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Exploring the associative
learning capabilities of the
segmented attractor network
for lifelong learning

Alexander Jones* and Rashmi Jha

Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati,
OH, United States

This work explores the process of adapting the segmented attractor network

to a lifelong learning setting. Taking inspirations from Hopfield networks and

content-addressable memory, the segmented attractor network is a powerful

tool for associative memory applications. The network’s performance as an

associative memory is analyzed using multiple metrics. In addition to the

network’s general hit rate, its capability to recall unique memories and their

frequency is also evaluated with respect to time. Finally, additional learning

techniques are implemented to enhance the network’s recall capacity in the

application of lifelong learning. These learning techniques are based on human

cognitive functions such as memory consolidation, prediction, and forgetting.
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Introduction

Lifelong learning is a task that many living organisms must face every day. The world

is highly dynamic and full of surprises, and it is up to the brain to decide how an organism

should behave and take actions based on its current and past situations. Lifelong learning

can be defined as the capability of a neural system to recall a wide range of information

that can change over time (Biesialska et al., 2020). Since an organism’s environment and

situation can change, it must be able to constantly adapt and learn new things. This

task presents two critical challenges, however (Sodhani et al., 2019). First, the organism’s

memorymust not undergo the process of catastrophic forgetting (McCloskey and Cohen,

1989). In these cases, the system’s recall capability suffers dramatic degradation in its

recall capability while attempting to learn. The second issue is tied to the first and called

capacity saturation (Parthipan, 2019). In these scenarios, the memory “fills up” and is

unable to realistically store any more memories within itself. The system will attempt to

continue to do so however, and the result is the system suddenly becoming overburdened

with information and then entering a state of catastrophic forgetting (Sodhani et al.,

2019).

With the high amount of complex information present in lifelong learning,

processing of information can become resource-intensive and costly. One technique

that developed in organisms to help simplify complex relations between concepts and
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ideas is associative memory. First demonstrated by Pavlov’s

famous experiment, the concept he called classical conditioning

showed how associations between certain stimuli or events can

trigger targeted responses (Pavlov and Gantt, 1928). Since then,

the concept (associative memory) has blossomed into a wide

field within the neural network community where these types of

high-level ideas can be related (Krotov and Hopfield, 2016; Hu

et al., 2017).

One of the most popular forms of associative memory

are Hopfield Networks (Hopfield, 1982). These networks are

a variant of an attractor network that utilizes an array

of recurrently connected neurons to form memories that

can recalled later. This approach to associative memory is

not without its limitations, however. The calculated memory

capacity of the network is in the realm of 12–15% of the its

neuron count (Gardner, 1987). Other subsequent works also

created neural networks with improved memory capacity for

associative learning (Storkey, 1997; Davey and Hunt, 1999). In

2019, a network was defined called the segmented attractor

network (SAN) that surpassed the memory capacity of these

previously defined networks (Jones et al., 2019). The network

is structured like a Hopfield network where processing is

performed via recurrent connections but utilizes a discretized

scheme for allocating information like content-addressable

memory (Pagiamtzis and Sheikholeslami, 2006). By splitting

information into separate categories called sets, the network

connects and associates information across categories to form

memories. These memories can then be recalled at later times by

only using partial input in a process called pattern completion

(Hunsaker and Kesner, 2013). The work showed how the

network’s hit rate changed with respect to various factors such

as network size, number of memories in the network, etc.

In the case of the SAN, its current design allows the

formation high-level associative memories, but in a limited

fashion. If one were place it into a dynamic environment where

it might encounter a large range of inputs over a period, its

learning capabilities would be limited due to the simplistic

Hebbian nature of the network’s memory formation. To aid the

SAN into becoming a network deployable to a lifelong learning

environment, one can look to biology for inspiration.

Miraculously, many organisms can perform associative

memory with ease in highly dynamic environments (Pontes

et al., 2019). Humans can easily relate complicated ideas with

one another, and organisms as simple as the C. elegans worm

have demonstrated basic characteristics of memory association

(Stein and Murphy, 2014). There are theories as to how

associative memory is formed (Tannenbaum, 2009; Ozawa and

Johansen, 2018), but the entire process is not known. Other

learning mechanisms within the brain could be assisting with

associative processes to create meaningful relationships in the

brain’s neural connections. Exploring cognitive concepts such as

prediction (Agnati et al., 2017) or the brain’s tendency to forget

(Baddeley et al., 2019) to see how they could potentially affect or

enhance the performance of the segmented attractor network to

make it suitable for lifelong learning environments. The success

of such a model could lead to it aiding the artificial intelligence

field in developing neural networks that are less specialized and

more generic in their capabilities.

Finally, to properly evaluate the SAN’s capability of forming

and handling associative memories in a lifelong setting, using

a dataset filled with high-level information would be of great

value. This work defines such a dataset that is used to evaluate

the SAN’s efficacy across multiple metrics. Then, it gives an

overview on the network’s design and how it is simulated. Next,

analysis on a basic version of the network is conducted. Finally,

more advanced learning techniques based on cognitive concepts

that could help enhance the network’s capability in lifelong

learning are proposed, tested, and discussed.

Materials and methods

The EHoS dataset

To properly evaluate the SAN’s performance as an

associative memory for lifelong learning, a dataset was created

that could properly demonstrate its capability to relate high

level concepts to one another (Jones, 2020). The created dataset

is called the European Heads of State (EHoS) dataset and is

composed of 700 leaders throughout European history. Each

leader within the dataset is considered a memory and possesses

eight different features across eight categories (i.e., sets) of data.

These categories are: first name, last name/title, century of rule,

the state they ruled, the position they held (e.g., king), their

dynasty/family/political party, their cause of death, and how

many years they reigned.

Within each set of information in the dataset, a collection

of features exists that uniquely describe every leader. However,

many leaders might share common features with one another

(e.g., many Roman emperors, many French leaders with the

name “Louis,” etc.). These different relations lead to different

sets possessing a range of unique features. To help compare

sets, the “uniqueness” factor, or U-Factor, describes how many

unique features exist within each set with respect to the size of

the dataset. For a given set, the U-Factor, Ui, can be defined as

Ui =
Mi

Itot
(1),

whereMi represents the total number of unique features within

the set, and Itot describes the number of memories in the dataset

(Itot=700 for the EHoS dataset). The resultant U-Factors for

every set within the EHoS dataset can be found in Table 1. This

factor will become important when analyzing how recalling sets

of varying sizes affects the hit rate of the network.
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TABLE 1 Unique features and U-factors for sets in the EHoS dataset.

Set First name Last name/Title Century State Position Dynasty/party Cause of death Reign

Mi 328 190 29 22 24 117 9 59

Ui 0.469 0.271 0.041 0.031 0.034 0.167 0.013 0.084

Network design

The segmented attractor network is originally described in

Jones et al. (2019). The network discretizes how high-level,

categorical information can be organized in a neural network.

It divides all information into separate sets, where each set

represents a category of information (e.g., name, color, time,

etc.). Within each set, information is further split into elements

called features that describe specific values within each set (e.g.,

red, green, blue, etc. for color).

Each feature within the network is represented by a

single neuron. Sets within the network are represented by the

collection of neurons that represent their features. All sets are

arranged in a single, recurrently connected layer. The synapses

between all features in the network are not fully connected,

however. Features within the same set do not possess synaptic

connections to relate themselves to one another. This design

ensures that relations are focused on information in other sets,

and not on features within the same set. Also, unlike other

attractors such as the continuous variety (Yan et al., 2019),

the connections are adaptable instead of preset for a specific

function since the goal of the network is to extract information

from observations.

To properly utilize the SAN for the EHoS dataset, it is

designed like the diagram in Figure 1. Each of the categories

previously described are assigned as sets within the network,

with each of the unique values within the sets for the dataset

designated a neuron. These neurons are then recurrently

connected to one another except for features within the same set.

At any given time step, t, in the SAN, the output of each

neuron in the network is defined as

fij (t) = Eij (t) +
∑

fij (t)
∗

· wij,pq (2),

where Eij(t) is the external input applied to each feature, fij(t)
∗ is

the recurrent output from neurons in the SAN, andwij,pq are the

corresponding synaptic connections that recurrently connect

those neuron signals to the specified feature. The ij and pq

terms are the set/feature indices of the pre- and post-synaptic

connections to the weight, respectively. In all other terms, ij

serves as that terms’ set/feature indices.

To place memories into the network from the EHoS dataset,

external input is given to a collection of features in the network

(one feature per set) to create a singlememory. Thismemory will

exist as a programmed combination of corresponding synaptic

FIGURE 1

Diagram showing an example layout for the segmented
attractor network. Recurrently connected neurons for
post-synaptic (right) and pre-synaptic (top) connections along a
synaptic grid that relates features from all sets with one another.
Sets do not relate features within themselves with one another,
forming an empty diagonal through the network to help keep
information separate.

weights to the input. When external input is specifically supplied

to a collection of features, the synapses within the grid that link

those features to one another (i.e., wij,pq) via their pre- and post-

synaptic connections will be programmed from their original

value (0) to the value, vON (vON=0.001 for all cases shown in

this work),

wij,pq =

{

wij,pq, fij < |E| or fpq < |E|

vON , fij ≥ |E| and fpq ≥ |E|
(3).

In this work, |E| represents the magnitude of external input,

which is defined as one. Due to how the values of vON and |E|

are assigned, the recurrent feedback from the synaptic grid (i.e.,

Σ f∗ij·wij,pq) will never exceed |E|. This rule ensures external input

is always trusted as correct.

To demonstrate how the SAN operates as an associative

memory, the network can be shown to perform recall by

applying external input to one feature in only half of sets within

the network instead of all (i.e., four). This reduction in external

input forces the network to perform pattern completion and use

the associations previously made in its weights to complete an

output response to recall memories it has previously observed.
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FIGURE 2

Simulation flowchart for the SAN simulation process conducted in MATLAB. There are five phases to the simulation process, with the first one
only being ran once. The remaining four phases are ran iteratively in order to simulate the network over a total of 700 time steps. One memory
from the EHoS dataset was introduced to the network at each individual time step, with the network’s state being paused between time steps to
evaluate its current recall capability.

To determine the network’s recalled state, the features with the

maximum outputs from each set are defined as its final output, y.

y = [max (s1) , max (s2) , . . . ,max(sn)] (4).

In Equation (4), n denotes the number of sets within the SAN,

and s1-sn are labels for the sets of features in the network (n=8

for EHoS).

Simulation process

To properly simulate the SAN on the EHoS dataset in

a lifelong setting, a simulation framework was established in

MATLAB to perform the entire process. This setup has several

steps but can be split into five primary phases as shown in

Figure 2. The first phase, initial setup, only occurs once during

each simulation, and the final four phases occur repeatedly in

sequence until the simulation is complete. The sequence uses no

specialized MATLAB toolboxes.

Initial setup

The initial setup phase is a special one that only occurs

once. First, the EHoS dataset’s information is preprocessed. This

process converts the text-based information into numerical data

that can be more quickly analyzed by the code. If the dataset has

not changed from the prior run, this step can be skipped.

The other two steps in the initial setup phase cannot

be skipped. Next, the simulation’s setup parameters such

as vON , additional learning capabilities to be used, etc. are

established. The final initial step generates a sequence of

memories from the EHoS dataset to be placed into the SAN.

For the sake of comparison, every simulation demonstrated

in this work utilizes the same randomly generated sequence

of memories.

Memory association

During the memory association phase, the core step of

introducing a new memory to the network is performed. The

memory association phase will only introduce one memory

to the network at a time per Equation (3). As an example, a

memory from the EHoS dataset might be: Bourbon (dynasty)

King (position) Louis (first name) XIV (title) of 17th century

(primary century of rule) France (state), who ruled for 72

years (reign in years) and died of natural causes (cause of

death). Each of these memories is selected at random from

the EHoS dataset to be placed into the SAN (but never more
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than once). For a subsequent memory to be introduced into

the SAN, the remaining three phases of simulation must be

conducted first.

The remaining steps in the memory association phase relate

to the additional learning capabilities that can be enabled within

the SAN. Each of these steps can be seen in Figure 2 but will be

discussed in greater detail in section 3.2.

Memory recall

The final three phases of the simulation occur in a cycled

sequence that increases in length as the SAN simulation

proceeds. Once this cycled sequence is over, the memory

association phase can once again be conducted.

The first of these three phases, memory recall, iteratively

selects memories from the part of the sequence shown to

the SAN so far during memory association. It will then

iteratively select half of the features from that memory and

conceal them from the network. This concealment process

forces the SAN to perform pattern completion to recall

the remaining half of the memory it has been shown. The

network will have its recall response analyzed for a winning

feature within each set per Equation (4). If a winning feature

cannot be found within a set after analysis, one of the

tied features is randomly selected and has external input

applied to its neuron (unless all outputs from a set are

zero, then the set is ignored). The SAN is then reanalyzed

for winning features. The process repeats until Equation (4)

is solved.

Post-analysis

Post-analysis is a simple, record-keeping phase that tracks

key performance metrics. These metrics include: hit rate with

respect to the Uavg (i.e., average value of the four Ui’s (Table 1)

from the sets getting input during each recall trial) of the input

provided to the SAN during memory recall, the number of

uniquememories that have been recalled at the current time step

of the simulation, and how many times each memory from the

EHoS dataset has been recalled at the current time step.

FIGURE 3

Hit rate for the baseline of the SAN against the EHoS dataset. The x-axis represents each time step throughout the simulation, while the y-axis
represents the average U-Factor value (Table 1) for the four features shown to the network during each recall trial, Uavg .
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Post-analysis checks

The post-analysis checks phase is a quick, but key phase

that determines when the simulation should either return to the

memory association phase, memory recall phase, or finish the

run. If the simulation has not finished recalling every possible

combination of inputs from every memory already shown to the

SAN up to the current time step, it will return the simulation to

the memory recall phase. If the simulation has finished recalling

every input combination of every memory up to the current

time step, but the memory sequence still has more memories

to introduce, the memory association phase will be initiated

once more. If all memories have been properly recalled and

all memories have been introduced to the SAN, the simulation

ceases, and the run ends.

Results

Initial results

As a first demonstration of the SAN’s functionality, a

simulation is conducted that uses no special learning capabilities

and uses the SAN’s base behavior as described in section 2.2.

Three metrics known as hit rate, the unique memory ratio, and

recall occurrences are used to evaluate the network in a set of

plots. They are described as follows:

Hit rate

The hit rate of the SAN is defined as the number of times

the network perfectly guesses a memory during the recall period.

The hit rate for the SAN’s baseline can be seen in Figure 3. The

x-axis represents each individual time step, while the y-axis is

the Uavg for the current combination of inputs being shown to

the SAN during recall. Each new line on the y-axis represents a

different combination of features from four different sets shown

to the network. As the y-axis increases, so does the value ofUavg ,

meaning the features shown to the network are coming from

sets that are increasingly unique. If the SAN fails to guess the

exact match of the full original memory previously placed into

the network, the hit rate considers it a miss.

At each time step, one newmemory is shown to the network.

As time passes, memories are placed into the network and the hit

rate overall decreases. This drop in performance is due to two

factors. The first factor is that as more memories are placed into

the network, its memory space becomes increasingly crowded;

making the SANmore likely to recall an improper memory. The

FIGURE 4

Unique memory ratio for the basic SAN run against the EHoS dataset. At each time step, the ratio tallies the amount of unique memories recalled
in that time step’s evaluation and divides it by the total number of memories shown to the network so far.
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second factor is that the hit rate shown in Figure 3 is only based

off memories it has seen so far. When t = 1, the SAN is only

evaluated on the single memory is has observed so far. At t =

100, it is evaluated on those 100 memories it has been shown

already, and so on.

The final observation to be made from Figure 3 is that

it shows the hit rate across a two-dimensional plane instead

of the usual single line with respect to time. Expanding the

hit rate to also be shown with respect to Uavg was done to

show how the type of information concealed from the network

when performing recall has a large effect on how well the

SAN performs. If a combination of inputs come from sets

with a high Uavg value, the network is utilizing parts of the

synaptic grid where information is more unique (i.e., less likely

to be misconstrued). Other factors also affect the hit rate such

as what memories have been shown to the network so far,

but Uavg through the study revealed itself to be a primary

controlling factor.

Unique memory ratio

The second metric to monitor the performance of the SAN

is called the unique memory ratio. The unique memory ratio

of the SAN’s baseline is shown in Figure 4 and shows how

the ratio begins to decrease over time for the network. This

ratio is not the same as hit rate, as it measures the number of

unique memories recalled at every time step of the simulation.

If a memory is shown to the network for recall purposes

and the network fails to recall the remainder of the partially

shown memory, hit rate considers that a miss. However, if

the recalled memory is another memory that exists somewhere

within the dataset, the unique memory ratio will count it toward

its total.

As shown in Figure 4, the unique memory ratio ends at

∼0.975, or 97.5%. This ratio means that after being shown

all 700 memories, 97.5% of those memories were recallable

under at least one of the input combinations tested when t

= 700. It might not have been the original memory shown

to the network during each recall trial, but the memory was

still recallable under a certain condition. This value shows

that even at its baseline, the SAN is a robust platform for

associative memory.

One final feature of note within Figure 4 is the bump in

the center of the figure. At this point, the unique memory ratio

exceeds one. As previously stated, the unique memory ratio

checks for any memories recalled that exist within the EHoS

FIGURE 5

Recall occurrences heatmap for the basic SAN run against the EHoS dataset. This heatmap shows how many times at each time step a specific
memory within the dataset was recalled. Memories are sorted along the y-axis with respect to the order in which they are shown to the network.
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dataset, including ones not shown to the SAN yet. Between the

200th and 300th time steps the network begins to return recalled

states of memories that the network has not been shown yet in

addition to the ones already shown. This phenomenon occurs

by statistical chance due to the SAN’s synaptic states but does

demonstrate a light form of prediction.

Recall occurrences

The third and final metric that monitors the SAN’s

performance is defined as recall occurrences. This metric

is tracked via a heatmap as shown in Figure 5. The recall

occurrences metric simply monitors how many times each

memory within the EHoS dataset is recalled at every time step

in the simulation. In the Figure 5 heatmap, the y-axis shows an

indexed version of the memories per their order introduced to

the SAN. This indexing creates a diagonal across the heatmap

that demonstrates how the simulation introduces one new

memory to the network per time step. Below the diagonal, a

bright region of reds and yellows showsmemories already placed

into the network. Above the diagonal is a large, dark region that

shows memories that have not been introduced to the SAN yet.

Within the dark region above the diagonal, a few anomalies

appear as small, red streaks. These streaks are memories that

have not yet been shown to the SAN but have been returned

as recalled states at those specific time steps. This result again

shows the light predictive behavior exhibited by the network

that occurs by chance. These predicted memories appear and

disappear as time passes and the SAN’s internal state changes.

Another feature that occurs for a handful of memories

is seen in the upper-right portion of the heatmap. As more

memories are placed into the SAN and its grid becomes

crowded, some memories begin to never be recallable even after

being initially introduced. This phenomenon appears as black

streaks that cut through the bright region beneath the diagonal

to the final time step. These streaks do not occur often but

appear to occur with increasing frequency as more memories are

introduced. This observation alludes to the potential of datasets

larger than EHoS having a larger problem of permanently

unrecallable memories.

Expanding the network’s behavior

To address the shortfalls seen in the SAN’s baseline and

make it usable in a lifelong learning environment, additional

learning behaviors could be introduced to the network to

counter them. In addition, the previously observed prediction

by chance behavior could also be further enhanced by modifying

learning behavior in the network. Three extra learning rules for

the network will be discussed and tested on the SAN to see how

the network’s behavior adjusts. Although these behaviors will not

grant the SAN unlimited capacity, the goal is to help curate the

critical memories it needs for its specified application.

FIGURE 6

Proposed expanded learning behaviors to introduce to the SAN. (A) a predictive behavior that intends to enhance the network’s already existing
capability to randomly predict future concepts. If the output a neuron not receiving external input surpasses Pth, it becomes associated with all
other present external input. (B) an erase behavior that clears all synapses associated with a specific neuron if the number of programmed
synapses surpasses Rth. (C) a forgetting behavior that passively decays the value of a synapse’s weight with respect to time according to
Equation (7).
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Predictive behavior

The first behavior to be introduced to the SAN is designed

to more properly predict future memories the network might

encounter. Seen in Figure 6A, the predictive behavior checks

for neurons not receiving external input when a new memory

is being introduced that have high output from synaptic grid

feedback. A threshold is defined, Pth, where if any neuron not

currently receiving external input ever surpasses Pth during a

memory association, it will associate itself with all other feature

neurons currently being given external input. In other words,

wij,pq =

{

wij,pq, fpq < Pth
vON , fpq ≥ Pth

(5).

The primary objective of this behavior is to potentially predict

future observations that might be witnessed by the SAN due to

high correlation between features. This type of behavior is based

on cognitive behavior seen in humans such as speculation or

predicting future events based on the past (Agnati et al., 2017).

Erase behavior

One of the issues previously seen in the baseline of the SAN

was the eventual degradation of the network’s unique memory

ratio as more memories were introduced. If the EHoS dataset

was larger than 700 memories, this effect could be further

exaggerated as the unique memory ratio continues to decay as

hundreds or thousands more memories fill the synaptic grid.

Extremely common features within a dataset can connect many

memories’ features to one another over time, and potentially

cause the network’s response to become less accurate. To combat

this problem, another threshold is defined for the network,

Rth. If any neuron within the network ever has the sum of its

pre-synaptic weights surpass Rth, it is deemed a “commonly

recurring feature,” and has its pre- and post-synaptic weights

all reset to 0. These weights are not permanently removed, as in

pruning, but instead simply reset. This behavior allows for these

connections to once again be made in the future, if necessary, to

aid in lifelong learning.

Shown in Figure 6B, the erase behavior is described by

[wij,:,w:,ij] =

{

[wij,:,w:,ij],
∑

wij,: < Rth
[0, 0],

∑

wij,: ≥ Rth
(6),

FIGURE 7

Recall occurrences heatmap for the predictive behavior when Pth=6vON . An increased amount of successful predictions were not seen, and the
frequency of permanently unrecallable memories sharply increases as the simulation approaches its end due to the synaptic grid becoming
saturated.
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where wij,: and w:,ij each specify a column or row of weights,

respectively. This learning mechanism aims to keep memories

“more unique” in the network by removing commonly recurring

features to make space in the synaptic grid for more memories

in the future. This behavior is grounded in similar behavior

seen in human brains in the field of neuroscience such as the

sleep wake cycle (Zhou et al., 2011). When the brain enters its

sleep state, it performs a memory consolidation process between

the hippocampus and the neocortex (Lambert et al., 2020).

Commonly observed, but unimportant information is removed

and discarded in the process. This process allows for the brain to

adapt to new information it sees daily.

Forgetting behavior

The third and final behavior that will be used on the SAN is

one that aims to tackle the second problem seen in the network’s

baseline; permanently unrecallable memories. Some memories

during the baseline appear to be unrecallable for the entire

simulation run, even at the time step they are introduced to the

network. This issue could be due to many factors, but primarily

attributed to overcrowded areas of the synaptic grid where other

memories already reside. A way to solve this problem would be a

behavior that keeps the grid generally free as time passes. The

erase behavior prevents select areas of the synaptic grid from

saturating, but that might not be enough to combat this issue.

The most basic method that could be designed to combat

this issue would be to introduce a general forgetting behavior to

the network. Every synaptic connection would have its weight

slowly decay over time. With this behavior demonstrated in

Figure 6C, an equation can describe the weight of any synapse

at the next time step as

wij,pq(t + 1) = wij,pq (t) (1− Drate) (7),

where Drate is the rate of decay for the synapse between time

steps. Once again, this learning behavior is one based off

human cognition. Naturally, as time passes, memories from

the past become increasingly difficult to recall (Baddeley et al.,

2019). Some notable memories might stand out, but many

are forgotten.

Expanded results

Predictive behavior

To test the first learning behavior for the SAN, the predictive

behavior was used with Pth=6vON . The value defined for Pth
means that if six or more pre-synaptic connections to a neuron

receive external input from their pre-synaptic neurons, that

neuron will associate itself with all other features currently being

directly observed by the network.

During the length of the simulation, a total of 527

predictions were made by the SAN. Seeing as 700memories exist

within the EHoS dataset, 527 is an incredibly high value. Due to

the overactive predictive behavior, all metrics for measuring the

SAN’s success heavily dropped. One of the clearest indicators

FIGURE 8

Results of the erase behavior when Rth=400vON . (A) The hit rate plot shows a clear drop when the erasure event occurred between the 400th
and 500th time step. A period of post-erase recovery then ensues. (B) The unique memory ratio tells a similar story to the hit rate, where the
erasure event incurs a short-term performance hit, but shows a post-erase recovery phase where the network recovers to a point slightly higher
than the end result from the basic run.
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of this reduction in performance is recall occurrences shown

in Figure 7. The hit rate and unique memory ratio are not

shown here (Supplementary Section 1) but tell a similar story.

Due to so many predictions being made, the synaptic grid

quickly saturated; making it difficult to recall memories. In

addition, the number of predictions made by the network in

the dark region of Figure 7 did not increase. Another simulation

was conducted at Pth=7vON , that had fewer predictions made

(250), and did not differ much from the baseline of the

SAN. This result indicated the behavior did not affect the

network’s performance.

A possible explanation behind the weak performance of

the predictive behavior could be the EHoS dataset’s nature.

The average Hamming distance between memories in the

dataset is 7.19 (e.g., maximum value is 8). This value

means that memories are incredibly unique with respect to

one another and only likely to share ∼1 feature with one

another. If the average distance was lower, the predictive

behavior might have less of a negative impact on the

SAN’s performance while also increasing the amount of

predictions made. This hypothesis means that the predictive

behavior might be more useful in other, more heavily

correlated datasets.

Erase behavior

The next learning behavior studied in the SAN aimed to

generally increase long term performance within the network.

The erase behavior’s hit rate and unique memory ratio are

shown in Figure 8 when Rth=400vON . The value defined for

Rth means if 400 programmed synapses are pre-synaptically

connected to the same neuron, that neuron will have all its

pre- and post-synaptic connections reset. Due to this high

threshold, only a single erasure event occurs during the entire

simulation. This event can be clearly seen in Figure 8 where

the fracture in the hit rate and the sudden decrease in the

unique memory ratio both appear. What is seen after this

erasure event is post-erase recovery. Since memories continue

to be shown to the network after the erasure event, the hit

rate and unique memory ratio both begin to increase again.

The most impressive observation is that once the simulation

has ended, the unique memory ratio has ended at ∼98%. This

result is∼0.5% higher than the value seen in the baseline, which

demonstrates the erasure behavior being valuable for lifelong

associative memory use.

If the value of Rth is decreased to a lower value (e.g.,

200vON ), an example of a SAN that begins to underperform

is revealed. In Figure 9 the hit rate and unique memory ratio

for the more active erase behavior can be seen, where a couple

dozen erasure events occur over the course of the simulation.

The resulting performance shows that overuse of the erase

behavior results in a network that is never able to fully experience

post-erase recovery. This result when compared to Figure 8

demonstrates that rare use of the erase behavior can be very

beneficial to long term network performance, but overuse is

not advised.

FIGURE 9

Results of the erase behavior when Rth=200vON . (A) The hit rate takes multiple hits from successive erasure events through the entire simulation.
Phases of post-erase recovery do appear but are erased over time due to the high amount of erasure events. (B) The unique memory ratio
shows multiple drops as erasure events occur. The ratio attempts to recover multiple times, but often fails to do so due to subsequent erasure
events happening at a rapid pace.
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FIGURE 10

Recall occurrences heatmap for the forgetting behavior. Memories can be seen being forgotten as time progresses, and then remembered
during intermittent periods for the remainder of the simulation (due to similar memories to the ones forgotten being newly introduced to the
network).

Forgetting behavior

The Forgetting behavior was tested in a simulation of the

SAN with Drate=0.015 (i.e., 1.5%). Since the network is being

told to forget memories as time passes, the hit rate and unique

memory ratio metrics will suffer (Supplementary Section 3). The

key issue the behavior is attempting to solve is permanently

unrecallable memories. As shown in Figure 10, there are no

longer any permanently unrecallable memories in the network,

as no black streaks appear through the diagonal. This behavior

could be useful in lifelong learning similar to the erase behavior

where the memory is being curated by a heuristic over time.

This behavior introduces a trade-off into the network, however.

Implementing the forgetting behavior does ensure all new

information is comprehended by network, but at the cost of

forgetting memories as time passes. This parameter should be

tuned for the network’s environment. If the network exists

within a constantly changing environment, having a higher

Drate value to ensure all new information is consistently

stored in the network might be ideal, as older info will

not be as relevant. In a more static environment, it might

be best to have a much lower value of Drate, or none if

completely static.

One other interesting behavior emerges in Figure 10. A

“forgetting shelf ” feature appears beyond the diagonal of the

heatmap. After this shelf, memories become much less likely

to be recalled due to Drate. However, many memories appear

to temporarily reappear in certain places and then disappear

once more. The explanation for this behavior is once past the

forgetting shelf, a memory has not completely disappeared, but

instead is weak enough to not be recalled. These older, weaker

memories can later be reinforced by memories like them. This

reinforcement causes the memory to be recallable again before

the newer connections also decay. This type of phenomena could

be defined as a long-term version of memory retrieval where

specific cues are required known as ecphory (Frankland et al.,

2019).

Behavior ensemble

Now that all three behaviors have been individually

studied, it is worth exploring the potential of all three

learning behaviors being used together. The results of this

demonstration can be found in Figures 11–13. For this

simulation, Pth=6vON , Rth=200vON , and Drate=0.005 (i.e.,
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FIGURE 11

Hit rate for the behavior ensemble simulation of the SAN. One erasure event occurs, after which the post erase recovery is removed due to the
forgetting behavior.

0.5%). During this simulation one erasure event occurred which

is seen in all three metrics. The forgetting behavior can also be

seen with the decrease in hit rate (removing post-erase recovery

in Figure 11), unique memory ratio, and the (less prominent)

forgetting shelf in Figure 13. The predictive behavior attempted

to make many predictions, but they were again all from chance

(Supplementary Section 4). The results of the ensemble show

that behaviors can be combined to increase the network’s

behavioral complexity.

Discussion

The results of all the expanded behaviors including the

ensemble is quickly summarized in Table 2. Overall, the results

from the SAN and its expanded behaviors show promise in

its potentials for lifelong learning. The network’s introduced

learning rules help it solve some of the critical problems in

lifelong learning such as catastrophic forgetting and memory

saturation (Parisi et al., 2019). Although the network does forget

memories over time, the learning rules introduced ensure that

the information being forgotten is less critical since it’s either

extremely common (handled by erase behavior) or extremely

rare (handled by forgetting behavior).

Other studies (Chaudhry et al., 2019) have shown where

other types of networks have been benchmarked against more

standard datasets such as MNIST or CIFAR. Similar results

were shown in those demonstrations using a type of forgetting

behavior where the network would slowly forget older tasks

over time. Additionally, results in the accuracy from the models

in Chaudhry et al. (2019), when compared to the hit rates

results from this work show similar results. When ran against

the CIFAR dataset, the best models from Chaudhry et al.

(2017), capped at ∼60% accuracy. In this work, the hit rate

against the EHoS dataset reached its highest rate of 65–70%

during the standard and erase (Rth =400vON ) SAN simulations

at high values of Uavg . Other lifelong learning metrics such

as Learning Curve Area (LCA) defined by Chaudhry et al.

(2017), could be used to evaluate the SAN in future work to

compare results.

For the dataset studied in this work, its sets had a wide

range of U-Factor values. In datasets where the U-Factors of the
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FIGURE 12

Unique memory ratio for the behavior ensemble simulation of the SAN. The erasure event can be seen in the steep drop in the ratio. The decay
rate’s e�ect can also be seen in the degradation of the ratio over time.

sets are much more commonly higher values, data will appear

very uniform and have few distinct characteristics. In these cases

of high uniformity, the erase behavior would be quite potent

in removing the high amount of commonalities and making

the memories more distinct from one another. To ensure those

similar traits are erased and forgotten, define the Rth value as

an intermediate or high value. In fact, if the number of times the

commonalities occur through the dataset is known prior, Rth can

be calculated by the equation,

Rth = Itot fsimvON (8),

where fsim represents the similarity frequency. For example, if

there was a feature within one of the sets of the dataset that was

highly common with a fsim = 0.6 (i.e., 60%), and there were a

total of 100 memories in the dataset, Rth could be set to a value

of 60vON to erase the commonalities once all of them occurred.

If the commonalities were desired to be erased sooner, Rth could

be lowered. However, it should not be lowered to a point where

it might remove other features deemed important to memories

that might be more unique.

In terms of the other factors for the forgetting and predicting

behaviors, Drate and Pth have their own quirks. Drate effectively

defines the SAN’s “attention span” when utilizing the forgetting

behavior. When using a Drate of 1.5% in Figure 10, memories

on average were becoming unrecallable after ∼100 timesteps.

If Drate were decreased this 100 timestep attention span would

increase. If it is desirable for a system to possess a very long

attention span, very low rates for Drate would be intuitively

preferred. However, it is key to remember too long of an

attention span could lead to capacity saturation within the

network which could then lead to catastrophic forgetting. Drate

should be tuned to a point where it is preventing capacity

saturation, but also remembering things long enough for

them to be useful. This attention span is very dataset and

application specific, however it is reliable to say that datasets

with low U-Factor sets will have a difficult time with any

intermediate or high value for Drate. Since a low U-Factor set

possesses more unique features, each feature typically occurs

less often. A drop in occurrence rates means that the network

has fewer opportunities to keep the memory reinforced via

similar feature pairs. Datasets with at least some sets with

high U-Factors would fare better with the forgetting behavior

due to less unique features still giving opportunities to update

some feature pairs more often. If one of the features in

those pairs is common while another unique, the unique
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FIGURE 13

Recall occurrences heatmap for the behavior ensemble simulation of the SAN. Signatures of both the erase and forgetting behaviors can be
seen in the forgetting shelf and fracture in the heatmap shortly after the 300th time step. All predictions above the diagonal were determined to
be not made by the predictive behavior.

TABLE 2 Summary of expanded behavior results.

Behavior Pth(vON ) Rth(vON ) Drate Result

Predict 6 - - No prediction increase. Predictions were by chance.

7 - - No prediction increase. Predictions were by chance.

Erase - 400 - UMR increased. One erasure event occurred.

- 200 - No UMR increase. Too many erasure events.

Forget - - 0.015 No permanently unrecallable memories. Memories fade with time.

Ensemble 6 200 0.005 All previous behavior signatures observed.

fingerprint of that memory can persist within the SAN and

be recallable.

In terms of the threshold, Pth, for the predicting behavior,

higher values appear to be safest. Even at higher values

however, the behavior appeared risky to utilize and often

caused detrimental effects to the system’s recall capability via

capacity saturation. This behavior might need more adjustment

to become safer to use. However, if one does wish to use the

predicting behavior in a model, it is recommended to use a very

high value [e.g., (s-1)vON where s is the number of sets within

the dataset] for Pth regardless of the dataset.

Conclusion

The simulations conducted in this work have demonstrated

a segmented attractor network operating on the EuropeanHeads

of State (EHoS) dataset. In these simulations, three metrics:

hit rate, unique memory ratio, and recall occurrences, were

used in measuring the network’s lifelong learning success. In

addition to the network’s baseline, additional learning behaviors

were studied to explore methods of enhancing the network’s

capability of association. These results show strong, lifelong

learning capabilities of the segmented attractor network when
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used. Behaviors such as the erase and forgetting behaviors both

showed capabilities that allowed the network’s internal state to be

curated over time to maintain relevant information and keep the

network open to changes in its environment. The targeted end

goal for this network would be to implement it in a specialized

hardware for low-power, edge computing utilizing components

such as memristors where computation can be performed in

a fast, parallel process. Further work could be done on the

network by evaluating it on other datasets of varied composure

or exploring more advanced learning behaviors.
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