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Growing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant mat-
uration in COVID-19, which negatively affects T-cell activation. The presence of effector
T cells in patients with mild disease and dysfunctional T cells in severely ill patients
suggests that adequate T-cell responses limit disease severity. Understanding how cDCs
cope with SARS-CoV-2 can help elucidate how protective immune responses are gener-
ated. Here, we report that cDC2 subtypes exhibit similar infection-induced gene signa-
tures, with the upregulation of IFN-stimulated genes and IL-6 signaling pathways. Fur-
thermore, comparison of cDCs between patients with severe and mild disease showed
severely ill patients to exhibit profound downregulation of genes encoding molecules
involved in antigen presentation, such asMHCII, TAP, and costimulatory proteins,whereas
we observed the opposite for proinflammatory molecules, such as complement and coag-
ulation factors. Thus, as disease severity increases, cDC2s exhibit enhanced inflammatory
properties and lose antigen presentation capacity. Moreover, DC3s showed upregulation
of anti-apoptotic genes and accumulated during infection. Direct exposure of cDC2s to the
virus in vitro recapitulated the activation profile observed in vivo.Our findings suggest that
SARS-CoV-2 interacts directly with cDC2s and implements an efficient immune escape
mechanism that correlates with disease severity by downregulating crucial molecules
required for T-cell activation.
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Introduction

Clinical outcomes of COVID-19 are highly variable. Patients may
show either no or mild symptoms (such as mild fever and cough)
or severe respiratory involvement requiring hospitalization. In the
most severe cases, acute respiratory distress syndrome (ARDS)
can develop, with high levels of inflammatory molecules in the
blood [1, 2] and diffuse intravascular coagulation (DIC) [3, 4].
COVID-19 is lethal in a non-negligible number of cases [5].
Patients presenting severe symptoms show immune dysregula-
tion, characterized by excessive release of type 1 and type 2
cytokines [2] and alterations of lymphoid and myeloid popula-
tions in the peripheral blood [6]. Severely ill patients, in contrast
to patients with mild disease, also show alterations in both Th17
and Th1 cell activation, with defects in the acquisition of effector
functions [7].

Cells of myeloid origin play a pivotal role during infections
by sensing pathogens, producing inflammatory mediators, and
contributing to the activation of adaptive immunity. In this
context, DCs are particularly relevant, as they are specialized
in antigen presentation and T-cell priming [8]. The differences
observed in the activated T-cell compartments of patients with
severe versus mild disease suggest abnormal activation in the
conventional DC (cDC) compartment of patients presenting with
more severe disease.

cDCs have been divided into two subtypes, cDC1s and cDC2s,
originating from a common precursor (pre-DCs) [9–12]. cDC1s
have a high intrinsic capacity to cross-present antigens, due
to expression of the CLEC9A c-type lectin [13], and activate
CD8+, Th1, and NK cells [14]. Myeloid cDC2s express var-
ious pattern recognition receptors (PRRs) and can promote
a wide range of immune responses, especially CD4+ T-cell
responses [15]. Recently, cDC2s have been divided into two
subsets, DC2s and DC3s [16–18]. DC3s have been described
as a heterogeneous population that expands in inflammatory
conditions [16].

Functional impairment of cDCs has been described in COVID-
19 patients, with decreased numbers in the blood [19, 20] and
reduced functionality, measured in terms of cytokine production
and T-cell priming capacity [21] upon in vitro restimulation. Nev-
ertheless, a defect in maturation upon in vitro restimulation does
not necessarily indicate functional impairment, as activated DCs
may not further respond to PRR agonists. No specific informa-
tion is available concerning the impact of SARS-CoV-2 infection
on the maturation of DC subtypes. A deeper understanding is
crucial, given the important role of cDC subtypes in the activa-
tion and skewing of adaptive immune responses that ultimately
contribute to COVID-19 pathogenesis [22, 23]. Here, we char-
acterized the transcriptional signatures reflecting the functional
state of cDC subpopulations by high-throughput single-cell RNA
sequencing (scRNA-seq).

Results

Transcriptional signatures of circulating cDCs in
COVID-19 patients

We analyzed peripheral blood cDCs from COVID-19 patients with
severe and mild disease, according to the World Health Organi-
zation (WHO) classification, to better understand the impact of
SARS-CoV-2 infection on cDC subtypes. Patients were enrolled
from the STORM cohort (see Table S1 for clinical data of the
patients) of San Gerardo Hospital in Monza, Italy.

Amongst CD11c+MHCII+ peripheral blood mononuclear cells
(PBMCs), cDC1s were identified as CLEC9A+ and cDC2s were
identified among the CD1c+FcεRIα+ cells, excluding cells express-
ing markers for T or B lymphocytes (CD3 and CD19, respec-
tively) or monocytes (CD88 and CD89) [16]. CD14 was included
in the analysis to identify DC3s [17] (Supplementary Fig. 1 for
gating strategies). Consistent with previous studies, we found a
decreasing trend in the frequency of cDC1s and DC2s [19,20]
and an increasing trend in DC3s in the blood of COVID-19
patients relative to that of healthy donors (HDs) (Fig. 1A). The
decreased number of cDCs in circulation may be due to both
their recruitment to the respiratory tract and to apoptotic death
caused by exposure to an inflammatory environment or direct
viral encounter.

We systematically characterized the transcriptional response
of cDCs to SARS-CoV-2 infection by analyzing three different
single-cell transcriptomic datasets, two that were publicly avail-
able and one that was newly generated. Analysis of three indepen-
dent datasets allowed us to identify consistently altered signaling
pathways, minimizing the effects of possible biases in the single
datasets.

The new dataset (dataset 1) [24] was generated using a
droplet-based single-cell platform (10X Chromium) and contains
scRNA-seq data of CD11c+MHCII+ cells isolated from PBMCs of
three COVID-19 patients (two with mild and one with severe dis-
ease) and two HDs (Table S1). The second dataset [22] (dataset
2) contains cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq) data of PBMCs and enriched DCs obtained
from seven COVID-19 patients (three with mild and four with
severe disease) and five HDs, and the third dataset [25] (dataset
3) contains scRNA-seq data of PBMCs obtained from 18 COVID-19
patients (8 with mild and 10 with severe disease) and 21 HDs.

Single-cell data from datasets 1 and 2 were first visualized
using non-linear dimensionality reduction through uniform mani-
fold approximation and projection (UMAP) and graph-based clus-
tering algorithms (Supplementary Fig. 2A, 3A). Clusters contain-
ing myeloid DCs were identified based on the expression of mark-
ers that discriminate cDC2s and cDC1s from all other cell pop-
ulations. Specifically, CD1C, FCER1A, and CLEC10A were used
to identify cDC2s, whereas CLEC9A was used to identify cDC1s
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Figure 1. The response of cDCs to SARS-CoV-2 infection is dominated by ISGs. (A) Percentage of cDC1s, DC2s, and DC3s among PBMCs from the
whole blood of COVID-19 patients (n = 22 with mild and n = 10 with severe disease) and HDs (n = 21). Statistical significance was determined
using one-way analysis of variance (ANOVA), followed by Sidak’s multiple comparison test. *p < 0.05, **p < 0.01, ***p < 0.001. Each dot represents
an individual donor. (B, upper panels) UMAP representations of cDC subpopulations identified in the three COVID-19 datasets analyzed: dataset
1 (n = 2 HDs, n = 3 COVID-19), dataset 2 (n = 5 HDs, n = 7 COVID-19), and dataset 3 (n = 21 HDs, n = 18 COVID-19). Cells are colored according to
cDC subpopulation and donor origin. (B, lower panels) Violin plots illustrating the expression levels of selected marker genes used for the manual
annotation of cDC subtypes. (C) Heatmaps showing the top 100 DEGs for each cDC subset comparing COVID-19 patients and HDs from dataset 2.
Differential expression analysis was performed using pseudo-bulk counts and, for each DC subset, only donors with at least 10 cells were retained
(cDC1s: n = 4 HDs, n = 3 COVID-19; DC2s: n = 5 HDs, n = 6 COVID-19; DC3s: n = 5 HDs, n = 5 COVID-19). Selected upregulated genes (ISGs) are marked
in red and downregulated genes in blue. Ribosomal protein (RP) genes were removed from the top 100 DEGs (see Table S2 for the full list of DEGs).
(D) GSEA of DEGs using the Hallmark collection for the three COVID-19 datasets. For each dataset, the top 15 pathways in each cDC subset were
selected and consolidated across all DC subsets in a single dot plot. NES, normalized enrichment score.
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(Supplementary Fig. 2B, 3B). Myeloid DCs already annotated by
the authors were considered for dataset 3 [25]. Clusters corre-
sponding to myeloid DCs in the three datasets were re-clustered in
further iterations to separate cDC1s from cDC2s, to discriminate
cDC2 subpopulations and to exclude possible contaminants or
doublets. Specifically, DC3s were distinguished from DC2s based
on the expression of CD14, CD163, and S100A8. This approach
allowed us to clearly identify cDC subsets (Fig. 1B, Supplemen-
tary Fig. 3C,D,E and Supplementary Fig. 4A).

Next, we aggregated cell-level counts into sample-level
pseudo-bulk counts, mitigating single-cell mRNA measurement
noise, to unravel the transcriptional response of each cDC sub-
set during SARS-CoV-2 infection and identified differentially
expressed genes (DEGs) between COVID-19 patients and HDs
(Table S2). The low numbers of cDC1s allowed their analysis
solely in dataset 2.

Comparison of the expression profiles of COVID-19 patients
with those of HDs showed most of the genes upregulated in
COVID-19 to be interferon (IFN) stimulated genes (ISGs) in all
cDC subsets (Fig. 1C and Supplementary Fig. 5A,B). On the other
hand, genes encoding MHCII molecules were among the most sig-
nificantly downregulated genes in cDCs from COVID-19 patients
(Fig. 1C), indicating that these cells have an impaired antigen
presentation capacity.

We performed gene set enrichment analysis (GSEA) to better
understand the biological signaling pathways that are differen-
tially regulated in cDCs from COVID-19 patients relative to HDs
using two gene sets: the Hallmark collection from the Molecular
Signatures Database (MSigDB) and the literature-derived Blood
Transcription Modules (BTMs) [26] (Table S3). As expected, mat-
uration was dominated by ISGs in all cDC subtypes from the three
datasets, consistent with the identified DEGs, whereas we were
unable to detect the upregulation of signatures containing classi-
cal activation markers and cytokines for T-cell priming (Fig. 1D
and Supplementary Fig. 6A). Along with the IFN-induced path-
ways, IL-6 pathways (IL-6-JAK-STAT3 and PI3K-AKT-mTOR [27])
were consistently upregulated in cDC2s in all datasets (Fig. 1D).
This is in accordance with the relevance of IL-6 in COVID-19
pathogenesis and the expansion of activated Th17 cells in COVID-
19 patients [28].

Circulating cDCs in patients with urinary tract
bacterial infections and vaccinated individuals

The absence of a conventional maturation signature (absence
of upregulation of genes encoding MHCI-II, costimulatory
molecules, and cytokines) in circulating DCs prompted us to
determine whether it was, in fact, possible to identify activated
DCs in the blood.

We, therefore, investigated the transcriptional responses of cir-
culating DC2 and DC3 subsets at single-cell resolution under dif-
ferent clinical conditions. Two distinct publicly available datasets
were analyzed: the dataset from Reyes et al. [29], contain-
ing scRNA-seq data of PBMCs and enriched DCs obtained from

patients with urinary tract bacterial infections of increasing sever-
ity (localized infection [Leuk-UTI] or systemic infection with tran-
sient [Int-URO] or persistent organ dysfunction [URO]), and the
dataset from Hao et al. [30], containing CITE-seq data of PBMCs
obtained from healthy volunteers who received an adenovirus-
based vaccine. As already described, we performed dimensionality
reduction and unsupervised clustering to identify cDC subpopula-
tions. Our approach clearly identified cDC subsets in both datasets
(Fig. 2A,B and Supplementary Fig. 7). We then determined DEGs
in infected or vaccinated donors with respect to the corresponding
HDs (Table S4) and performed GSEA.

The results are in stark contrast to those obtained from COVID-
19 patients. Indeed, circulating DC2s and DC3s in both datasets
showed upregulation of not only IFN pathways (as in COVID-19)
but also inflammatory signatures and genes relevant for immune
responses (differently from COVID-19) (Fig. 2C,D,E and Sup-
plementary Fig. 8,9). The most significantly upregulated genes
included several encoding activation molecules, such as CCR1,
CCR5, TNFSF10 (CD253/TRAIL), TNFRSF1A, and IL32 [31–35],
as well as classical markers of DC maturation, such as HLA-DR,
B2M, CD86, and TAP (Fig. 2C,D and Supplementary Fig. 8A,B).

These findings were confirmed by pathway analysis, which
showed a clear upregulation of activation pathways in DC2 and
DC3 subsets in response to bacterial infection or vaccination, such
as the inflammatory response pathway and the TNF-α signaling
pathway (Fig. 2E and Supplementary Fig. 9A,B). The leading edge
genes driving the enrichment of the inflammatory response path-
way in response to bacterial infections included several relevant
for T-cell activation (IL1B, CCL5, TNFSF10, GPR183, CD69, SELL)
(Supplementary Fig. 9C), suggesting that cDC2s were undergo-
ing conventional maturation. We found that the allograft rejec-
tion pathway in the Hallmark Gene Sets Collection, upregulated
in both the bacterial infection and vaccine datasets, could be used
as a proxy for the antigen-presentation pathway, as many of the
genes included in this gene set are involved in antigen presenta-
tion by DCs. Specifically, genes involved in the endogenous path-
way of antigen presentation, including HLA-A, B2M, TAP1, and
TAP2, were all upregulated (Supplementary Fig. 10). Interest-
ingly, we observed a stronger activation response for circulating
cDC2s from patients with localized bacterial infections (Leuk-UTI
group) and transient organ dysfunction (Int-URO group) than
those with bacterial sepsis and persistent organ dysfunction (URO
group) (Fig. 2E, left panel). This was expected, as sepsis induces
functional impairment of myeloid cells.

DC2s and DC3s respond similarly to SARS-CoV-2
infection and CD14+CD163+ DC3s accumulate in blood

Recent studies have shown potential functional differences
between DC2s and DC3s [36] in inflammatory diseases, such as
Systemic Lupus Erythematosus (SLE), in which type I IFNs play
a major role [16]. We investigated the potential specific role of
DC3s with respect to DC2s by determining the genes that are dif-
ferentially induced/downmodulated by these two subpopulations
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Figure 2. Activation signature of cDCs during bacterial infection and adenovirus-based vaccine administration. (A) UMAP representations of cDC
subpopulations and violin plots illustrating the expression levels of selected marker genes used for the manual annotation of cDC subsets in
the bacterial infection dataset [29]. (B) UMAP representations of cDC subpopulations and violin plots illustrating the expression levels of selected
marker genes used for themanual annotation of cDC subsets in the adenovirus-based vaccine dataset [30]. (C) Heatmaps showing the top 100 DEGs
comparing Leuk-UTI patients with HDs in the dataset of bacterial infections, separately for DC2s and DC3s. Differential expression analysis was
performed using pseudo-bulk counts and, for each DC subset, only donors with at least 10 cells were retained (DC2s: n = 11 HDs, n = 5 Leuk-UTI;
DC3s: n = 10 HDs, n = 4 Leuk-UTI). Selected upregulated genes are marked in red. Ribosomal protein (RP) genes were removed from the top 100
DEGs (see Supporting Information Table S4 for the full list of DEGs). (D) Heatmaps showing the top 100 DEGs comparing vaccinated donors at day 3
with unvaccinated donors in the vaccine dataset, separately for DC2s and DC3s. Differential expression analysis was performed using pseudo-bulk
counts and, for each DC subset, only donors with at least 10 cells were retained (DC2s: n = 8 unvaccinated, n = 8 vaccinated on day 3; DC3s: n = 7
unvaccinated, n = 7 vaccinated on day 3). Selected upregulated genes are marked in red. Ribosomal protein (RP) genes were removed from the top
100 DEGs (see Supporting Information Table S4 for the full list of DEGs). (E) GSEA of DEGs using the Hallmark collection: bacterial infection dataset
(left panel) and vaccine dataset (right panel). For each dataset, the top 10 pathways in each cDC subset were selected and consolidated across
all DC subsets in a single dot plot. NES, normalized enrichment score. Leuk-UTI, urinary tract infection with leukocytosis. Int-URO, intermediate
urosepsis. URO, urosepsis.
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in response to SARS-CoV-2 stimulation and compared them to
bacterial infection. The resolution was increased by pooling cDCs
from the three COVID-19 datasets and performing Harmony inte-
gration [37], followed by graph-based clustering. After integra-
tion, we obtained 2,663 cDCs (Fig. 3A) and clearly identified
cDC1s, DC2s, and DC3s (Fig. 3B).

Only 30 genes (p-value < 0.05 and absolute log2 fold change
> 1) were differentially expressed in DC3s relative to DC2s in
response to COVID-19 infection, of which 19 were upregulated
and 11 downregulated (Fig. 3C, left panel and Table S5). On the
other hand, 146 genes (p-value < 0.05 and absolute log2 fold
change > 1) were identified as being differentially regulated in
DC3s relative to DC2s in response to intermediate urosepsis (Int-
URO condition), of which 60 were upregulated and 86 downreg-
ulated (Fig. 3C, right panel and Table S5).

In conclusion, these findings suggest that DC2s and DC3s
respond similarly to SARS-CoV-2 infection, whereas they show
more diversified responses to bacterial infections.

Among the small number of genes differentially expressed
between DC3s and DC2s in response to COVID-19 were those
encoding complement factors (C1QA) and, most importantly, anti-
apoptotic genes, such as AXL and CLU, which were among the
most significantly upregulated (Fig. 3C, left panel). This sug-
gests that DC3s are less susceptible to apoptosis than DC2s and
may explain why they tend to increase during SARS-CoV-2 infec-
tion (Fig. 1A). Comparison of these results with those obtained
from bacterial infections showed genes associated with cell-cycle
progression and cell proliferation (RGCC, SENP5, SMC6, SER-
TAD3, MAD2L1BP) to be specifically upregulated in DC3s (Fig. 3C,
right panel). Therefore, DC3s may proliferate during inflam-
matory responses or circulating DC3s may contain proliferat-
ing progenitors that expand the DC3 population during bacterial
infections.

Coherent with these observations and the frequency of cDCs
found in the blood of COVID-19 patients (Fig. 1A), we also
observed an alteration in the relative abundance of cDCs by
scRNA-seq. Specifically, DC3s showed higher frequencies in
COVID-19 patients with respect to HDs (Fig. 3D).

DC3s have been described as a heterogeneous popula-
tion [16,18], which was confirmed by our FACS analysis
(Fig. 3E and Supplementary Fig. 1). CD1c+CD5- cells included
CD14low/+CD163low/+ cells, for which the abundance differed
between HDs and COVID-19 patients. CD14+CD163+ cells were
present in COVID-19 patients but almost absent in HDs, who
instead showed only CD14low/+CD163low cells (Fig. 3E). Consis-
tent with these findings, there was a significant increase in the
frequency of CD14+CD163+ DC3s, but not of CD14low/+CD163low

DC3s, in the blood of COVID-19 patients (Fig. 3E). We then inves-
tigated whether this heterogeneity was also measurable at the
transcriptional level. Hence, we retained clusters annotated as
DC3s (Fig. 3B) and performed a re-clustering. We obtained a con-
tinuum of cells in which two subpopulations could be identified
based on the expression of CD14 and CD163 (CD163+CD14+ and
CD163lowCD14low cells) (Fig. 3F). Mirroring previous FACS anal-
ysis (Fig. 3E), we found an increase in the relative abundance

of CD163+CD14+ DC3s in COVID-19 patients relative to HDs
(Fig. 3G).

cDC2s skew towards inflammation and lose the Ag
presenting function as disease severity increases

We investigated cDC2 gene expression profiles in COVID-19
patients with severe versus mild disease to seek specific alter-
ations in the innate immune signature between these two groups
of patients and to link variations in the immune response to
disease severity. As already described, we aggregated cell-level
counts into sample-level pseudo-bulk counts and identified DEGs
between COVID-19 patients with severe and mild disease (Table
S6).

We identified a large number of DEGs in both DC2s and DC3s
(101 for DC2s and 203 for DC3s, p-value < 0.05 and abso-
lute log2 fold change > 1) between patients with severe and
mild disease, indicating relevant differences in the transcriptional
response of these two groups (Fig. 4A). Inflammatory genes not
directly related to the activation of adaptive immunity, such as
complement factors (C1QB) and complement receptors (C5AR1),
those involved in the production of leukotrienes known to exac-
erbate respiratory syndromes (ALOX5AP) and the coagulation
cascade (THBS1, THBD), those coding for factors involved in
vasodilation (ADM), and other inflammatory genes, such as CD14,
S100A8/A9/A12 and ADAM9, were significantly upregulated in
patients with severe versus mild disease in DC2s and/or DC3s
(Fig. 4A). In addition, genes that negatively interfere with the
maturation of DCs for T-cell activation, such as TMEM176B [40]
and MT1E [41], were upregulated in patients with severe versus
those with mild disease (Fig. 4A). Moreover, CLU was among the
significantly upregulated genes in DC3s of patients with severe
disease, further supporting a potential role of anti-apoptotic genes
in DC3s during infections (Fig. 4A, right panel).

Strikingly, genes encoding MHCII molecules, the costimulatory
molecule CD86, and cytokines, such as IL-1β, CCL3, and CCL4,
showed progressive downregulation in DC2s and/or DC3s from
HDs to patients with mild disease and, finally, those with severe
disease (Fig. 4B).

These observations were consolidated by pathway analy-
sis, which showed clear upregulation of pathways involved
in metabolism, coagulation, angiogenesis, and reactive oxygen
species in patients with severe versus mild disease (Fig. 4C).
Among the leading edge genes of the allograft rejection pathway,
which was found to be downregulated in patients with severe ver-
sus mild disease, were many critical for DC-mediated T-cell acti-
vation, such as those coding for proteins involved in antigen pre-
sentation in both the MHCI and MHCII pathways (TAP1, TAP2,
HLA-DMB, HLA-DRA) and genes encoding molecules relevant for
T-cell recruitment and activation (IL16, IL1B, CCL4, CCL5, CCR1,
CCR2) (Fig. 4D). The specific downregulation of these genes in
severely ill patients emphasizes the alteration of cDC functions
in these individuals, which may be associated with worse disease
progression.
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Figure 3. DC2s and DC3s respond similarly to SARS-CoV-2 infection and CD14+CD163+ DC3s accumulate in COVID-19 patients. (A) UMAP rep-
resentations of cDCs from three COVID-19 datasets merged. Cells are colored according to the original dataset (left panel) and clinical condition
(right panel). (B) UMAP representation of cDC subtypes and the corresponding dot plot illustrating the average expression of selected marker genes
used for the manual annotation of cDC subtypes. (C) Volcano plots showing genes differentially induced in DC3s relative to DC2s in response to
COVID-19 (left panel: n = 7 HDs, n = 10 COVID-19) and intermediate urosepsis (Int-URO condition from the Reyes et al. dataset, right panel: n =
9 HDs, n = 4 Int-URO). Genes with a p-value < 0.05 and absolute log2 fold change > 1 were considered significant. Selected genes are highlighted
(red: up in DC3s COVID-19/Int-URO, blue: up in DC2s COVID-19/Int-URO; see Supporting Information Table S5 for the full list of DEGs). (D) Bar plots
showing the relative abundance of cDC populations in HDs and mild and severe COVID-19 patients. (E) Contour plots showing CD14+CD163+ DC3s
and CD14low/+CD163low DC3s in a representative HD and COVID19 patient (left panel). Percentage of CD14low/+CD163low DC3s and CD14+CD163+

DC3s among PBMCs from the whole blood of COVID-19 patients (n = 22 mild and n = 10 severe) and HDs (n = 21). **p < 0.01 (right panel). Each dot
represents an individual donor. (F) Re-clustering of DC3s identified in Fig. 3B (left panel) and dot plot showing the average expression of CD14 and
CD163 (right panel). (G) Bar plots showing the relative abundance of CD14+CD163+ DC3s and CD14lowCD163low DC3s in HDs and COVID-19 patients.
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Figure 4. cDC2s enhance inflammatory properties and lose their antigen presentation capacity in severe COVID-19 patients. (A) Volcano plots
showing DEGs in COVID-19 patients with severe versus mild disease in DC2s (left panel, n = 9 mild and n = 6 severe) and DC3s (right panel, n = 7
mild and n = 5 severe). Genes with a p-value < 0.05 and absolute log2-fold change > 1 were considered significant. Selected genes are highlighted
(red: up in severe disease, blue: up in mild disease; see Supporting Information Table S6 for the full list of DEGs). (B) Boxplots showing expression
levels of selected genes in DC2s and DC3s in HDs and patients with mild and severe disease (DC2s: n = 7 HDs, n = 9 mild, n = 6 severe; DC3s: n =
7 HDs, n = 7 mild, n = 5 severe). Data are represented as boxes and whiskers showing the median, interquartile range, and min to max. Individual
points represent outliers. Statistical analyses were performed using the Wilcoxon rank sum test. *p < 0.05, **p < 0.01, ***p < 0.005. (C) GSEA of DEGs
in patients with severe versus mild disease using the Hallmark collection. For each dataset, the top 15 pathways in each cDC subset were selected
and consolidated across all DC subsets in a single dot plot. NES, normalized enrichment score. (D) Heatmaps showing GSEA leading edge genes of
the allograft rejection pathway in DC2s and DC3s from HDs and COVID-19 patients with mild and severe disease (DC2s: n = 7 HDs, n = 9 mild, n =
6 severe; DC3s: n = 7 HDs, n = 7 mild, n = 5 severe). Genes involved in relevant functions for DC-mediated T-cell activation are highlighted in blue.
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Figure 5. SARS-CoV-2 directly induces downregulation of HLA-DR and the production of IL-6 in DC2s and DC3s. (A, upper panel) Representative
histograms showing HLA-DR expression in cDC2s fromHDs infected or not (NT) with 0.4 MOI of SARS-CoV-2 for 18 h. DC2s and DC3s were identified
as CD5+CD1c+ and CD5–CD1c+, respectively, among CD11+LIN– (CD88, CD89,CD3, and CD19) and FcεRIα+ cells. (A, lower panel) Quantitative analysis
of the MFI of HLA-DR in DC2s and DC3s. Statistical significance was determined using the unpaired Student’s t-test. *p < 0.05, **p < 0.01; n = 4 NT
donors and n = 7 donors for SARS-CoV-2 infection. Each dot represents an individual donor. (B, upper panel) Representative dot plots showing the
percentage of IL-6-producing DC2s and DC3s after viral infection, as described in (B). (B, lower panel) Quantitative analysis of the percentage of
IL-6-producing cells. Statistical significance was determined using the unpaired Student’s t-test. **p < 0.01; n = 4 NT donors and n = 7 donors for
SARS-CoV-2 infection. Each dot represents an individual donor. (C, left panel) Quantitative analysis of the percentage of IL-6-producing DC2s and
DC3s (derived from 4 individual donors) after 18 h of incubation with sera from COVID-19 patients with mild (n = 4) or severe (n = 4) disease. Each
donor has been treated with sera from one HD, one severe and one mild COVID-19 patient. NT: not treated. (C, right panel) Quantitative analysis of
the MFI of HLA-DR in DC2s and DC3s treated or not (NT) for 18 h with sera from COVID-19 patients with mild (n = 4) or severe (n = 4) disease.

Direct activation of DCs by SARS-CoV-2

Finally, we investigated whether the direct interaction of cDC2s
with the virus could induce a similar response to that observed
at single-cell resolution. We measured the response to the
virus of cDC2s (CD1c+CD19- cells) freshly isolated from HDs
using IL-6 and MHCII as readouts. As predicted, we found

that SARS-CoV-2 directly induced significant downregulation
of MHCII surface expression and the upregulation of IL-6 in
both DC2s and DC3s (Fig. 5A,B). Conversely, the exposure
of cDC2s to sera of patients with mild and severe disease,
which contain inflammatory cytokines and other mediators,
did not induce any modification in MHCII or IL-6 expression
(Fig. 5C).
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Discussion

In this study, we leveraged single-cell technologies to thoroughly
investigate the transcriptional signatures of cDCs during COVID-
19 pathogenesis in order to provide new information to under-
stand the immune system’s reaction to this specific infection.

We showed that, during SARS-CoV-2 infections, transcription
signatures expressed by circulating cDC2s are characterized by
the expression of ISGs and genes encoding factors of IL-6-induced
pathways. Furthermore, by comparing the responses of severe
and mild patients, we found a progressive downregulation, with
the increasing of disease severity, of genes encoding signal 1
and signal 2 molecules associated with antigen presentation, and
the upregulation of an inflammatory signature typical of innate
immunity, mainly represented by complement and coagulation
factors. Therefore, during COVID-19, as disease severity increases,
cDC2s progressively tend towards inflammatory activity and lose
their antigen-presenting function. This could explain the alter-
ation of the T cell compartment seen in seriously ill patients.

The signatures we observed in COVID-19 were typical of SARS-
CoV-2 infections in hospitalized individuals. We analyzed datasets
from patients with other types of infections, such as bacterial
infections, and from vaccinated individuals. We found transcrip-
tion signatures that reflected, as expected, the upregulation of
DC antigen presenting functions. This was particularly evident in
vaccinated individuals where a consistent upregulation of MHC
and costimulatory molecules was observed. Therefore, SARS-CoV-
2 can induce a kind of DC functional paralysis related to dis-
ease severity. It would be interesting to characterize the response
of cDCs in SARS-CoV-2 infected pauci-symptomatic patients to
determine whether protective T cell responses are, in fact, associ-
ated with a mature DC phenotype.

While DC2 and DC3 subsets exhibited very similar responses
in COVID-19 patients, their responses were highly diversified in
patients with bacterial infections. This finding may be explained,
at least partially, by the differential expression of certain recep-
tors, such as CD14, exclusively expressed by DC3s. CD14 is a
component of the receptor complex of lipopolysaccharide (LPS),
a major factor of the outer membrane of Gram-negative bacte-
ria, and contributes to LPS recognition and internalization of the
receptor complex [38]. Thus, DC3s can respond more efficiently
to Gram-negative bacteria than DC2s. CD14 also has an impor-
tant role as a chaperon for ligands of endosomal and cytoso-
lic PRRs [38]. Therefore, the differences between DC2 and DC3
responses observed in Gram-negative bacterial infections may also
occur after Gram-positive bacterial recognition. Further studies
are needed to clarify potential differences between DC2 and DC3
functions during different viral infections.

Interestingly, some anti-apoptotic genes, such as AXL and CLU,
are differentially regulated between DC2s and DC3s during SARS-
CoV-2 infections. This result, in combination with the increased
frequencies observed in DC3s in COVID-19 patients compared to
HDs and the DC3 expansion shown in previous studies [16,39],

may explain why DC3s increase in number in acute and chronic
inflammatory conditions.

The three main features we observed in cDC transcriptional
responses (i) upregulation of ISGs and IL-6 pathways, ii) pro-
gressive downregulation of genes encoding signal 1 and signal 2
molecules associated with antigen presentation, and iii) upregula-
tion of an inflammatory signature) may be due to both the expo-
sure to mediators released during SARS-CoV-2 infection or to the
direct interaction of cDCs with the virus. Specifically, the first cDC
characteristic observed in our study is compatible with both direct
interaction with the virus and exposure to paracrine cytokines,
such as IFNs and IL-6 produced by bystander cells. The lack of
expression of IFN and IL6 genes in circulating DCs does not nec-
essarily mean that cDCs cannot be a source of these cytokines, as
their expression is acutely regulated and may be repressed in DCs
early after activation. By contrast, the systematic downregulation
of genes encoding MHCII molecules is more likely explained by a
direct interaction of cDCs with the virus. According to this predic-
tion and to the observation that the virus can activate monocyte-
derived DCs following abortive infection [42], we demonstrated
that SARS-CoV-2 can directly induce significant downregulation
of MHCII surface expression and the upregulation of IL-6 in both
DC2s and DC3s. On the other hand, these modifications are not
achieved by exposure to COVID-19 patients’ sera that contain
inflammatory mediators. This suggests that at least part of the
peculiar response of cDCs observed during SARS-CoV-2 infection
may be directly mediated by the virus.

cDCs are likely to detect the virus through C-type lectins,
receptors that recognize N-glycosylation on the Spike protein and
identified as being responsible for myeloid-cell activation [43]. C-
type lectins can bind to many different viruses. However, in addi-
tion to playing a positive role in antiviral responses by inducing
the activation of DCs, they also contribute to viral spread through
the migratory capacity of DCs [44,45]. It would be informative to
determine whether and where the activated DCs present in the
circulation encountered the virus. In the case of cytomegalovirus
infections in the mouse, it has been shown that infected DCs
reach the lymph nodes and then exit them through high endothe-
lial venules to reach the circulation [46]. Therefore, it is possi-
ble that DCs encounter the virus in the lungs and then reach the
circulation, with migration favored by the strong inflammatory
condition. Alternative possibilities are also plausible, such as the
encounter of the virus by immature DCs directly in the blood or
even in the bone marrow in severely ill patients.

In conclusion, SARS-CoV-2, like other viruses, can be directly
detected by DCs and induces the downregulation of signals nec-
essary for T-cell activation, a phenomenon that is accentuated
with disease severity. This allows the virus to evade control of the
adaptive immune system, while the host attempts to counteract
the viral infection through innate immunity. Understanding how
DCs manage SARS-CoV-2 infection will help in identifying ad hoc
interventions to achieve optimal adaptive responses, a prerequi-
site for a good prognosis [23,47].
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Materials and methods

Patients

COVID-19 patients were enrolled in the STORM cohort
(https://www.medicina.unimib.it/it/ricerca/covid-19-studi-
clinici). The local Ethical Committee approval was received for
the study and the informed consent of all participating subjects
was obtained.

Flow cytometric analysis

PBMCs from COVID-19 patients were extracted from peripheral
blood by density gradient centrifugation using Ficoll (GE Health-
care). Cells were washed twice and stained for 30 min on ice using
the following anti-human antibodies (1:200, Becton Dickinson):
anti-FcεRIα PE-Cy7, anti-CD14 PE, anti-CD1c APC-Cy7, anti-Clec9
(CD370) Alexa 647, anti-CD5 BV786, anti-CD3 BV605, anti-CD19
BV605, anti-CD88 BV605, anti-CD89 BV605, anti-CD11c BV480,
anti-CD163 BV421, and anti-HLA-DR BUV805. Cells were then
washed and fixed using fixation buffer (Becton Dickinson) and
the data acquired using a BD FACSsymphony instrument (Becton
Dickinson). Analyses were performed using FlowJo X according
to Cossarizza et al [48].

cDC2 purification and activation

Human cDC2 cells were purified from PBMC extracts from the
buffy coat of HDs (provided by the Niguarda Hospital blood
bank) by Ficoll-Paque density gradient centrifugation. Briefly,
blood was stratified on Ficoll-Paque PLUS (GE Healthcare) at
a 3:4 ratio and centrifuged at 1500 rpm for 30 min with-
out braking. PBMCs were washed twice, collected, and CD1c+

cells purified using MACS beads according to the manufacturer’s
instructions (Miltenyi Biotec). Cells were cultured in Roswell Park
Memorial Institute (RPMI) 1640 medium (Euroclone) contain-
ing 10% heat-inactivated fetal bovine serum (Euroclone), 100 IU
of penicillin, streptomycin (100 μg/ml), and 2 mM L-glutamine
(Euroclone). cDC2s were infected with 0.4 MOI of SARS-CoV-
2 for 18 h or treated with the serum of COVID-19 patients
(ratio serum/medium 1:1) and then collected and stained with
anti-FcεRIα PE-Cy7, anti-CD14 PE, anti-CD1c APC-Cy7, anti-CD5
BV786, anti-CD3 BV605, anti-CD19 BV605, anti-CD88 BV605,
anti-CD89 BV605, anti-CD11c BV480, anti-CD163 BV421, and
anti-HLA-DR BUV805 (1:200, all from Becton Dickinson). Cells
were then fixed and permeabilized using the Cytofix/CytopermTM

Reagent Kit (Becton Dickinson) and stained with anti-IL-6 FITC
antibody, according to the manufacturer’s instructions. Samples
were acquired using a BD FACSsymphony instrument (Becton
Dickinson) and analyzed using Kaluza.

Single-cell RNA sequencing datasets analyzed in the
study

Three different single-cell datasets from COVID-19 patients and
healthy controls were analyzed in this study.

Dataset 1 was newly generated. Myeloid cells were sorted
(CD11c+MHCII+) from three COVID-19 patients (two with mild
and one with severe disease, enrolled from the STORM cohort)
and two HDs using a MACSQuant Tyto instrument (Miltenyi)
(Supplementary Fig. 1B). After sorting, cell number and viabil-
ity were evaluated using an automated cell counter. The viability
of each sample was ≥75%. A Chromium Next GEM Chip G (10x
Genomics) was loaded with 10,000 cells per sample. A Chromium
controller (10× Genomics, Pleasanton, CA, USA) was used to gen-
erate single-cell GEMs, according to the Chromium Next GEM Sin-
gle Cell 5’ Library & Gel Bead Kit v1.1 protocol (PN-1000165, 10×
Genomics). Full-length cDNA amplification and 5’ gene expression
library construction were performed according to the manufac-
turer’s instructions using a Veriti 96-well Thermal Cycler (Thermo
Fisher Scientific). Indexed libraries were sequenced using an Illu-
mina Novaseq 6000 platform on a S2 flowcell, 150 bp PE (20,000
read pairs per cell). Reads from FASTQ files were aligned against
the GRCh38 human reference genome and quantified using the
Cell Ranger pipeline (10x Genomics) version 3.0 with default
parameters.

Dataset 2 [22] was generated from a CITE-seq experiment with
PBMCs and enriched DCs from seven COVID-19 patients (three
with mild and four with severe disease) and five HDs. Count
matrices were downloaded from the Gene Expression Omnibus
(GEO) (GSE155673).

Dataset 3 [25] was generated from a scRNA-seq exper-
iment with PBMCs from 18 COVID-19 patients (8 with
mild and 10 with severe disease) that was integrated with
publicly available 10x scRNA-seq data of healthy controls
from [29]. Seurat objects were downloaded from FASTGe-
nomics (https://www.fastgenomics.org/). Only cells annotated as
myeloid DCs by the authors were used in downstream analyses.

We analyzed two additional publicly available datasets to com-
pare the transcriptional responses of cDC subsets between SARS-
CoV-2 infection and other inflammatory conditions.

The Reyes et al. dataset [29] was generated from a scRNA-seq
experiment with PBMCs and enriched DCs obtained from patients
with bacterial infections and healthy controls. Briefly, subjects
were enrolled in two different cohorts. A primary cohort con-
tained subjects that were classified into three clinical categories:
Leuk-UTI, Int-URO, and URO. The Leuk-UTI group refers to sub-
jects with urinary-tract infection (UTI) with leukocytosis (blood
WBC ≥ 12,000 per mm3) but no organ dysfunction. The Int-
URO (intermediate urosepsis) group contains subjects with UTI
with mild or transient organ dysfunction and the URO (urosepsis)
group refers to subjects with UTI with clear or persistent organ
dysfunction. Ten subjects were classified as Leuk-UTI, seven as
Int-URO, and ten as URO. A second cohort was comprised of
hospitalized subjects classified into three groups: subjects with
bacteremia and sepsis not requiring intensive care unit (ICU)
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admission (Bac-SEP group, four subjects), subjects with sepsis
requiring ICU care (ICU-SEP, eight subjects), and subjects in the
ICU for conditions other than sepsis (ICU-NoSEP, seven subjects).
Data were downloaded from the Broad Institute Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell) (SCP548). We
retained monocytes and DCs as annotated by the authors for
downstream analysis.

The Hao et al. dataset [30] was generated from a CITE-seq
experiment with PBMCs from eight healthy volunteers enrolled in
an adenovirus-based HIV vaccine trial. For each subject, PBMCs
were collected at three time points: immediately before (day 0)
and 3 and 7 days following vaccine administration. Data were
downloaded from https://atlas.fredhutch.org/nygc/multimodal-
pbmc/. We retained only cDCs as annotated by the authors for
downstream analysis.

Single-cell data processing and analysis

Data processing and analysis for all single-cell datasets was per-
formed using the Seurat package (version 4.0.1) [30] in R (ver-
sion 4.0.3).

First, filters were applied to remove low-quality cells. These
were based on the number of genes and UMIs detected in each
cell and the percentage of reads mapping to mitochondrial genes
(cells with <500 genes and >10% of reads mapping to mito-
chondrial RNA were removed). For COVID-19 dataset 1, 16,325
genes and 15,400 cells were available before quality control (QC).
After QC filtering, we retained 16,325 genes and 13,364 cells.
For COVID-19 dataset 2, 33,538 genes and 45,547 cells were
available before QC. After QC filtering, we retained 33,538 genes
and 33,430 cells. COVID-19 dataset 3 was pre-processed by the
authors and 46,584 genes and 99,049 cells were available.

Counts were then normalized and log-transformed using
sctransform [49], while regressing out UMI counts and the per-
centage of mitochondrial counts.

PCA was performed to reduce dimensionality. Principal com-
ponents (PCs) were fed to Harmony [37] for batch correc-
tion and/or the integration of datasets from both disease and
healthy conditions. UMAP was used for 2D visualization. Clus-
ters were identified using the shared nearest neighbor modular-
ity optimization-based clustering algorithm, followed by Louvain
community detection. Cell type assignment was manually per-
formed using marker genes, as detailed in the figures. cDCs were
retained and again re-clustered to identify subsets.

Doublet identification

We observed a number of clusters likely comprised of primarily
doublets, based on mixed lineage markers, when re-clustering the
cDCs in dataset 2. This was confirmed by two distinct doublet-
calling algorithms: the computeDoubletDensity method from scD-
blFinder package [50] and the cxds methods from the scds pack-
age [51].

Pseudo-bulk differential gene expression analysis

After the identification of cDC subsets, we aggregated cell-level
counts into sample-level pseudo-bulk counts. For each DC subset,
only donors with at least 10 cells were retained. For the dataset
from Reyes et al., only samples from the primary cohort were con-
sidered for differential analysis. Differential expression analysis
was performed using the quasi-likelihood framework of the edgeR
package [52], using each donor as the unit of independent repli-
cation.

Gene set enrichment analysis

Pre-ranked GSEA [53] was performed on differentially expressed
genes (DEGs) using the fgsea package [54]. The Hallmark Collec-
tion (MSigDB, Broad Institute) and the Blood Transcription Mod-
ules (BTM) [26] were used. BTM families analyzed in this study
are reported in Supporting Information Table 3.

Integration between COVID-19 datasets

cDCs identified in the three COVID-19 datasets were pooled, inte-
grated using the Harmony algorithm [37], and further subclus-
tered using the shared nearest neighbor modularity optimization-
based clustering algorithm, followed by Louvain community
detection to identify cDC1s, DC2s, and DC3s. For dataset 3, only
COVID-19 samples were retained for the integration.

Data and code availability

For COVID-19 dataset 1, data supporting the findings of this study
are available in GEO at https://www.ncbi.nlm.nih.gov/geo/,
reference number GSE168388. For COVID-19 dataset 2 [22],
data supporting the findings of this study are available in
GEO at https://www.ncbi.nlm.nih.gov/geo/, reference num-
ber GSE155673. For COVID-19 dataset 3 [25], data sup-
porting the findings of this study are available at FASTGe-
nomics (https://www.fastgenomics.org/). For the bacterial infec-
tion dataset [29], data supporting the findings of this
study are available at the Broad Institute Single Cell Por-
tal (https://singlecell.broadinstitute.org/single_cell), reference
number SCP548. For the vaccine dataset [30], data support-
ing the findings of this study are available at https://atlas.
fredhutch.org/nygc/multimodal-pbmc/. The analysis code is
available at https://github.com/giuliaprotti/DC_COVID19.
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