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Quantitative proteomic landscape of metaplastic
breast carcinoma pathological subtypes and their
relationship to triple-negative tumors
Sabra I. Djomehri 1,2,3, Maria E. Gonzalez1,3, Felipe da Veiga Leprevost1, Shilpa R. Tekula 1,3, Hui-Yin Chang1,

Marissa J. White4, Ashley Cimino-Mathews4, Boris Burman1,3, Venkatesha Basrur 1, Pedram Argani4,

Alexey I. Nesvizhskii 1,5,6✉ & Celina G. Kleer1,3,6✉

Metaplastic breast carcinoma (MBC) is a highly aggressive form of triple-negative cancer

(TNBC), defined by the presence of metaplastic components of spindle, squamous, or sar-

comatoid histology. The protein profiles underpinning the pathological subtypes and meta-

static behavior of MBC are unknown. Using multiplex quantitative tandem mass tag-based

proteomics we quantify 5798 proteins in MBC, TNBC, and normal breast from 27 patients.

Comparing MBC and TNBC protein profiles we show MBC-specific increases related to

epithelial-to-mesenchymal transition and extracellular matrix, and reduced metabolic path-

ways. MBC subtypes exhibit distinct upregulated profiles, including translation and ribosomal

events in spindle, inflammation- and apical junction-related proteins in squamous, and

extracellular matrix proteins in sarcomatoid subtypes. Comparison of the proteomes of

human spindle MBC with mouse spindle (CCN6 knockout) MBC tumors reveals a shared

spindle-specific signature of 17 upregulated proteins involved in translation and 19 down-

regulated proteins with roles in cell metabolism. These data identify potential subtype spe-

cific MBC biomarkers and therapeutic targets.
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Triple-negative breast cancer (TNBC) comprise a hetero-
geneous group of tumors with varying histologies and
prognosis1. The most lethal subtype of TNBC is termed

metaplastic breast carcinomas (MBC), a unique and hetero-
geneous group that account for 0.2‒5% of all breast cancers2,3.
MBCs are characterized by the presence of a glandular epithelial
component and a hallmark non-glandular metaplastic compo-
nent that may consist of cells with spindle, squamous, and/or
sarcomatoid (i.e., chondroid or osseous) features4,5. Clinically,
MBCs are more metastatic and chemoresistant than non-
metaplastic TNBC, with the spindle subtype reported to have
the worst prognosis6. This significant clinical challenge highlights
the need to distinguish MBC tumors for diagnostic and precision
treatment purposes.

The molecular alterations that distinguish MBC from TNBC,
and the protein profiles that determine MBC histological subtypes
are poorly understood7–9. To date, few studies have investigated
the genomic and transcriptomic features of MBC10–12. Geneti-
cally, MBCs have a high level of genomic instability, display a
complex copy number variation pattern, and tend to harbor
significantly more mutations in PIK3CA, WNT, and TP53 com-
pared with TNBCs, as well as presenting loss of CDKN2A and
overexpression and amplification of EGFR13–15. Studies have
been unable to show a genetic basis among MBC histologic
subtypes, but have recently demonstrated distinct profiles at the
transcriptomic level10. However, little is known about the
mechanisms of MBC metastasis, and there are no reliable bio-
markers or targets of therapy, underscoring the need to identify
protein profiles specific to MBC and subtypes.

Our lab has generated MMTV-cre;Ccn6fl/fl knockout mice
which form mammary tumors that recapitulate high-grade
human MBC with predominant spindle components both mor-
phologically and transcriptionally16. Using this model, we have
identified an 87-gene signature common between mouse and
human MBCs including the transcription and translation reg-
ulatory proteins HMGA2 and IGF2BP217. In addition, histolo-
gical and immunophenotypical evidence suggests that MBCs are
enriched in epithelial-to-mesenchymal (EMT) and different cel-
lular compartment express stemness markers18–20. However, the
protein profiles of human and mouse MBC are unknown.

Few proteomics studies to date explore invasive breast carci-
noma signatures, with very limited information on MBC and
normal tissue counterparts21–23. Here, we use human tissue
samples of MBC, TNBC, and normal breast and a quantitative
custom-built platform to test the hypothesis that the histological
subtypes of MBC may have distinct protein profiles that may
result in their pathological phenotypic diversity and aggressive
clinical behavior. We employ tandem mass tag (TMT) based
proteomics technology and Philosopher/TMT-Integrator, a
computational pipeline that our group has recently developed and
optimized for the analysis of large patient cohorts, to process the
acquired mass spectrometry data. By unraveling the protein sig-
natures within MBC and their relationship to TNBC and normal
breast tissue, our study advances the understanding of the biology
of MBC and provides potential diagnostic and prognostic mar-
kers, as well as testable targets of therapy specific to MBC
pathological subtypes.

Results
Human samples and clinical data. To elucidate the proteomic
profile of MBC and understand the differences in protein
expression with TNBC and normal breast tissues, we assembled a
clinical cohort of 15 frozen MBC which were classified clinically
according to their predominant metaplastic component into the
following subtypes: spindle (n= 6), squamous (n= 4), and

sarcomatoid (n= 5). In addition, we included 6 non-metaplastic
TNBCs and 6 normal adjacent breast tissues (Table 1, Fig. 1a). All
patients were women with a mean age of 55 years old (range
33–89 years old). The majority (14 of 15, 93.33%) of MBC and all
TNBC were of histological grade 3 (of 3), all were negative for
estrogen and progesterone receptor, and for HER2/neu over-
expression. Of the 15 MBC, 11 (78.6%) were stage I/II and 3
(21.4%) stage III/IV at the time of diagnosis. Of the 6 TNBC, 5
(83.3%) were stage I/II and 1 (16.6%) stage III at diagnosis. At
follow-up, 4 of 14 (28.6%) MBC, and 1 of 6 (16.66%) TNBC,
developed distant metastasis to the lungs, liver, skin, and bone.

The proteome of human metaplastic breast carcinoma. We
leveraged the increased throughput of multiplexed TMT 10-plex
proteomics and our automated and robust computational data
analysis pipeline to generate a quantitative proteome profile of 27
human tissue samples (Fig. 1b). We arranged the samples into
three experimental groups appropriate for the 10-plex TMT iso-
baric labeling strategy (n= 10 samples per experiment; 9 tissue
samples and 1 reference sample consisting of a pool of all 27
tissues) (Supplementary Table 1). The three proteomic TMT 10-
plex experiments identified 82,251, 84,667, and 84,386 peptides,
respectively, to a depth of 5798 unique proteins across all samples
(1% protein and 1% PSM false discovery rate). We used the
MSFragger and Philosopher tools (v20181128, github.com/Nesvi-
lab/philosopher) for peptide identification, protein inference, FDR
filtering, and extraction of quantification information form raw
data, and TMT-Integrator for additional quality assessment and
filtering, PSM selection, outlier removal, peptide-to-protein quan-
tification roll-up, and normalization (Fig. 1b). We performed a
gold standard data imputation method using the multivariate
imputation by chained equations (mice)24 package in R, to pre-
serve statistical power and sample size by producing unbiased
estimates of the missing values. Next, we performed standard batch
correction in R, and the resulting expression matrix was used for
all downstream analyses (Supplementary Fig. 1a–b).

Among the 5798 proteins found in the MBC proteome, 5635
unique proteins passed through quality filters in the TMT-
Integrator algorithm, consistent with each sample. The distribu-
tion of all patient samples and principal component analysis
(PCA) shows a clear distinction between normal breast and
tumor proteomes (Fig. 2a). Unsupervised k-means clustering
methods between MBC and TNBC proteomes and hierarchical
clustering demonstrates modest distinction of MBC subtypes and
TNBC, the latter overlapping most with spindle and squamous
MBC (Fig. 2b, Supplementary Fig. 2). In addition, 1 of the 15
MBC samples was excluded from downstream analyses since it
was confirmed by histology and proteomics that the piece cut for
analysis contained only normal tissue.

General features of the MBC proteome relative to normal tissues
demonstrate a global downregulation program involving major
tumor suppressors, extracellular matrix activities, and wound
healing responses according to the clustering analysis (Fig. 2b),
while enrichment analysis reveals the top GO molecular function
for upregulated MBC proteins is procollagen-proline dioxygenase
activity, and aldehyde dehydrogenase activity for downregulated
proteins (Supplementary Fig. 3a–c, Supplementary Table 2). The
MBC proteome establishes with functional relevance that MBC
tumors and normal tissues have distinct protein profiles and
exhibit deregulation of tumorigenic pathways.

The MBC proteome relative to TNBC and within MBC sub-
types. Next, we sought to test the hypothesis that MBC histo-
pathological subtypes are associated with specific proteomic
signatures. We grouped patient samples according to histological

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15283-z

2 NATURE COMMUNICATIONS |         (2020) 11:1723 | https://doi.org/10.1038/s41467-020-15283-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


T
ab

le
1
C
lin

ic
al

an
d
hi
st
op

at
ho

lo
gi
ca
l
fe
at
ur
es

of
th
e
tu
m
or
s
in

ou
r
pa

ti
en

t
co
ho

rt
.

C
as
e
#

A
ge

T
um

or
si
ze

(c
m
)

D
ia
gn

os
is

H
is
to
lo
gi
c

su
bt
yp

e
T
um

or
gr
ad

e
S
ta
ge

at
di
ag

no
si
s

D
is
ta
nt

m
et
as
ta
si
s

T
im

e
to

m
et
as
ta
si
ze

(m
on

th
s)

S
ta
tu
s
at

fo
llo

w
-u
p

1
4
3

4
M
BC

C
ho

nd
ro
id

3
T
2N

0
N
o

N
ED

2
8
9

2.
8

M
BC

C
ho

nd
ro
id

3
T
2N

x
Li
ve
r,
lu
ng

12
D
O
D

3
4
6

1.
6

M
BC

C
ho

nd
ro
id

3
T
1c
N
0

N
o

N
ED

4
6
8

3
M
BC

C
ho

nd
ro
id
,

os
se
ou

s
3

T
2N

0
N
o

N
ED

5
39

1.
8

M
BC

C
ho

nd
ro
id

3
T
3

N
o

N
ED

6
50

29
M
BC

Sp
in
dl
e,

os
se
ou

s
3

T
4
N
0

N
o

N
ED

7
52

2.
7

M
BC

Sp
in
dl
e

3
T
2N

x
Sk
in
,a

bd
om

en
11

A
W

D
8

6
4

2
M
BC

Sp
in
dl
e

3
T
1c
N
x

N
o

N
ED

9
6
8

5.
5

M
BC

Sp
in
dl
e

3
T
3N

0
N
o

D
W

D
10

38
3

M
BC

Sp
in
dl
e

3
T
2N

2
N
o

A
t
di
ag
no

si
s

A
W

D
11

4
7

4
.2

M
BC

Sp
in
dl
e
(p
ar
tia

l
sq
ua
m
ou

s)
2

T
2N

0
N
o

N
ED

12
6
0

6
M
BC

Sq
ua
m
ou

s
(p
ar
tia

l
sp
in
dl
e)

3
T
3N

1
Li
ve
r,

lu
ng

,b
on

e
A
t
di
ag
no

si
s

D
O
D

13
55

4
M
BC

Sq
ua
m
ou

s
(p
ar
tia

l
sp
in
dl
e)

3
T
2N

0
N
o

N
ED

14
53

4
.5

M
BC

Sq
ua
m
ou

s
3

T
2N

x
Lu
ng

6
A
W

D
15

8
1

10
.1

M
BC

Sq
ua
m
ou

s
3

T
3N

0
N
o

N
ED

16
50

2.
6

T
N
BC

ID
C

3
T
2N

1m
i

N
o

A
t
di
ag
no

si
s

N
ED

17
33

2.
1

T
N
BC

ID
C

3
T
2N

0
N
o

N
ED

18
37

2
T
N
BC

ID
C
(a
po

cr
in
e)

3
T
1c
N
0

N
o

N
ED

19
57

5.
9

T
N
BC

ID
C
(n
eu

ro
-

en
do

cr
in
e

fe
at
ur
es
)

3
T
3N

1a
Li
ve
r

15
A
W

D

20
53

2.
9

T
N
BC

ID
C

3
T
2N

0
N
o

N
ED

21
73

2.
8

T
N
BC

ID
C
(m

ed
ul
la
ry

fe
at
ur
es
)

3
T
2N

0
N
o

N
ED

22
–2
7

33
–7
3

‒
N
or
m
al

ID
C
in
va
si
ve

du
ct
al

ca
rc
in
om

a,
N
ED

no
ev
id
en

ce
of

di
se
as
e,

A
W
D
al
iv
e
w
ith

di
se
as
e,

D
O
D
in

ho
sp
ic
e
or

de
ad

of
di
se
as
e,

D
W
D
de

ad
w
ith

di
se
as
e.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15283-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1723 | https://doi.org/10.1038/s41467-020-15283-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


MBC subtypes, where samples with mixed features were grouped
in the subtype belonging to their dominant histology (i.e., squa-
mous with partial spindle features was grouped to squamous
subgroup), and performed differential expression analysis of MBC
relative to TNBC, and across MBC subtypes (Fig. 3). Compared
with TNBC, MBC shows deregulation of the immune system
(humoral immune responses; p < 1e−04) and extracellular struc-
ture organization. Our analyses also reveal distinct functional
processes among MBC subtypes, such as enriched keratinization
(epidermal and keratinocyte differentiation) in squamous,

regulation of proteolysis and protein activation cascade in spindle,
and leukocyte activation and exocytosis in sarcomatoid (Fig. 3).
These results uncover common as well as distinct cellular differ-
entiation profiles within the MBC proteome.

To gain a better understanding of the functional differences
within MBC pathological subtypes and elucidate potentially unique
protein signatures, we applied gene set enrichment (GSEA)
analysis from the molecular signature database (MSigDB) using
hallmark (Fig. 4), canonical pathways (Supplementary Fig. 4,
Supplementary Data 1–4) and GO gene sets (Supplementary Fig. 5,
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Fig. 1 Human clinical samples and quantitative proteomics workflow. a Representative images of hematoxylin and eosin stained tissues from our patient
cohort, including 15 metaplastic carcinomas (MBC, 6 spindle, 4 squamous, and 4 sarcomatoid), 6 triple-negative (TNBC), and 6 normal breast. Scale bar=
50 μm. b Workflow of quantitative mass spectrometry profiling (cartoons created with BioRender.com). For data acquisition we assembled the 27 samples
into 3 experimental groups for 10-plex LC-MS/MS tandem mass tag (TMT) isobaric labeling. For data processing and quantification, we used two
computational pipelines, Philosopher/TMT-Integrator, and generated a combined protein expression matrix for the 3 experiments used for downstream
analyses, including hierarchical clustering, differential expression tests, statistical analysis, and biological inference.
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Supplementary Data 1–4). Compared with TNBC, the top
upregulated hallmark across MBCs is EMT while oxidative
phosphorylation (OXPHOS) is the top downregulated hallmark
pathway (Fig. 4).

GSEA hallmark analyses reveal distinct up- and downregulated
protein profiles among MBC subtypes (Fig. 4), and GSEA
enrichment plots delineate specific differences in top pathways
(Fig. 5). Comparison within pathological subtypes show that
spindle MBC has high MYC and E2F targets, and ribosome
pathway proteins (KEGG pathways; Supplementary Fig. 4),
squamous MBC has high interferon gamma (and broad inflam-
matory responses), TP53 and PI3K signaling, apical junction, and

low OXPHOS, MYC, and E2F targets, while sarcomatoid MBC has
high EMT and OXPHOS, and low interferon gamma, MTORC1,
and PI3K signaling (Figs. 4, 5). Visualization of top enriched up-
and downregulated terms and their associated proteins are shown
by protein networks (Supplementary Fig. 6) which can be
investigated as potential therapeutic candidates. These up- and
downregulated protein signatures were further validated by
additional differential expression analyses of each MBC relative
to TNBC (Supplementary Fig. 7). Together, these analyses pinpoint
specific pathways which may operate in MBC compared with
TNBC, and highlight MBC subtype-specific pathways for further
functional investigations.
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MBC subtype-specific mutational signatures by WES analysis.
Based on our discovery of subtype-specific hallmark protein
pathways in MBC, we set out to elucidate the hypothesis that each
pathway may exhibit distinct DNA mutational profiles. Out of the
15 MBC tumors, 10 pairs of tumors with their normal tissue
counterparts passed initial quality control for whole-exome
sequencing (WES) (Fig. 6). Most of the variants observed were
intronic (Fig. 6a), and when filtering only missense and loss-of-
function or LoF (Fig. 6b), we found that MBCs share frequent
somatic mutations in TP53 (70%), MUC17 (60%), PLEC (30%),
CRYBG2 (40%), and ZNF681 (30%) (Fig. 6c). Spindle and

squamous tumors share AHNAK mutations (AHNAK, AHNAK2
(80%) in spindle; AHNAK (33%), AHNAK (67%) in squamous)
and PI3K family mutations (PIK3C2A (20%) in spindle; PIK3CA
(33%) in squamous). Squamous MBC also harbor mutations
in MTOR, NOTCH3, and PTEN (33%). Sarcomatoid MBC show
genetic alterations in cadherin, calcium ion and WNT signaling,
with frequent mutations in the protocadherin gene cluster (PCDH
family), and CDH7, MAP3K2, and FAT1 (50%) (Fig. 6b, e). In
addition, allele frequencies are similar for variants across all
subtypes (Fig. 6d). Taken together, these data show that MBCs
share mutations in five genes, with only TP53 having been
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reported previously25,26. These data also reveal that sarcomatoid
MBC has a distinct mutational profile from spindle and squa-
mous tumors, highlighting the importance of the proteomics
landscape in distinguishing within pathological subtypes, which
paves the way for mechanistic and functional studies elucidating
the biology of these tumors.

Comparison of human and mouse MBC proteomes. To further
refine the protein landscape of spindle MBC and determine com-
mon deregulated proteins between human and mouse tumors, we
performed quantitative proteomics on MMTV-Cre;Ccn6fl/fl spindle
MBC tumors followed by comparison with human MBC proteomes
(Fig. 7a–c, Supplementary Fig. 8). Compared with normal mouse
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mammary glands, MMTV-Cre;Ccn6fl/fl tumors show increased
MYC, E2F, unfolded protein response and ribosomal pathway
proteins, which are similar to human spindle MBC (Fig. 7d).

Based on shared pathology, metastatic ability, and hallmark
pathways, we hypothesized that human and mouse spindle MBC
tumors may have an overlapping protein signature. Enrichment
analyses in GO annotation and STRING databases uncover a set
of 36 proteins, 17 upregulated and 19 downregulated, that overlap
between human and mouse spindle MBC proteome (Fig. 7e). The
shared downregulated proteins have roles in metabolic processes
including oxidation-reduction, carboxylic acid and ethanol
metabolism (e.g., ALDH1L1, ADH1B, ADH1C, SOD1, LIPE,
FABP4). Among the upregulated proteins are those involved in
ribosomal function, translation, and RNA metabolism (e.g.,
RPL18A, RPL18, RPL6). In addition, we found a highly enriched
protein–protein interaction network among the upregulated
proteins (p < 1e−16). Together, these data delineate significantly
deregulated pathways in spindle MBC in human and mouse
tumors and nominate a subset of proteins that may be useful
markers and targets of therapy.

Discussion
We present a quantitative proteomic landscape of human MBC, a
subtype of TNBC with a defining histology, frequent chemore-
sistance, and distant metastases27. Using tissue resources from
patients and from a spindle MBC mouse model, robust pro-
teomics and bioinformatics tools we demonstrate shared and
subtype-specific altered proteomes present in spindle, squamous
and sarcomatoid MBC, providing insights into the biology of this
aggressive form of breast cancer and offering opportunities for
precision medicine.

Despite the impact of protein expression on tumor phenotypes
and clinical behavior, our knowledge on the protein landscapes of
human breast cancer, and how differential profiles contribute to
breast cancer phenotypes is very limited. Recent advances in
proteomic technology and bioinformatics have enabled detailed
characterization of breast cancer22,28. However, studies to date
have focused on frequent subtypes of breast cancer, with few to
no MBC cases and normal breast tissues.

Our initial unsupervised clustering among the samples corre-
lated with the tumor histopathology demonstrating a clear dis-
tinction between normal and all tumors (MBC subtypes and
TNBC) and between MBC squamous and sarcomatoid, while
there was an overlap between MBC subtypes and TNBC, sup-
porting the hypothesis that MBC and TNBC have both common
and distinct proteomic profiles that have not been characterized
so far. Upon in-depth cross-analyses of MBC to both TNBC and
normal tissues, and between each MBC subtype using GO and
MSigDB databases, common and subtype-specific differences
within MBCs and in relationship to TNBC emerged. Compared

with TNBC, the proteome of MBC has a highly enriched EMT
phenotype, with increased inflammatory responses (mainly in
spindle and squamous), an active ECM, and reduced oxidative
phosphorylation. These data are consistent with our previous
studies showing that MBC express proteins involved in the EMT
process, which may contribute to a more stem-like and aggressive
phenotype than TNBC, and with transcriptome studies showing
that MBCs cluster as basal-like and claudin-low18,29. Subtype-
specific proteins and pathways emerged when we compared
proteomic profiles of spindle, squamous and sarcomatoid tumors.
A salient feature of spindle MBCs, which are highly proliferative
and exhibit pathological evidence of EMT with elongated cancer
cells, is upregulated expression of E2F and MYC pathway pro-
teins, ribosomal proteins and transcriptional and translational
processes. These findings are intriguing based on data showing
that E2F and MYC are key drivers of cancer cell proliferation and
EMT processes, where ribosome biogenesis and increased trans-
lation play an essential role30,31. These data also suggest that
spindle MBC have a deregulated balance between translation and
metabolic pathways, which needs to be further investigated.

Our data show that squamous MBC has upregulated inflam-
matory responses (e.g., IFN-γ, TNFα, and PI3K/MTOR), kerati-
nization, and widespread cell adhesion marker expression (e.g.,
apical junction, adherens, CAMs, and cytoskeleton proteins), and
decreased oxidative phosphorylation, MYC, and E2F pathways
relative to other MBC subtypes. On the other hand, sarcomatoid
MBC, which includes chondroid and osseous differentiation,
exhibit a predominance in extracellular matrix signaling cascades
and an amplified EMT program, increased oxidative phosphor-
ylation, and decreased inflammatory responses compared with
both spindle and squamous subtypes, likely owing to its differ-
entiation along mesenchymal lineages32. Also, we observed that
in general, there is no significant difference in TP53 and PI3K
pathways between MBCs and TNBC. Collectively, our proteomic
analysis suggests that while spindle, squamous and sarcomatoid
MBCs and TNBC may share initial neoplastic events, each
MBC subtype appears to have unique and active differentiation
programs.

MBCs are chemoresistant and metastatic, but the underlying
molecular determinants and driver pathways are unclear. Further,
there are no effective treatments against these tumors2,33. The
heterogeneity of MBC has been investigated at the genetic
level10,13,34, however, the relationship between genomic altera-
tions and proteomic profiles is unknown. While MBCs were
reported to harbor somatic mutations in TP53, PI3K/MTOR, and
WNT signaling pathway genes10, no subtype-specific mutational
profiles in MBCs have been shown to date. Our whole-exome
sequencing analyses of paired tissue samples of MBC and normal
breast from the same patients identified somatic mutations
common to all MBCs in five genes; TP53 in 70%, MUC17 in 60%,
CRYBG2 in 40%, PLEC in 30%, and ZNF681 in 30%. Of these,

Fig. 7 Quantitative proteomics analysis of mouse MBC (MMTV-cre;Ccn6fl/fl). a Heat map of the 4609 proteins that passed through quality filters in
TMT-Integrator for all samples (3 MMTV-cre;Ccn6fl/fl mouse tumors (KO) and 3 normal mouse mammary glands). Scale bar shows expression level (red
is upregulated and green is downregulated). b Volcano plot comparing Ccn6fl/fl tumors with normal mammary gland. Significantly differentially expressed
proteins are highlighted in red. p < 0.05 and absolute value FC > 1 were considered significant. c Gene set enrichment analysis (GSEA) showing significant
differentially expressed protein pathways in Ccn6fl/fl spindle MBCs compared with normal mammary glands. Normalized enrichment scores (NES) versus
the total list of GSEA hallmark categories of up and downregulated hallmark pathways. d Top hallmark pathways highlighting significantly expressed up-
and downregulated protein pathways (marked UP and DOWN, respectively). We used the molecular Signatures Database (MSigDB v7.0), hallmark
gene sets with clusterProfiler and fgsea packages in R, with the biomaRT package in R to convert mouse gene IDs to human homolog associated
gene symbols. e Venn diagrams demonstrate the overlap between the proteome of mouse MBC and human spindle MBC tumors, relative to their normal
tissue counterparts, identifying a 17-protein upregulated and 19-protein downregulated protein set. Protein–protein interaction networks of up- and
downregulated signatures highlight potential markers of interest, along with functional enrichment analysis using STRING v11.0. Color scheme of network
proteins are matched by the legend of GO enrichment terms in barplots.
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mutations in MUC17, CRYBG2, PLEC, and ZNF681 are novel in
MBC. We found that while spindle and squamous MBC exhibit
overlapping mutational profiles of genes involved in transcrip-
tion, RNA metabolic processes and actin filament binding, sar-
comatoid tumors harbor distinct mutations, especially in MAPK,
WNT, protocadherin cluster genes, calcium binding, and ECM
organization. Taken together, we discovered distinct somatic
mutational profiles in MBC tumors, highlighting that of sarco-
matoid MBC compared with the overlapping landscape of spindle
and squamous tumors. These data underscore the relevance of
elucidating the proteomic landscape to nominate subtype-specific
proteins and pathways, especially between tumors with spindle
and squamous differentiation that may lead to effective treatment
targets.

Quantitative proteomics of our mouse model of spindle MBC
MMTV-Cre;Ccn6fl/fl tumors demonstrated a significant overlap
with human spindle MBCs, with shared enrichment in E2F,
MYC, EMT, and ribosomal proteins. Our analyses further pin-
point a set of 36 proteins commonly deregulated in mouse and
human spindle MBCs which have not been previously considered
in these tumors. The 19 downregulated proteins have functions in
metabolic processes, while of the upregulated the majority are
ribosomal proteins, and those involved in transcription and
translation. Together these data validate the MMTV-Cre;Ccn6fl/fl

model as a useful tool to investigate and test therapeutic targets
for spindle MBC, and identify a set of significantly deregulated
proteins and pathways as therapeutically operable targets. Our
studies may pave the way toward mechanistic and functional
investigations of these proteins in the biology of spindle MBC.

In addition to subtype-specific tumor signatures, this study
uncovered a stromal cell expression pattern in MBCs, with the
most prominent being downregulated expression of mesenchymal
stem cell proteins (CD59, CD248), macrophages (CD209),
immune cells (CD8A), hematopoietic stem/endothelial progeni-
tors/macrophages (CD34, CD36, CDH5), a recently discovered
mammary stem cell marker (CDH5)35, and detected evidence of
endothelial-to-mesenchymal transition (EndMT; CDH5loIGFB-
P4loCD34lo). The stromal profile is intriguing and has not been
previously considered in MBC.

In summary, this patient cohort identifies a common proteomic
landscape of MBC in relation to TNBC, and highlights the exis-
tence of specific protein profiles underlying the different histo-
pathological subtypes of human MBC. We show that quantitative
proteomics refines the mutational landscape of MBCs and allows
for further distinction of the tumor subtypes. We provide evidence
for a significant overlap between MMTV-Cre;Ccn6fl/fl spindle
MBC mouse model and human disease, which together with a
common histopathology and transcriptome, validate this mouse
model to test new treatments and investigate the mechanisms
leading to the development of spindle MBC. The subtype-specific
proteomes of MBC tumors emphasize a unique opportunity to
impact precision therapies to improve the survival of women with
this aggressive form of breast cancer.

Methods
Tissue samples, histology and pathological evaluation. This research complies
with the ethical regulations for work with tissue samples and for animal studies.
The work with tissue samples was approved under IRB protocols NA84719 and
NA41867 from Johns Hopkins University and HUM00050330 from the University
of Michigan. The animal work was approved by the University of Michigan
UCUCA under protocol PRO00009007.

We employed frozen tissue samples from 14 women with MBC and adjacent
normal tissues from the surgical pathology files at Johns Hopkins University, 6
TNBC and corresponding adjacent normal tissues from the surgical pathology files
at the University of Michigan. Each specimen was collected 30 min after operation
and immediately transferred to sterilized vials, snap frozen in liquid nitrogen and
stored at ‒80 °C. Tumors were diagnosed according to the World Health
Organization (WHO) classification into the following groups: spindle, squamous,

and sarcomatoid (chondroid and/or osseous) MBC36. Other pathological and
clinical features such as estrogen and progesterone receptor analysis, Her2/Neu
expression, Ki-67 proliferation index, tumor grade, tumor size, lymph node and
distant metastasis were recorded. At the time of sample preparation, we cut a
representative 0.5 cm piece of each of MBC, TNBC and normal sample, which was
embedded in paraffin, sectioned to 5 μm and stained with hematoxylin and eosin
stained (H&E) for diagnosis confirmation.

Sample preparation. Frozen specimens were kept on dry ice and cut to ~50 mg of
tissue from each sample to be used for proteomic analyses. Specimens were diced
and mechanically dissociated with a scalpel and placed in labeled 1.5 ml Eppendorf
tubes containing three stainless steel microbeads. Tubes were then submerged in
liquid nitrogen for 60 s and immediately homogenized using a mixer mill (Retsch
MM400) for 2–3 cycles at maximum speed (30 Hz vibrational frequency) at 60 s
per cycle. If any tissue had not been homogenized, another cycle was repeated.
Samples were then placed on ice and 495 μl of RIPA buffer and 5 μl protease
inhibitor were added to each tube, resuspended, and placed on a rocker for 30 min
on ice at 4 °C. Beads were removed from tubes with a magnet and samples were
ultrasonicated and centrifuged at 15,805 × g for 30 min at 4 °C. The supernatant
was collected to retrieve a desired 2 mg/ml of protein, followed by standard protein
quantification methods and storage at −80 °C.

Protein extraction and TMT labeling procedure. Tandem mass tag (TMT)
labeling was performed for mass spectroscopy (MS) using three consecutive TMT-
10-plex isobaric labeling kits (ThermoFisher, Cat #90111) according to the man-
ufacturer’s protocol. A master mix containing equal amount of protein from each
of the 27 samples was generated. 60 μg of protein from each sample and the master
mix were reduced with DTT (5 mM) at 45 °C for 1 h followed by alkylation with 2-
chloroacetamide (15 mM) at room temperature (RT) for 30 min. Proteins were
precipitated by adding six volumes of cold acetone and incubating overnight at
−20 °C and pelleted by centrifuging at 8000 × g for 10 min at 4 °C. Supernatants
were discarded and pellets resuspended in 100 μl of 100 mM TEAB, digested
overnight at 37 °C by adding 1.1 μg of sequencing grade modified porcine trypsin
(Promega, V5113). TMT reagents were reconstituted in 40 μl of anhydrous acet-
onitrile and digested peptides transferred to the TMT reagent vial, and incubated at
RT for 1 h. TMT channels for each of sample are given in Table 1. The reaction was
quenched by adding 8 μl of 5% hydroxylamine and incubating for 15 min. For each
of the three TMT experiments, 9 samples and 1 master mix (Table 1) were com-
bined, dried, followed by 2D separation, with the first dimension containing an
aliquot from each sample mix (100 μg) underwent fractionation using high pH
reverse phase fractionation kit (following the manufacturer’s protocol, Pierce).
Fractions were then dried and reconstituted in 10 μl of loading buffer, 0.1% formic
acid and 2% acetonitrile.

LC-MS/MS analysis. For data acquisition, an Orbitrap Fusion (ThermoFisher)
and RSLC Ultimate 3000 nano-UPLC (Dionex) was used to obtain raw data. To
increase accuracy and confidence in protein abundance measurements, a
multinotch-MS3 method was employed for MS data analysis. Two microliters from
each fraction were resolved in 2D on a nanocapillary reverse phase column
(Acclaim PepMap C18, 2 micron, 75 μm i.d. × 50 cm, ThermoFisher) using a 0.1%
formic/acetonitrile gradient at 300 nl/m (2–22% acetonitrile in 150 m, 22–32%
acetonitrile in 40 m, 20 min wash at 90% followed by 50 min reequilibration) and
directly sprayed onto Orbitrap Fusion with EasySpray (ThermoFisher; Spray vol-
tage (positive ion)= 1900 V, Spray voltage (negative ion)= 600 V, method dura-
tion= 180 min, ion source type=NSI). The mass spectrometer was set to collect
the MS1 scan (Orbitrap; 120 K resolution; AGC target 2 × 105; max IT 100 ms), and
then data-dependent Top Speed (3 s) MS2 scans (collision induced dissociation;
ion trap; NCD 35; AGC 5 × 103; max IT 100 ms). For multinotch-MS3, the top 10
precursor ions from each MS2 scan were fragmented by HCD followed by Orbitrap
analysis (NCE 55; 60 K resolution; AGC 5 × 104; max IT 120 ms; 100-500m/z scan
range).

Data analysis and protein quantification. Raw MS data were converted using
msconvert in Proteowizard software suite37 to mzML format. MS/MS spectra were
searched using the MSFragger (v20181128) database search tool38 against UniProt
human protein database (UP000005640, last modified: 13 December 2018; 73,928
proteins), appended with an equal number of decoy sequences and common
contaminants. MS/MS spectra were searched using the following criteria:
precursor-ion mass tolerance of 20 ppm, fragment mass tolerance of 0.6 Da (C12/
C13 isotope errors (−1/0/1/2/3)), where cysteine carbamylation (+57.0215) and
lysine TMT labeling (+229.1629) were specified as fixed modifications, and
methionine oxidation (+15.9949), N-terminal protein acetylation (+42.0106), and
TMT labeling of peptide N-terminus and serine residues were specified as variable
modifications. The search was restricted to fully tryptic peptides, allowing up to
two missed cleavage sites. MSFragger output files were processed using Philosopher
toolkit (v20181119, github.com/Nesvilab/philosopher) as follows: The search
results were first processed with PeptideProphet39 (high-mass accuracy binning,
semi-parametric mixture modeling options); ProteinProphet40 was used to
assemble peptides into proteins (protein inference) to create a combined file of
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high-confidence proteins. Protein groups were filtered to 1% false discovery rate
(FDR) using the target-decoy strategy and the best peptide approach41,42, picked
FDR adjustment43. The individual PSM lists for each TMT 10-plex we assembled,
with peptides assigned either as a unique peptide to a particular protein group or
assigned as a razor peptide44 to a single protein group that had the most peptide
evidence, and additionally filtered to 1% PSM-level FDR. For PSMs passing these
filters, MS1 intensity of the corresponding precursor-ion was extracted using the
Philosopher label-free quantification module based on the moFF method (10 ppm
mass tolerance and 0.4 min retention time for extracted ion chromatogram peak
tracing)45. For all PSMs corresponding to a TMT-labeled peptide, 10 TMT reporter
ion intensities were extracted from the corresponding MS3 scans (using 0.002 Da
window) and precursor-ion purity scores were calculated using the intensity of the
sequenced precursor ion and that of other interfering ions observed in MS1 data
(within 0.7 Da isolation window).

Normalization and quality control. Three PSM tables from each TMT-10-plex
experiment generated as Philosopher output files were used as input to TMTIn-
tegrator (v1.0.0; github.com/huiyinc/TMT-Integrator) for normalization and gen-
eration of integrative reports at the gene and protein level. For best quantitation
quality, we only included PSMs (unique and razor peptides) that passed the fol-
lowing criteria: TMT label and quantification in the reference sample exist,
minimum peptide probability 0.9, precursor ion purity ≥ 50%, minimum MS1
intensity 0.05%, summed MS2 intensity ≥ 5%. PSMs mapping to common con-
taminants were excluded, and for redundant PSMs, a single PSM of highest
summed TMT intensity was kept. Then, intensities in each TMT channel were log2
transformed, and the reference channel intensity (pooled reference sample) was
subtracted from that for the other nine channels (samples), thus converting the
data into log2-based ratio to the reference scale. Here, the master mix TMT
channel (131) was used as the reference channel. PSMs were grouped by the
corresponding gene/protein, and outlier removal using the interquartile range (1.5
IQR) algorithm was applied.

The gene-level median was calculated from the remaining PSM ratios, and then
normalized using the median absolute deviation (MAD), given the p by n table of
ratios for entry j in sample i, Rij, the median ratioMi=median(Rij, j= 1,…,p), and
the global median across all n samples, M0=median(Mi, i= 1,…,n). The ratios in
each sample were median centered, RCij= Rij –Mi. The median absolute deviation
of centered values in each sample was calculated, MADi=median(abs(RCij), j=
1…p), along with the global absolute deviation, MAD0=median(MADi, i=
1,…,n), and scaled to derive the final normalized ratios: RNij= (RCij/ MADi) ×
MAD0. Finally, normalized ratios were converted back to the absolute intensity
scale using the estimated intensity of each entry in the reference sample. The
reference intensity was estimated using the weighted sum of MS1 intensities of the
top 3 most intense peptide ions46, and in computing REFi=mean(REFik, k= 1,…,
q), missing intensity values were imputed with a global minimum intensity value.
The final abundance (intensity) of entry i in sample j (log2 transformed) was
computed as Aij= RNij + log2(REFi). The tutorial describing all steps of the
analysis, including specific input parameter files, command-line option, and all
software tools necessary to replicate the results are available at the following
website (github.com/Nesvilab/philosopher). Peptide assignments to MS/MS
spectracan be visualized using PSM tables and the corresponding mzML files using
freely available PDV spectrum viewer47.

Missing data imputation. Upon inspection, experiments 1, 2, and 3 contained
18%, 14%, and 12% missing values, respectively (Supplementary Fig. 1). For
missing data imputation, we used the multivariate imputation by chained equations
algorithm using the statistical software ‘mice’ package (v3.4.0) in R is a gold
standard method of choice to handle missing data and has been reported to pro-
duce lower estimate error rates compared with other methods (e.g., K nearest
neighbors or singular value decomposition). We used the following input para-
meters: m= 5 (number of imputed data sets), method=‘pmm’ (predictive mean
matching), and maxit= 50 (number of iterations). Rubin’s Rules24 were applied to
pool estimates using logistic regression modeling. For statistical performance, we
used significance testing of the categorical variables (i.e., patient expression values)
to generate a covariance matrix containing pooled regression coefficient estimates,
standard errors of parameter estimates, and p-values. We derived a pooled p-value
< 1.6e−03 using the median p-value from the significance tests. The computational
details are described in the original Rubin–Barnard approach24.

Statistical analysis and subtyping of MBC. The batch corrected, imputed,
combined data matrix was loaded and unsupervised PCA clustering was performed
in R (v3.4.0) using standard k-means algorithms (e.g., Bayesian, Silhouette, Elbow)
for finding optimal clusters, Cluster 3.0 was used for hierarchical clustering
(median centering, uncentered correlation, and complete linkage), and visualiza-
tion of results using Java TreeView (1.1.6r4). For differential expression analysis
between tumors (MBC, TNBC) and normal samples, where data for each patient
subgroup (e.g., spindle, triple-negative, normal) were pooled and results averaged,
fold change was calculated by subtraction of averaged tumor subgroups to averaged
control, and a Student’s t-test was used to estimate −log10 p-value. Proteins within
a statistical region of FC > 1 and p < 0.05 were considered for analysis, including all

proteins with FC > 2 and p < 0.01. For enrichment analyses, we performed gene
ontology (GO) over-representation tests (GO annotations: biological process,
molecular function, cellular compartment, protein domain) in PANTHER (v14.1),
and STRING (v11.0) database for confirming enrichment results with topological
features from protein–protein interaction networks among subgroups. For patient
stratification tests, one-way ANOVA statistical analysis was performed between
multiple groups and p < 0.05 was considered significant.

Gene set enrichment analysis (GSEA). GSEA is an aggregate score and running-
sum statistic approach that enables molecular signature based statistical sig-
nificance testing that considers the entire gene set containing a ranked list of all
expression values in a data set without requiring a cutoff of differentially expressed
values for functional analysis48,49. We supplied a pre-ranked list of two classes, up-
and downregulated fold change values for each subgroup to be analyzed (MBC vs.
TNBC, and across MBC subgroups: Spindle vs. Squamous, Spindle vs. Sarcoma-
toid, and Squamous vs. Sarcomatoid). To understand functional enrichment pro-
files of the proteomics results, we used annotated gene collections downloaded
from the Molecular Signatures Database (MSigDB v7.0 for H (hallmark gene sets),
C2 (curated gene sets), and C5 (GO gene sets)50. We determined normalized
enrichment scores (NES) with the total protein list as background, and the fol-
lowing parameters: n= 1000 permutations, where p-adjust < 0.05, and FDR < 0.05
were considered significant. The GSEA analysis was performed using the cluster-
Profiler and fgsea package in R and loading gene set collections from available gmt
files from the BROAD Institute according to GSEA documentation49,50.

Whole-exome sequencing (WES). DNA samples with matched tumor and
healthy counterparts from 10 pairs of samples in our patient cohort was subjected
to whole-exome sequencing using the NovaSeq 6000 Illumina system at the Uni-
versity of Michigan Advanced Genomics Core Facility in 150 bp paired-end format.
Libraries were prepared used the NEBNext Ultra 2 FS DNA library prep kit for
Illumina (NEB #E7805S; New England BioLabs) with 100 ng DNA input, 15 min
fragment, 275–475 bp size selection and 6 PCR cycles. Samples were captured with
the IDT xGen hybridization capture kit using 174 ng of each library pooled for
capture and a final PCR of 7 cycles. Fastq generation was performed using Illu-
mina’s bcl2fastq software version 2.20.

WES analysis and pathway enrichment. The exome sequencing data was ana-
lyzed by the variant calling pipeline developed by the University of Michigan
Bioinformatics Core. FastQC v0.11.7 was used to assess the quality of raw reads,
which were trimmed to remove Illumina adapters and low quality ends using
Trimmomatic v0.39, aligned to the hg38 reference genome using BWA v0.7.17,
followed by removal of sequence duplicates, SAM tag fixing, local realignment
around INDELs, base quality score recalibration and target coverage summariza-
tion using GATK v4.1.4.0 or v3.8 (for indel realignment only). Normal-Tumor
paired alignment files were submitted to GATK’s MuTect2, Varscan v2.4.4, and
Strelka v2.9.10 for the detection and filtration of somatic variants. Only the somatic
variants on the canonical chromosomes that passed each caller’s quality filter were
kept. For Mutect2, variants were first called from the normal samples and a panel
of normals (PoN) was created and used for somatic variant calling. Cross-sample
contamination and orientation bias were estimated and used for variant filtration.
For VarScan, an alignment coverage file was first created using SAMtools v1.5 from
the pair of normal and tumor samples together, and then used for somatic variant
calling. The selected high-confidence somatic variants were filtered using VarScan’s
fpfilter after allelic read counts were calculated using bam-readcount v0.8. For
Strelka, structural variant/INDEL candidates were first called using Manta, as
recommended by Strelka manual as a best practice.

Candidate variant calls across all samples and patients were merged using
Jacquard v1.1.2 and included all variant loci whose filter field passed in MuTect2 or
Strelka or VarScan (VarScan calls were limited to high-confidence somatic variants
confirmed in false-positive filter). Allele frequency (AF) parameter from Strelka
was calculated by Jacquard based on the allelic read depth reported by Strelka since
Strelka does not report AF directly. Jacquard inferred consensus genotype (GT),
and calculated average alternate allele frequency (AF), from individual caller’s
calling results. Variants were annotated using VarSeq v1.4.3. Variants excluding
intergenic variants and common SNPs (SNPs whose allele frequency is higher than
5% in 1000 Genomes Phase 3 data set) were integrated to create a gene-level variant
and effect summary table using GeneRollup v0.3.2. Before filtering was applied,
there were 11,652 total variants including those that fell in low complexity genomic
regions, common SNPs, and duplicated regions. After filtering only out low
complexity genomic regions, there were 980 total variants.

For enrichment analyses, gene lists of somatically mutated genes were generated
for each MBC subtype and subjected to GO and pathway (KEGG, Panther, or
Reactome) enrichment analysis using the WEB-based GEne SeT AnaLysis
Toolkit51. We applied BH correction, at least three genes per pathway, p-adjusted <
0.05 as significantly enriched, and used the human genome as the reference set.

MMTV-cre;Ccn6fl/fl mouse sample preparation and analysis. Mouse mammary
glands were harvested at necropsy following The University of Michigan approved
protocol PRO00009007. Fresh mammary tumors and normal tissues were collected
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and samples prepared for LC-MS/MS analysis using the same procedure as done
for human samples, detailed above. One ~0.3 cm tumor section was embedded in
paraffin, stained by hematoxylin and eosin and evaluated pathologically by the
authors (C.G.K., a board certified pathologist) for tissue diagnosis. One proteomic
TMT 10-plex experiment identified 85,683 peptides to a depth of 4609 unique
proteins across all samples (n= 10 samples, where 6 were included for this analysis;
3 normal mouse tissues and 3 CCN6 knockout tumors). Pre-processing in
MSFragger and Philosopher were performed the same as for human samples, but
here we used the UniProt mouse protein database (UP000000589, last modified: 5
November 2019; 55,408 proteins). The TMT-Integrator analysis was performed the
same as for human samples, however, a master mix sample was not required for a
single TMT 10-plex experiment. Instead, we pooled the intensities from all samples
(all log2 transformed TMT channels) and used this as the reference channel. In
addition, data imputation was not necessary for a single TMT 10-plex experiment
and we confirmed the average percentage of missing values was very low at <0.03%,
hence, the missing values were simply removed from the data set. Hierarchical
clustering, enrichment and GSEA analyses were performed as the same as indicated
above. For overlapping the protein profiles of mouse and human spindle MBC, we
considered 53 mouse Ccn6fl/fl and 120 human tumor upregulated significant
proteins and 118 mouse and 353 human tumor downregulated significant proteins
that were differentially expressed relative to their respective normal tissues. The
cutoff for significant proteins was p-value < 0.05, q-value < 0.1, fold change (log2-
FC) >1, which generated the 17-protein upregulated and 19-protein downregulated
signatures.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All mass spectrometry proteomics data including human and mouse data sets were
deposited to the ProteomeXchange Consortium through the PRIDE partner repository
with identifier PXD014414. As the informed consent obtained from MBC patients does
not allow for public deposition of the sequencing data, the WES sequencing data can be
communicated upon reasonable request to C.G.K. All other data are available from the
corresponding authors on reasonable request.
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