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This paper develops a novel two-parameter unit probability model which is the generalized 
form Kumaraswami distribution that exhibits greater flexibility compared to well-known existing 
distributions, attributed to its distinct hazard and density function shapes. Extensive analysis has 
been conducted to explore numerous statistical features of the specified distribution, specifically 
moments, and order statistics providing explicit expressions for these measures. The maximum 
likelihood estimation is employed to estimate the model parameters and a numerical simulation 
analysis confirms the consistency of this estimation approach. Furthermore, the applicability of 
the specified model is demonstrated by considering four real data sets, showcasing its effectiveness 
in capturing the characteristics of real life data. The proposed model shows promise as a versatile 
tool for analyzing diverse data sets in a wide range of fields.

1. Introduction

Distribution theory plays a pivotal role in diverse scientific disciplines, guiding the selection of appropriate models to analyze 
complex data. The statistical literature offers a wide array of distributions tailored for modeling lifetime data, each chosen based on 
data characteristics and distributional assumptions. For instance, the gamma and the Weibull distributions are often preferred for 
modeling right-skewed data, while the ubiquitous normal distribution suits bell-shaped data sets spanning the real line. However, 
these distributions possesses some limitations particularly in their inability to accommodate non-monotonic shapes. To overcome 
this drawback and enhance the flexibility of the existing distributions, numerous extensions have been developed over time. The 
pursuit of a more versatile and robust probability distributions stems from the inherent complexity and diversity of real-world data. 
Researchers continually endeavor and efficiency of data analysis across various scientific and industrial applications. Continuous and 
discrete distributions can also be compounded to form a new model to improve the quality of existing distributions like G-families is 
also the generalization technique to form new distributions.

Although many unbounded models have been developed but there is still lack of bounded models for developing models for 
fitting specific real world scenarios. Unbounded models, as in most cases, are unable to adequately model the data. In situations 
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Fig. 1. cdf plots of the NTPUP model for various parametric values.

when boundary conditions, such the proportion of a certain attribute, are unpredictable, it is necessary to represent the occurrences 
using a continuous distribution with a boundary. The renowned Beta model [15] is the only continuous bounded model that has been 
extensively reviewed in the literature. Recently, a number of continuous models with bounded domains have been discussed and 
utilized to model unpredictability of a bounded case in multiple applied areas of research. For instance, the log-Lindley [3], the unit-

logistic [5], the unit-gamma [4], the Kumaraswamy unit [6], the Topp-Leone [7], the Simplex [8] and the McDonald’s generalized 
beta type I [15] models.

This manuscript aims to offer a new two–parameter unit probability (NTPUP) model. By employing the Laymen Alternative II 
(LAII) process, the development of this model is organized methodically as: 𝐹 (𝑥 ∶ 𝜗) = 1 − (1 −𝐺(𝑥))𝜗, where 𝐹 (𝑥 ∶ 𝜗) belongs to the 
cdf of the 𝐿𝐴𝐼𝐼 model [1]. The cumulative distribution function (cdf) and the probability density function (pdf) of NTPUP model 
are respectively defined by:

𝐹𝑁𝑇𝑃𝑈𝑃 (𝑥;𝜗,𝜔) = 1 − (1 − 𝑥)𝜗(1 + 𝑥)𝜔 , 𝑥 ∈ (0,1), 𝜗 ≥ 𝜔, 𝜗 ∈ℜ+, 𝜔 ∈ℜ, (1)

and

𝑓𝑁𝑇𝑃𝑈𝑃 (𝑥;𝜗,𝜔) = (1 − 𝑥)𝜗−1(1 + 𝑥)𝜔−1 (𝑥(𝜗+𝜔) + 𝜗−𝜔). (2)

The cdf of the NTPUP model is monotonically an increasing function: lim𝑥→0 𝐹𝑁𝑇𝑃𝑈𝑃 (𝑥; 𝜗, 𝜔) = 0 and lim𝑥→1 𝐹𝑁𝑇𝑃𝑈𝑃 (𝑥; 𝜗, 𝜔) = 1. 
Moreover, Fig. 1 makes it clear that the NTPUP model’s cdf is strictly an increasing function.

The pdf plots of the NTPUP model for multiple values of parameters are portrayed in Fig. 2. The NTPUP model exposed a variety of 
shapes be altering the parametric inputs, including the parabolic, j-shaped, bathtub, right-skewed, and reversed j-shaped geometrics 
that are given in the Fig. 2.

The cdf and pdf defined in Eqns. (1) and (2), respectively can be written in the form of mixture representation as:

𝐹𝑁𝑇𝑃𝑈𝑃 (𝑥;𝜗,𝜔) = 1 −
∞∑
𝑖=0

∞∑
𝑗=0

(
𝜗

𝑗

)(
𝜔

𝑖

)
(−1)𝑗𝑥𝑖+𝑗 (3)

and

𝑓𝑁𝑇𝑃𝑈𝑃 (𝑥;𝜗,𝜔) =
∞∑
𝑖=0

∞∑
𝑗=0

(
𝜗−1

𝑖

)(
𝜔−1

𝑗

)
(−1)𝑗𝑥𝑖+𝑗 (𝜗−𝜔+ 𝑥(𝜗+𝜔)). (4)

The motivations for the NTPUP model are as follows:

• The NTPUP model is presented as a flexible, bounded distribution that may match a variety of data forms, including non-

monotonic patterns such as parabolic and bathtub curves.

• Because it is specified on the interval [0, 1], unlike traditional distributions, it is suitable for data that is limited to specific ranges, 
such proportions or percentages.

• The NTPUP model’s parameterizations facilitates reading and modification, increasing its applicability in various scientific and 
practical sectors where traditional distributions would not be as efficient.

• For a comprehensive statistical description, the NTPUP provides expressions for kurtosis, skewness, entropy and moments.

• A broadly employed method known for its efficiency and strong statistical properties, maximum likelihood estimation (MLE), is 
2

utilized to estimate parameters.



Heliyon 10 (2024) e37242Z. Hussain, F. Jamal, A. Saboor et al.

Fig. 2. Plots of pdf of the NTPUP distribution for various parametric values.

• Suited to four distinct real data sets successfully, proving its robustness and suitability for real-world data processing.

The remaining part of the manuscript is ordered as: Some properties of NTPUP model have been derived in Section 2. Estimation 
of parameters have been obtained and simulation analysis is executed in Section 3. Applications to real world data sets have been 
done in Section 4. The final concluding remarks of this study have been given in Section 5.

2. Statistical functions

The survival function (SF) denoted by 𝑆(𝑥; 𝜗, 𝜔) is obtained from Eqn. (1) in the following form:

𝑆𝑁𝑇𝑃𝑈𝑃 (𝑥;𝜗,𝜔) = (1 − 𝑥)𝜗(1 + 𝑥)𝜔. (5)

The hazard rate function (HRF) describes the instantaneous rate of failure at any given time. The HRF of the NTPUP model denoted 
as: 𝐻𝑁𝑇𝑃𝑈𝑃 (𝑥; 𝜗, 𝜔) = 𝑓 (𝑥;𝜗,𝜔)∕𝑆(𝑥;𝜗,𝜔) is formulated by using Eqn. (2) and Eqn. (5)

𝐻𝑁𝑇𝑃𝑈𝑃 (𝑥;𝜗,𝜔) = − 𝜗

𝑥− 1
− 𝜔

𝑥+ 1
. (6)

The rate at which an event occurs given that it has not occurred until a specified time is described by the reversed hazard rate 
function (RHRF), also referred to as the hazard rate for surviving past a certain time. The RHRF of the NTPUP model denoted as: 
3

ℎ𝑁𝑇𝑃𝑈𝑃 (𝑥; 𝜗, 𝜔) = 𝑓 (𝑥;𝜗,𝜔)∕𝐹 (𝑥;𝜗,𝜔), is laid out using Eqn. (2) and Eqn. (1) as:
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Fig. 3. Plots of HRF of NTPUP model for various parametric values.

ℎ𝑁𝑇𝑃𝑈𝑃 (𝑥;𝜗,𝜔) =
𝜗−𝜔+ 𝑥(𝜗+𝜔)

(1 − 𝑥)(1 + 𝑥)((1 − 𝑥)−𝜗(1 + 𝑥)−𝜔 − 1)
. (7)

The visualizations of HRF of the NTPUP model are presented in the Fig. 3 depicting the bathtub and increasing forms. The bathtub 
shape represents early flaws, random failures, and wear-out failures, respectively, with decreasing, constant and increasing failure 
rates. The aging impacts in the system are highlighted by the increasing shapes, which shows an increasing failure rate over time.

2.1. Moments and moment generating function

Moments like variance and mean, are quantitative metrics that depict the form of a probability distribution. Additionally, the 
moment generating function (MGF) uses the variable’s expected exponential to encode every moment of a random variable. These 
ideas are crucial because the MGF may be used to precisely identify the distribution and make the computation of moments easier. 
Moments also provide crucial information about the features of the distribution. The 𝑟𝑡ℎ moment of the NTPUP model using Eqn. (2)

is derived as:

𝐸𝑁𝑇𝑃𝑈𝑃 (𝑥𝑟, 𝜗,𝜔) =

1

∫
0

𝑥𝑟𝑓𝑁𝑇𝑃𝑈𝑃 (𝑥;𝜗,𝜔)𝑑𝑥, (8)

putting the value of 𝑓𝑁𝑇𝑃𝑈𝑃 (𝑥; 𝜗, 𝜔) from Eqn. (4) we obtained

𝐸𝑁𝑇𝑃𝑈𝑃 (𝑥𝑟, 𝜗,𝜔) =

1

∫
0

𝑥𝑟
∞∑
𝑖=0

∞∑
𝑗=0

(
𝜗−1

𝑖

)(
𝜔−1

𝑗

)
(−1)𝑗𝑥𝑖+𝑗 (𝜗−𝜔+ 𝑥(𝜗+𝜔))𝑑𝑥, (9)

after simplification of Eqn. (9), we get

𝐸𝑁𝑇𝑃𝑈𝑃 (𝑟, 𝜗,𝜔) =
∞∑
𝑖=0

∞∑
𝑗=0

(
𝜗−1
𝑖

)(
𝜔−1
𝑗

)
(−1)𝑖(2𝜗(𝑟+ 𝑖+ 𝑗) + 3𝜗+𝜔)

(𝑟+ 𝑖+ 𝑗 + 1)(𝑟+ 𝑖+ 𝑗 + 2)
. (10)

By putting 𝑟 = 1 in Eqn. (10), we get the first moment

𝐸𝑁𝑇𝑃𝑈𝑃 (1;𝜗,𝜔) =
∞∑
𝑖=0

∞∑
𝑗=0

(
𝜗−1
𝑖

)(
𝜔−1
𝑗

)
(−1)𝑖(2𝜗(1 + 𝑖+ 𝑗) + 3𝜗+𝜔)

(𝑖+ 𝑗 + 2)(𝑖+ 𝑗 + 3)
.

Similarly the MGF of NTPUP model using Eqn. (2) is obtained as:

𝑀𝜗,𝜔(𝑡) =
∞∑
𝑖=0

∞∑
𝑛=0

∞∑
𝑚=0

𝑡𝑖
(
𝜗−1
𝑛

)(
𝜔−1
𝑚

)
(−1)𝑛(2𝜗(1 + 𝑛+𝑚) + 3𝜗+𝜔)

𝑖!(𝑛+ 𝑘+ 2)(𝑛+ 𝑘+ 3)
.

Table 1 is furnished using R programming language to compute some probable quantitative values of the first four moments, variance, 
standard deviation, covariance, skewness and kurtosis of the NTPUP model for some parametric values. Fig. 4 represents the 3D plots 
4

of mean and variance of NTPUP model. An illustration of how the NTPUP model’s mean value varies with different values of 𝜗 and 
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Table 1

Some possible numerical values of the first four moments, variance, standard deviation, covariance, skew-

ness and kurtosis of the NTPUP model for some parameter values.

(𝜗,𝜔) 𝑚1 𝑚2 𝑚3 𝑚4 𝑣𝑎𝑟(𝑥) 𝑆.𝐷 𝐶𝑉 𝐶𝑆 𝐶𝐾

(1.2,1.2) 0.632 0.455 0.351 0.284 0.055 0.234 0.371 -0.437 2.279

(1.5,1.2) 0.543 0.356 0.257 0.197 0.062 0.249 0.459 -0.199 2.083

(1.2,-1.2) 0.340 0.183 0.120 0.087 0.068 0.260 0.765 0.663 2.415

(1.5,-1.2) 0.306 0.151 0.092 0.063 0.058 0.240 0.785 0.778 2.707

(1.8,1.2) 0.474 0.286 0.194 0.141 0.061 0.248 0.523 0.011 2.031

(1.8,1.5) 0.512 0.319 0.221 0.163 0.058 0.240 0.469 -0.107 2.100

(2.0,1.5) 0.470 0.278 0.185 0.132 0.057 0.239 0.509 0.014 2.081

(2.0,1.8) 0.507 0.310 0.210 0.152 0.053 0.231 0.455 -0.087 2.145

(3.0,1.8) 0.352 0.170 0.096 0.060 0.046 0.215 0.612 0.371 2.311

(3.2,2.0) 0.344 0.163 0.090 0.055 0.044 0.211 0.611 0.383 2.344

Fig. 4. 3D plots of NTPUP model for various parametric values.

𝜔 can be seen in the 3D plot of the mean. Examining this plot allows one to see how these characteristics interact and relate to one 
another, as well as how they effect the distribution’s central tendency. Plotting’s peak and valleys show areas where the mean is 
substantially impacted, which can help choose parameters for particular uses. In a similar vein, the NTPUP model’s dispersion or 
variability is dependent on the parameters, as demonstrated by the 3D plot of variance in the Fig. 4. Understanding the stability and 
spread of the distribution under various parameter settings is made easier with the help of the Fig. 4.

2.2. Rényi entropy

Rényi entropy (RE), which generated the idea of the Shannon entropy by introducing a parameter that modifies the weight 
assigned to various probabilities within the distribution, is a metric of the diversity, unpredictability, or randomness of a probability 
distribution.

The RE of the NTPUP model is derived as:

𝑅𝑁𝑇𝑃𝑈𝑃 (𝑝;𝜗,𝜔) =
1

1 − 𝑝
log[

1

∫
0

((1 − 𝑥)𝜗−1(1 + 𝑥)𝜔−1 (𝑥(𝜗+𝜔) + 𝜗−𝜔))𝑝𝑑𝑥]. (11)

Some analytical outcomes of the RE for multiple parametric values are provided in the Table 2. These values shed light on how varying 
parameter settings affect the NTPUP model’s diversity and unpredictability. Identifying patterns and trends, notably an upsurge or 
decrease in entropy, can help one understand how responsive the model is to changes in the parameters. Fig. 5 showcase the 3D 
representation of RE for the NTPUP model. By highlighting areas of higher or lower entropy, this graphical representation makes 
it easier to understand how the entropy varies. Plotting reveals that parameter combinations with higher entropy indicate greater 
5

diversity and randomness, whereas lower entropy indicated greater predictability.
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Table 2

Numerical values of the RE of NTPUP distribution for some parametric values.

Parameters (1.2,-1.2) (1.2,1.2) (1.5,1.2) (1.5,1.5) (2.0,1.8) (3,2) (5,3.4) (5,4) (5.5,4.5)

Values -0.3947 -0.3951 -0.568 -0.749 -0.872 -1.809 -0.437 -2.257 -2.658

Fig. 5. 3D plot of RE of NTPUP distribution.

2.3. Order statistics

Order statistics (OS), which include the minimum, maximum, and different percentiles, are the sorted values of a random sample 
that offer crucial details about the sample’s variability and distribution.

For the NTPUP model, the pdf of the OS is derived as:

𝑓𝑖∶𝑛(𝑥,𝜗,𝜔) =
∞∑
𝑗=0

∞∑
𝑘=0

𝑛−𝑖∑
𝑙=0

∞∑
𝑚=0

(
𝑛−𝑖

𝑙

)(
𝑖+𝑙−1

𝑗

)(
𝜔𝑗+𝜔−1

𝑚

)(
𝜗𝑗+𝜗−1

𝑘

)
(−1)𝑙+𝑗+𝑘𝑥𝑚+𝑘(𝜗−𝜔+ 𝑥(𝜗+𝜔)).

2.4. Mean residual life function

Mean residual life (MRL) is the predicted remaining lifetime of a system or component provided that it has endured up to a 
certain time, offering perspectives on its potential for reliability and longevity. The NTPUP model’s MRL function can be formulated 
as follows:

𝑚(𝑡;𝜗,𝜔) =
∞∑
𝑛=0

∞∑
𝑘=0

(
𝜗−1
𝑘

)(
𝜔−1
𝑛

)
(−1)𝑘

(
(𝜗+𝜔)

(
1+𝜃𝑛+𝑘+3

)
𝑛+𝑘+3 +

(𝜗−𝜔)
(
1+𝜃𝑛+𝑘+2

)
𝑛+𝑘+2

)

(1 − 𝑥)𝜗(1 + 𝑥)𝜔
.

2.5. Mean waiting time function

One of the most important statistical feature which is widely used in queuing theory to gauge efficacy and performance is the 
mean waiting time (MWT). The MWT predicts that at what length of time one should anticipate to wait for a particular event to 
happen.

The NTPUP model’s MWT is formulated as:

𝜇(𝑥;𝜗,𝜔) = 𝑡−
∞∑
𝑛=0

∞∑
𝑘=0

(
𝜗−1
𝑘

)(
𝜔−1
𝑛

)
(−1)𝑘 𝑡𝑛+𝑘+2

(
(𝜗+𝜔)𝑡
𝑛+𝑘+3 +

(𝜗−𝜔)𝑡
𝑛+𝑘+2

)

1 − (1 − 𝑡)𝜗(1 + 𝑡)𝜔
.

2.6. Lorenz and Bonferoni curve

The Lorenz (L) and Bonferoni (B) curves which are frequently used in the social sciences and economics to evaluate income equity. 
6

Policymakers can examine and resolve issues of social equilibrium and economic disparity by using these two useful curves.
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The L and B curves, respectively are derived for the NTPUP model in the following form:

𝐿(𝑝;𝜗,𝜔) = 1
𝜇

∞∑
𝑛=0

∞∑
𝑘=0

(
𝜗−1

𝑘

)(
𝜔−1

𝑛

)
(−1)𝑘 𝑥𝑛+𝑘+2

(
(𝜗+𝜔)𝑥
𝑛+ 𝑘+ 3

+ (𝜗−𝜔)𝑥
𝑛+ 𝑘+ 2

)
,

and

𝐵(𝑝;𝜗,𝜔) = 1
𝜇

∞∑
𝑛=0

∞∑
𝑘=0

(
𝜗−1
𝑘

)(
𝜔−1
𝑛

)
(−1)𝑘 𝑥𝑛+𝑘+2

(
(𝜗+𝜔)𝑥
𝑛+𝑘+3 + (𝜗−𝜔)𝑥

𝑛+𝑘+2

)

1 − (1 − 𝑥)𝜗(1 + 𝑥)𝜔
.

2.7. Gini index

The Gini index (GI) is a vital tool for understanding and addressing economic inequality. It aids in the development of policies 
aimed at promoting social justice and equitable growth. Using Eqn. (2), the GI for the NTPUP model is formulated as follows: The GI 
for NTPUP distribution using Eqn. (2) is derived as:

𝐺(𝜃,𝜗,𝜔) = 1
𝜇

∞∑
𝑛=0

∞∑
𝑚=0

(−1)𝑛 𝜃𝑛+𝑚+1

(
𝜗

𝑛

)(
𝜔

𝑚

)
−
(
2𝜗
𝑛

)(
2𝜔
𝑚

)
𝑚+ 𝑛+ 1

.

3. Estimation and simulation

The NTPUP model’s parameters are estimated using the MLE. Consistent circumstances guarantee the presence and uniqueness 
of the MLEs because the log-likelihood function of the NTPUP model behaves well. This ensured the existence and uniqueness of the 
MLEs, resulting in accurate and consistent parameter estimation. A simulation analysis is undertaken to ensure the consistency and 
reliability of the MLEs.

3.1. The MLE

Applying the MLE technique, the unknown parameters of the NTPUP model (2) have estimated, given below:

ln𝐿(𝜗,𝜔) = (𝜗− 1)
𝑛∑
𝑖=1

ln(1 − 𝑥𝑖) + (𝜔− 1)
𝑛∑
𝑖=1

ln(1 + 𝑥𝑖) +
𝑛∑
𝑖=1

ln(𝜗−𝜔+ 𝑥𝑖(𝜗+𝜔)). (12)

Taking derivatives of Eqn. (12) with respect to (w.r.t.) 𝜗 and putting 𝑑 ln𝐿(𝜗,𝜔)
𝑑𝜗

= 0, we get

𝑛∑
𝑖=1

ln(1 − 𝑥𝑖) +
𝑛∑
𝑖=1

1 + 𝑥𝑖

𝜗−𝜔+ 𝑥𝑖(𝜗+𝜔)
= 0.

Similarly taking derivatives of Eqn. (12) w.r.t. 𝜔 and putting 𝑑 ln𝐿(𝜗,𝜔)
𝑑𝜔

= 0, we obtained

𝑛∑
𝑖=1

ln(1 + 𝑥𝑖) +
𝑛∑
𝑖=1

𝑥𝑖 − 1
𝜗−𝜔+ 𝑥𝑖(𝜗+𝜔)

= 0.

Even though MLEs for fundamental statistical models may frequently be produced in closed form, other models may need to be 
optimized using numerical techniques. The numerical integration method is used in the R programming language to calculate the 
MLEs of the NTPUP model since there are not in a closed structure.

3.2. Simulation

A simulation analysis is executed in this part to assess how effectively the MLEs work for the NTPUP model’s unknown parameters. 
The NTPUP mode’s cdf is being utilized with the inverse transformation approach. Figs. 6-8 visually represent the analysis results. 
The steps for the simulation process are as follows:

1. Step 1 (Initialization): Choose starting values for the parameters 𝜗 and 𝜔. The selected initial values are: 𝐼 = (𝜗 = 2, 𝜔 = 1.5), 
𝐼𝐼 = (𝜗 = 2, 𝜔 = 1.7), 𝐼𝐼𝐼 = (𝜗 = 2, 𝜔 = −1.9).

2. Step 2 (Sample generation): Obtain n–sized random samples using the NTPUP model. Sample sizes ranging from 𝑛 = 50 to 
𝑛 = 200 are taken into consideration.

3. Step 3 (Estimation and accuracy measures): Estimate the MLEs as well as the mean square errors (MSEs) and biases for the 
7

NTPUP distribution parameters. These metrics of accuracy are computed using the following formulas
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Fig. 6. Simulation of parameters 𝜗 = 2, 𝜔 = 1.5.

𝑀𝑆𝐸𝑐 =
1

8000

𝑁∑
𝑖=1

(𝑐𝑖 − 𝑐)2,

𝐵𝑖𝑎𝑠𝑐 =
1

8000

𝑁∑
𝑖=1

(𝑐𝑖 − 𝑐),

respectively, for 𝑐 = (𝜗, 𝜔). Where 𝑐𝑖 reflects the MLE of 𝑐 as estimated at the 𝑖𝑡ℎ iteration of the simulation.

4. Step 4 (Repetition): Steps 2 and 3 are repeated 𝑁 = 8000 times to guarantee reliable results.

As portrayed in Figs. 6-8, the simulation outcomes are apparent that as the sample size n increases, both the apparent biases and MSEs 
decrease and approach zero for all parameters 𝜗 and 𝜔. This highlights the reliability and consistency of the MLEs for the NTPUP 
model.

4. Applications

The modeling efficiency of the NTPUP model is thoroughly contrasted against several related models, including Burr XII (B12) 
[12], Kumaraswamy [13], Lomax [14], Beta [15], Burr X (BX) [16], LAII [17] and Power Burr Hatake [18]. To evaluate and con-

trast the models, we employed well-established statistical measures: namely CVM (Cramér-Von Mises), AD (Anderson-Darling), KS 
8

(Kolmogorov-Smirnov) statistics along with their corresponding 𝑝-values. Additionally, model selection criterion such as the Akaike 
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Fig. 7. Simulation of parameters 𝜗 = 2, 𝜔 = 1.7.

Information Criterion (AIC), Bayesian information criterion (BIC), corrected Akaike Information Criterion (CAIC) and Hannan-Quinn 
Information Criterion (HQIC) are also estimated, delivering an in-depth assessment of the model’s efficacy.

• Data set I: The set of data I is a Covid-19 data spans 172 days, from March first to August twentieth, 2020, and pertains to Italy 
and Spain [9].

• Data set II: The set of data II is derived from [10] based on 63 observations of 1.5 cm glass fiber strengths that were first collected 
by UK National Physical Laboratory personnel.

• Data set III: The data set III is the entire milk production from the first birth of 107 Sindi-race cows [11].

• Data set IV: The fourth data set (bathtub shaped data), originally analyzed by Caramanis et al. [2], focuses on estimating unit 
capacity factors through a comparative study of two distinct algorithms: SC16 and P3.

The following visual and computational outcomes are depicted by utilizing all the aforementioned data sets 1, 2, 3, and 4, 
respectively.

• Tables 3, 5, 7 and 9 deliver the MLEs and their consequent standard errors (S.Es) for the NTPUP model together with several 
competitive models. Important information about the accuracy and consistency of the parameter estimates for each model under 
9

consideration can potentially be found in these tables.
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Fig. 8. Simulation of parameters 𝜗 = 2, 𝜔 = −1.9.

• The accuracy metrics estimated for all the data sets are displayed in the Tables 4, 6, 8 and 10, respectively. These tables disclosed 
that for every data set, the NTPUP model consistently performed superior than the competing models. A better fit to the data in 
indicated by lower values in the accuracy metrics, which demonstrate the higher performance.

• Variance covariance matrices for the NTPUP model have been shown in the matrices (13), (15), (17) and (19). For all the 
aforementioned data sets, these matrices offer a thorough analysis of the variability of the predicted parameters and the extent 
of their association. The correlation coefficients between pairs are shown in the correlation matrices (14), (16), (18) and (20), 
which provide further information on the relationship between the parameters in the NTPUP model.

• For the related data sets, the box plots and total time on test (TTT) plots are displayed in the Figs. 9, 11, 13 and 15, respectively. 
These figures provided more support for contrasting the results of the different models, which help to determine the distribution 
and variability of the data.

• For all the data sets, the pdf, cdf, probability-probability (PP) and quantile-quantile (QQ) plots are shown in Figs. 10, 12, 14 and 
16, respectively. These graphics provide a through visual evaluation of the goodness-of-fit of the NTPUP model in comparison 
to the other models. The PP and QQ plots demonstrate the model’s ability to match the data distribution’s overall shape, while 
the pdf and cdf plots illustrate how effectively the model represents the overall data.

The aforementioned points disclosed that in comparison to the other models studies, the NTPUP model maintains its applicability and 
10

efficacy due to its superior performance for the designated data sets, as supported by both computational results and visual evidence.
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Table 3

MLEs and SEs (in parentheses) for data set I.

Model MLEs and SEs (in parentheses)

NTPUP 23.252 19.782

(𝜗,𝜔) (3.755) (4.284)

LAII 6.913 -

(𝜗) (0.526) -

Lom 8.371 -

(𝑘) (0.636) -

Ku 1.369 13.761

(𝜗,𝜔) (0.094) (2.528)

Beta 9.951 1.472

(𝜗,𝜔) (1.124) (0.144)

PBH 8.752 1.459

(𝜗,𝜔) (1.442) (0.088)

B12 1.474 16.416

(𝜗,𝜔) (0.089) (2.770)

BX 0.582 5.322

(𝜗,𝜔) (0.053) (0.310)

Table 4

The Value, AIC, CAIC, BIC, HQIC, 𝑊 ∗ , 𝐴∗ , K-S, (p-value) values for data set I.

Distribution 𝓁 AIC CAIC BIC HQIC 𝑊 ∗ 𝐴∗ K-S p-value

NTPUP -197.691 –391.382 -391.314 -385.075 -388.82 0.1829 1.0480 0.0688 0.3851

LAII -186.5082 -371.02 -370.99 -367.86 -369.74 0.421 2.299 0.151 0.0008

Lom -173.91 -345.83 -345.80 -342.67 -344.55 0.649 3.58 0.182, 0.0254

Ku -195.2897 -386.57 -386.508 -380.27 -384.0209 0.3581 1.9625 0.398 0.254

Beta -193.69 -383.03 -383.03 -376.799 -380.54 0.418 2.2824 0.10451 0.0457

PBH -193.69 -383.38 -383.31 -377.07 -380.822 0.3920 2.48 0.09381 0.09643

B12 -194.177 -384.38 -384.28 -378.048 -381.79 0.3761 2.0599 0.0926 0.1028

BX -194.58 -391.18 -391.11 -384.87 -388.627 0.2212 1.2315 0.08 0.22
11

Fig. 9. TTT, and box plot for COVID 19 data in Italy EMW distribution.
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Fig. 10. Comparison plot of different pdfs, cdfs, PP and QQ for COVID 19 data in Italy.

Table 5

MLEs and SEs (in parentheses) for data set II.

Model MLEs and SEs (in parentheses)

NTPUP 1.360 -0.619

(𝜗,𝜔) (0.585) (1.090)

LAII 1.662385 -

(𝜗) (0.585) -

Lom 3.404 -

(𝑘) (0.622) -

Ku 0.963 1.608

(𝜔,𝜗) (0.202) (0.413)

Beta 1.620 0.967

(𝜗,𝜔) (0.410) (0.224)

PBH 1.943 1.382

(𝜗,𝜔) (0.423) (0.199)

B12 1.325 3.404

(𝜗,𝜔) (0.197) (0.749)

BX 0.530 1.780

(𝜗,𝜔) (0.114) (0.256)

Var-Cov Matrix for Data set 1(
14.04220 15.87825
15.87825 18.26760

)
(13)

and correlation matrix for Data set 1(
1.0000000 0.9913896
0.9913896 1.0000000

)
(14)
12
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Table 6

The Value, AIC, CAIC, BIC, HQIC, 𝑊 ∗ , 𝐴∗ , K-S(p-value) values for data set II.

Distribution 𝓁 AIC CAIC BIC HQIC 𝑊 ∗ 𝐴∗ K-S p-value

NTPUP -3.455 -2.910 -2.465 -0.107 -2.013 0.015 0.1249 0.051 1

LAII -3.294 -4.588 -4.445 -3.187 -4.140 0.0184 0.156 0.074 0.992

Lom 2.061 6.122 6.265 7.523 6.570 0.068 0.422 0.149 0.466

Ku -3.311 -2.622 -2.178 0.180 -1.726 0.0182 0.154 0.082 0.978

Beta -3.305 -2.610 -2.166 0.1923 -1.714 0.0184 0.156 0.067 0.998

PBH -1.510 0.978 1.423 3.781 1.88 0.041 0.27 0.093 0.93

B12 -1.752 0.497 0.9413 3.299 1.39 0.036 0.236 0.086 0.965

BX -2.234 -0.4689 -0.0244 2.334 0.428 0.02443 0.177 0.066 0.998

Fig. 11. TTT, and box plot for the NTPUP model.

Var-Cov Matrix for Data set 2(
0.3442864 0.549222
0.5492220 1.193075

)
(15)

and correlation matrix for Data set 2(
1.0000000 0.8569471
0.8569471 1.0000000

)
(16)

Var-Cov Matrix for Data set 3(
0.1040755 0.1211564
0.1211564 0.1544256

)
(17)

and correlation matrix for Data set 3(
1.0000000 0.9556799
0.9556799 1.0000000

)
(18)

Var-Cov Matrix for Data set 4(
0.02601207 0.04597288
0.04597288 0.24998186

)
(19)

and correlation matrix for Data set 4(
1.0000000 0.5701117
0.5701117 1.0000000

)
(20)
13
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Fig. 12. Comparison plot of different pdfs, cdfs, PP and QQ for COVID-19 data.

Table 7

MLEs and SEs (in parentheses) for data set III.

Model MLEs and SEs (in parentheses)

NTPUP 0.5304 2.927

(𝜗,𝜔) (0.1145) (0.2563)

LAII 1.418118 -

(𝜗) (0.137) -

Lom 2.662 -

(𝑘) (0.257) -

Beta 2.829 2.4125

(𝜗,𝜔) (0.3744) (0.3144)

PBH 3.0044 2.693

(𝜗,𝜔) (0.4263) (0.2106)

B12 2.601 5.382

(𝜗,𝜔) (0.2099) (0.7799)

BX 1.257 -2.116

(𝜗,𝜔) (0.1605) (0.122)

Table 8

The Value, AIC, BIC, 𝑊 ∗, 𝐴∗ , for data set III.

Distribution 𝓁 AIC CAIC BIC HQIC 𝑊 ∗ 𝐴∗ K-S P-value

NTPUP -25.086 -46.17 -46.056 -40.83 -44.00 0.151 0.988 0.050624 1

LAII -5.830 -9.661 -9.622 -6.988 -8.577 0.204 1.298 0.074038 0.9924

Lom 42.394 86.788 86.826 89.461 87.872 0.838 4.994 0.14981 0.4665

Beta -23.777 -43.554 -43.4391 -38.209 -41.39 0.2083 1.326 0.066919 0.9979

PBH -20.217 -36.435 -36.3195 -31.089 -34.27 0.256 1.680 0.093776 0.9323

B12 -21.347 -38.695 -38.58 -33.35 -36.528 0.232 1.523 0.086185 0.965

BX -18.155 -32.311 -32.196 -26.965 -30.144 0.339 2.173 0.066022 0.9983
14
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Fig. 13. TTT, and box plot for sindi race data for the NTPUP model.

Fig. 14. Comparison plot of different pdfs, cdfs, PP and QQ for sindi race data.

5. Conclusion

This research has introduced a ground breaking two-parameter unit probability distribution named as the NTPUP distribution that 
distinguishes itself through its exceptional flexibility, offering a unique perspective on modeling bounded interval data. A compre-

hensive analysis has been carried out, among the various statistical properties of this novel distribution. An adoption of the maximum 
likelihood estimation method has proven to be a reliable approach for estimating the model parameters. The numerical simulation 
affirmed the consistency and trustworthiness of this estimation, enhancing the confidence in the practical usability of the proposed 
distribution. The real-world applicability of this distribution have been demonstrated through its successful implementation in an-

alyzing four distinct real data-sets. This practical validation underscores its versatility and effectiveness in capturing the intricate 
characteristics of real-life data across a broad spectrum of fields. Specifically, wind speed and air density [19] may be the two pri-

mary areas of attention for applied practitioners as they tend to vary from one region to another. The flexibility of the proposed 
15

model might be an interesting area for them to explore further in future.
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Fig. 15. TTT, and box plot for bathtub data for the NTPUP model.

Table 9

MLEs and SEs (in parentheses) for data set 4.

Model MLEs and SEs (in parentheses)

NTPUP -0.340 1.051

(𝜗,𝜔) (0.514) (0.260)

Lom 2.860 -

(𝑘) (0.404) -

Beta 0.604 0.858

(𝜗,𝜔) (0.106) (0.164)

B12 2.140 0.949

(𝜗,𝜔) (0.3261) (0.120)

BX 1.245 0.352

(𝜗,𝜔) (0.162) (0.0560)

Table 10

The Value, AIC, BIC, 𝑊 , 𝐴 , for data set 4.

Distribution 𝓁 AIC CAIC BIC HQIC 𝑊 𝐴 K-S p-value

NTPUP -0.960 -2.08 -2.334 -5.903 -3.54 0.269 1.791 0.142 0.264

Lom 14.923 31.85 31.93 33.76 32.574 0.581 3.456 0.214 0.020

Beta 5.518 7.036 6.780 7.211 5.58 0.277 1.868 0.149 0.216

B12 10.68 25.357 25.61 29.18 26.81 0.498 3.018 0.194 0.048

BX 4.245 12.8 12.49 16.31 13.95 0.378 2.38 0.202 0.034
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Fig. 16. Comparison plot of different pdf, cdf, PP and QQ for bathtub data.
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