor mouse
models. This was accompanied not by reduced tumor growth
at the primary tumor site, the conventional read out for efficacy
of anti-angiogenic drugs, but by better control of tumor
metastasis indication improved vascular normalization.
Especially the small molecule compound 3-(3-pyri- dinyl)-1-
(4-pyridinyl)-2-propen-1-one (3PO), an inhibitor of PFKFB3
was shown to control metastasis at an intermediate well tolerable
dose in preclinical studies (65).
Frontiers in Oncology | www.frontiersin.org 5
Inhibition of PFKFB3 with 3PO was shown to exert
complementary effects with VEGF blockade by bevacizumab in
an orthotopic PDX mouse model of glioblastoma (69). This was
mediated by a prolonged vascular normalization window and
improved delivery of chemotherapy indicating that inhibition of
EC glycolysis might contribute to resistance towards
antiangiogenic therapy in glioblastoma.

Role of Endothelial Oxidative
Phosphorylation in Tumor Angiogenesis
Based on early pioneer work endothelial cells have long been
viewed as similar to cancer cells to exert a ‘warburg-like’
metabolic phenotype (58, 59). This included the presumption
that ECs have very few and dysfunctional mitochondria (70).

This has recently been amended as mitochondrial metabolism
and oxidative phosphorylation (oxphos) indeed play an
important role in activated endothelial cells and are indeed
functionate (71, 72).

Manipulating endothelial cell mitochondrial metabolism has
broad effects on endothelial cell integrity and function (71, 73–
75). Pharmacological targeting of the mitochondrial respiratory
chain and genetic ablation of mitochondrial oxidative
phosphorylation reduced tumor growth and vascularity in
mice. Surprisingly, metastatic dissemination was increased in
mice were endothelial cells lacked functional oxphos (71). The
genetic approach included a maximum achievable Cre
recombination mediated gene deletion. These results are
probably comparable to maximum blockade of EC glycolysis
from others (76). Dose escalation to higher doses of 3PO showed
a higher efficacy regarding tumor growth reduction (in
comparison to lower doses) of primary tumors in mice but
failed to control metastasis (76). It remains to be elucidated
whether this effect is specific for the manipulation of tumor
vessel metabolism or a general phenomenon (compare section
‘dosing of anti-angiogenic therapies). It is also possible that
manipulation of endothelial cell metabolism whether it is
cytosolic glucose metabolism or mitochondrial metabolism
induces cellular signaling processes that directly facilitate
metastatic dissemination.

Lactate as Alternative Substrate and
Signaling Molecule
Potential metabolism related pathways that could contribute to
resistance to anti-angiogenic therapy are lactate induced
signaling pathways. Endothelial cells were shown to be highly
activated by tumor cell derived lactate which induces a NF-kb/
Interleukin-8 driven proangiogenic stimulus (77). Beside this
lactate induced signaling cues it is possible that ECs take up
lactate to metabolize it to pyruvate which is then catabolized via
the respiratory chain to generate ATP by oxidative
phosphorylation (71) a form of metabolic symbiosis similar to
processes in the brain (78, 79). Beside the fact that lactate might
serve as an alternative substrate in conditions where glucose is
scarce, e.g. in the tumor microenvironment, elimination of
lactate by endothelial cells might alleviate lactate induced
acidity and might limit proangiogenic lactate induced
signaling, compare Figure 2.
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Endothelial NF-kB and Metastasis
Activated NF-kB signaling in ECs was shown to be associated
with poor pericyte coverage. Targeting EC glycolysis reduced
NF-kB signaling, tightened EC intercellular junctions and
increased pericyte coverage which might in part explain
favourable results on metastasis (65).

Interestingly, endothelial specific transgenic mice, that express
a ‘superinhibitory’ mutant of ikBa, leading to impaired NF-kB
downstream signaling in endothelial cells, showed an impaired
endothelial barrier. This resulted in increasedmetastasis indicating
that dysfunctional endothelial NF-kB signaling increases the risk
or dynamic of tumor cell dissemination (80). This is not implicitly
in contrast to each other, but rather highlights a highly prominent
role of endothelial cell NF-kB signaling in cancer progression and
metastasis that warrants further investigation. Accordingly,
therapeutic approaches that might interfere with EC NF-kB
signaling should be carefully designed to modulate
overactivation of this pathway without totally inhibit NF-kB
related control of endothelial homeostasis. Whether and how
direct or indirect targeting of NF-kB signaling in ECs that has
been designed to treat inflammatory diseases (81) can be exploited
as anti-angiogenic therapies has to be further evaluated.

Modulation of TAM Metabolism as
Therapeutic Opportunity
Another aspect that could contribute to novel pharmacological
opportunities to inhibit tumor and stromal metabolism to
overcome resistance of the metastatic tumor microenvironment is
to gain a deeper understanding of how stromal cells interact with
eachotheronametabolic level andhowtumorcells andstroma cells
co-operate to foster tumor progression (compare section above).
E.g. tumor associated macrophages (TAMs) can be manipulated
towards a hyper-glycolytic metabolic phenotype thereby ‘steeling’
glucose from endothelial cells which results in vascular
Frontiers in Oncology | www.frontiersin.org 6
normalization, lowers hypoxia and decreases metastasis (82).
Tumor derived lactate acted as a signaling molecule that polarizes
TAMs toward an M2-like differentiation thereby contributing to
tumor progression (82, 83). Studies that characterize the metabolic
phenotype of TAMs are urgently needed to find out whether and
how TAM metabolism contributes to tumor progression,
metastasis and resistance to anti-angiogenic therapy.

Tumor Cell Metabolism and Anti-
Angiogenic Treatment
Another aspect is how targeting tumor and stromal metabolism
can influence efficacy of anti-angiogenic compounds. Navarro
et al. could demonstrate that vascular normalization by anti-
angiogenic therapy modulates tumor cell metabolism away from
glycolysis towards OxPhos. This sensitized tumor cells to the
mitochondrial inhibitor ME344. ME344 acted synergistically
with several anti-angiogenic compounds among them
regorafenib which showed resistance as a single-agent (84).
A phase 0/I trial demonstrated an increased efficacy of ME344
plus bevacizumab compared to bevacizumab as monotherapy in
treatment naïve breast cancer (85). Besides the fact that this
concept is innovative it is one of the very few trials that
demonstrates efficacy of anti-angiogenic/targeted therapies
without conventional chemotherapy and beyond in the
neoadjuvant setting. Whether and how this concept is effective
in metastatic diseases has to be further pursued.
DOSING OF
ANTI-ANGIOGENIC THERAPIES

Accumulating evidence suggests that dosing of anti-angiogenic
therapy is more complex than previously thought, especially
compared to intense multi-substance chemotherapy regimens.
FIGURE 2 | Model of the potential dual role of tumor-derived lactate. (i) as a signaling molecule that triggers a NF-kB dependent autocrine proangiogenic program
via IL-8 and (ii) as an alternative substrate that ECs metabolize via the respiratory chain to produce ATP. MCT1, monocarboxylate transporter 1; EC, endothelial cell;
OxPhos, oxidative phosphorylation; ATP, adenosintriphosphate; NF-kB, nuclear factor kappa B.
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Dose escalation of bevacizumab from 5 mg/kg to 10 mg/kg in
combination with fluorouracil and leucovorin failed to further
improve survival and response to treatment compared to fluorouracil
and leucovorin alone in patients with metastatic colorectal cancer.
Furthermore, only the lower dose of bevacizumab showed a significant
improvement in response rates not the high dose (11).

Reasons for this clinical finding can be multifaceted. Besides
biases from the study design and patient recruitment of this study a
potential mechanism behind this is related to the window of
normalization, in which structural and functional abnormalities
of insufficient tumor vessels become corrected improving delivery
of chemotherapy. This is dose and time-dependent and varies from
tumor entity to entity and potentially from patient to patient
making clinical application and patient selection even more
complicated (86, 87). Preclinical data strongly support the context
that a maximum reduction of both tumor and stromal cell derived
VEGF can cause detrimental effects rather than improving cancer
outcome (88, 89).Additionally, dose reductions ofVEGF inhibition
alone or in combinationwith the inhibitionof other pro-angiogenic
pathways demonstrated to be superior to higher doses, e.g. in terms
of hypoxia (22, 23).

Prior to the introduction of novel anti-angiogenic treatments
to clinical application, lessons learned regarding the importance
of dosing of anti-angiogenic therapies should be considered.
ECM COMPONENTS OF THE
TUMOR STROMA

Empty Basement Membrane Sleeves
Another important question with high clinical relevance is how
the (metastatic) tumor reacts on a therapy pause due to drug
intolerance, scheduled drug holiday or prior surgery. In several
murine tumor models, both murine orthotopic and
subcutaneous models, intense VEGF withdrawal eliminates the
endothelial compartment of a tumor blood vessel but spares
vascular support structures, e.g. the basement membrane and
pericytes (14, 82, 83). Following interruption of VEGF blockade
endothelial cells rapidly regrow into these scaffolds (90).

Besides of tumor cells and stromal cells solid tumors are
composed of extracellular matrix (ECM).

It was observed that VEGF blockade induces the deposition of
extracellular matrix (ECM) consisting of collagen I and IV,
hyaluronic acid and glycosaminoglycans. This is the case in both
murine primary tumors, murine and human metastasis (22, 91).
Constant deposition of these ECM components over time
contributes to an increased stiffness within tumors. This
contributes to therapy resistance by several proposed
mechanisms. The increased intratumoral mechanical force
compresses tumor blood vessels which hinders delivery of
cytostatic therapy (92–94).

ECM Deposition in Response to VEGF
Inhibition in Mice and Humans
Desmoplastic stromal compositions are known to be associated
with poor patient outcome e.g. in pancreatic cancer independent
Frontiers in Oncology | www.frontiersin.org 7
of anti-angiogenic therapy (95), it is therefore particular
detrimental that VEGF inhibition might even exacerbate this
situation and potentially contributes to primary resistance of
anti-angiogenic drugs in several cancer entities. A potential
strategy to neutralize deposition of extracellular matrix as a
response to VEGF inhibition in colorectal cancer liver
metastases has been proposed in murine tumor models.
Additional therapy with polyethylene glycol conjugated (PEG)
hyaluronidase in combination with VEGF inhibition led to a
significant reduction of hyaluronic acid in murine colorectal liver
metastases compared VEGF blockade as monotherapy (91).
Combination treatment of B20.4-1.1, a monoclonal VEGF
neutralizing antibody, and PEG- hyaluronidase significantly
improved tumor tissue perfusion with Hoechst 33342, a
surrogate marker for delivery of cytostatic therapy compared
to B20 alone. Furthermore, the combination therapy in
conjunction with 5-FU significantly prolonged mice survival
compared to B20 alone.

To summarize, deposition of excessive amounts of
extracellular matrix components as response to anti-VEGF
therapy might represent a targetable mechanism of acquired
resistance of the metastatic microenvironment which warrants
further investigation.
STIFFNESS/METASTASIS-
ASSOCIATED FIBROBLASTS

Primary tumors and metastasis are composed of tumor cells and
stromal cells and a considerable amount of extracellular matrix
(ECM). Structurally and functionally this tumor ECM composes
basement membranes of mainly tumor blood vessels and the
ECM of the interstitium (96). The latter besides mechanical and
secretory functions that are comparable to healthy organs,
significantly contributes to cancer disease progression (97) by
several mechanisms. Besides storing growth factors (97) and
serving as migration scaffold for several cell types, the ECM
contributes to a mechanical phenomenon called tumor stiffness.
Stiffness is defined as the capacity of a tissue to resist mechanical
force and is composed in tumors mainly by the ECM. Increased
tumor stiffness has been identified as a prognostic factor
correlated with poor prognosis in several cancer entities (98).
A significant determinant of stiffness in tumors is the activation
state of cancer associated fibroblasts (CAFs). Activated CAFs
induce a constant production of extracellular matrix components
such as collagen I and fibronectin, growth factors and employ
contractile forces that transforms tissue composition to increase
stiffness (92, 93). Increased tissue stiffness has long been
considered as resistance factor for anti-angiogenic therapy.
Specifically, a role as resistance factor for efficacy of anti-
angiogenic therapy in metastasis has recently confined by Shen
et al. They could demonstrate that colorectal cancer liver
metastases (CRCLM) show a significantly higher rate of
stiffness than primary colorectal tumors. Increased stiffness was
mainly driven by activation of metastasis associated fibroblasts
(MAFs). These MAFs together with the non-cellular tumor
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stroma composed a proangiogenic microenvironment. MAF
activation and stiffness could be targeted by inhibitors of the
renin-angiotensin-system (RAS). In CRCLM pharmacological
targeting of metastasis stiffness with RAAS inhibitors produced
favorable outcomes in conjunction with bevacizumab and
chemotherapy compared to chemotherapy and bevacizumab
alone (99), compare Figure 3. These findings elaborate a mode
of resistance against anti-angiogenic therapy specifically for the
metastatic environment and suggest a potent and already
clinically approved strategy to overcome this mode (100).

YAP/TAZ as Multi-Faceted Approach to
Overcome Resistance
Another very interesting aspect is the role of endothelial YAP (Yes-
associatedprotein) andTAZ(transcriptional coactivatorwithPDZ-
binding motif) which are important regulators of vascular
development (101, 102) and are controlled by VEGF and also by
mechanical signals (103). Accordingly, YAP/TAZ is involved in
both, signaling of the therapeutic target and a potent resistance
mechanism of anti-angiogenic therapy inmetastatic disease (99). It
was recently shown that genetic and pharmacological targeting of
endothelial YAP/TAZ inhibits primary colorectal cancer tumor
growth in mice. YAP/TAZ nuclear localization was induced by
VEGFandTNF and could be inhibited byVerteporfin, a YAP/TAZ
inhibitor, in a STAT3 dependent manner (104). Whether
pharmacological YAP/TAZ manipulation (105) with verteporfin
can be exploited to render (also metastatic) resistance to anti-
angiogenic therapy has to be further explored.
DISCUSSION

Anti-angiogenic therapies have become part of many mostly
palliative treatment regimens. After very successful preclinical
Frontiers in Oncology | www.frontiersin.org 8
work and promising first clinical trials 20 years ago, anti-
angiogenic therapies failed to revolutionize anti-cancer
therapies. Resistance appears after time similar to conventional
cytostatic drugs. Tremendous efforts have been performed to
uncover potential mechanisms of resistance to anti-angiogenic
therapies. Though still nearly two decades after clinical approval
of bevacizumab, targeting VEGF is the only broadly clinically
applied antiangiogenic concept, not only in colorectal cancer.

One major burden in the development of first-generation
anti-angiogenic therapy was to disregard several initially already
evident facts: (i) subcutaneous murine tumor models are very
different to polytopic metastasized human cancers (ii) vessel co-
option is insufficiently targetable with VEGF inhibition (iii)
though VEGF is a very potent proangiogenic factor many
other cytokines can drive angiogenesis instead (iv) the complex
microenvironment(s) of polytopic metastasized cancer diseases
exploits a plethora of mechanisms to foster tumor progression
independent of VEGF.

Accordingly, future studies should engage models that
involve metastasis and test their hypothesis in (ideally) large
human cohorts. The field has to balance a difficult bargain
between two challenges: first, to bring novel strategies that
apparently are more effective than ‘just’ inhibiting VEGF
quickly to clinical application, among them combined VEGF
and ANG-2 blockade or novel metabolism targeted strategies
such as PFKFB3 inhibition; and second, to exclude as best as
possible that these interventions produce detrimental unwanted
modulations of the tumor and its microenvironment that
exhaust the beneficial effects that were pronounced in
preclinical studies. This has the potential to further improve
patients’ outcome in colorectal cancer, brain cancer, ovarian
cancer, esophagogastric cancer and many other entities (106).

Additionally, serum biomarkers and radiologic tools, e.g.
image guided determination of the vascular normalization
FIGURE 3 | Complex interactions between endothelium and cellular and non-cellular components of the extracellular tumor matrix. Increased tumor stiffness which
is in part provoked by AAT itself leads to poor response to AAT and chemotherapy. Tumor stiffness can be targeted by inhibitors of the RAAS, sensitizing patients to
therapy. EC, Endothelium; ECM, extracellular matrix; CAF, cancer-associated fibroblast; AAT, anti-angiogenic therapy; RAAS, renin-angiotensin-aldosteron-system.
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windows (107) are urgently needed to be able to pre-select
patients. This would spare unnecessary or even harmful
treatments for individuals and uncountable costs for health
care systems.
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