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The methods of compressed sensing magnetic resonance imaging (CS-MRI) can be divided into two categories roughly based on
the number of target variables. One group devotes to estimating the complex-valued MRI image. And the other calculates the
magnitude and phase parts of the complex-valued MRI image, respectively, by enforcing separate penalties on them. We
propose a new CS-based method based on dual-tree complex wavelet (DT CWT) sparsity, which is under the frame of the
second class of CS-MRI. Owing to the separate regularization frame, this method reduces the impact of the phase jumps (that
means the jumps or discontinuities of phase values) on magnitude reconstruction. Moreover, by virtue of the excellent features
of DT CWT, such as nonoscillating envelope of coefficients and multidirectional selectivity, the proposed method is capable of
capturing more details in the magnitude and phase images. The experimental results show that the proposed method recovers
the image contour and edges information well and can eliminate the artifacts in magnitude results caused by phase jumps.

1. Introduction

Magnetic resonance imaging (MRI) is a widely applied
noninvasive modality for medical diagnosis as it provides
high-quality images and good soft tissue contrast. But one lim-
itation of MRI is its long scan time, which results in significant
artifacts in the images due to physiological motion and move-
ments of patient during the prolonged scan process [1, 2].
Compressed sensing (CS) [3-5] has shown its potential to
shorten MRI scan time while producing images adequate for
diagnosis. To date, the methods of compressed sensing MRI
(CS-MRI) roughly fall into two categories, according to the
number of the variable to solve: one computes the complex-
valued image of MRI, and the other recovers the magnitude
and phase parts of the MRI image separately.

In the former, although the variable is complex-valued,
the reconstruction cares about the recovery of the magnitude
of the variable and ignores the phase part [6-8]. Many
researchers focused on designing or employing new optimi-
zation algorithm [9-13] or used the sparser representation

[14-19] for better magnitude result. However, they obtained
satisfactory magnitude images based on an assumption that
the phase counterpart varied gently. Once the original phase
image includes jumps, there will be visible artifacts around
the locations of phase jumps in the magnitude results, which
will be elaborated in Section 2.

Furthermore, the phase structure also contains impor-
tant information, which needs to be accurately estimated
and can be used for main magnetic field calibration [20]
and phase contrast imaging [21, 22].

Some scholars have made great efforts towards the sepa-
rate reconstruction of MR magnitude and phase images
[23-28]. Fessler and Noll proposed an iterative reconstruc-
tion method [24], which preserved both smoothness of the
phase image and resolution of the magnitude image by reg-
ularizing the phase and the magnitude images for their own
features separately with finite difference (FD). Nevertheless,
due to the nonconvex property of the cost function for the
phase component, it cannot handle the case with big jumps
in the wrapped phase map.
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Zibetti and De Pierro [25] found that, when the magni-
tude part is piecewise continuous, which could be sparsified
by the FD operator, and the phase counterpart is smooth,
the sparsity of the complex-valued MR image after FD oper-
ator decreases. Therefore, they proposed L1-norm penalty
for the magnitude part and a modified L2-norm penalty
for the phase part. It not only reduces computation cost
but also improves the quality of the MR image [26].

Zhao et al. [27] achieved robust recovery of the phase
jumps by designing a periodic function that is similar to
the FD penalty. The regularization function is edge-
preserving using the Huber loss function. But it is rather
time-consuming,.

The phase cycling method (PCM) was proposed by Ong
et al. [28], which can reconstruct the MRI complex-valued
image well. This method supports arbitrary regularization
term for phase image as long as its proximal operator can
be calculated.

The implementation of these methods all relies on real
wavelet transform (i.e., the traditional discrete wavelet trans-
form (DWT)) to exploit the sparsity of the images. However,
the real wavelet transform suffers from some problems. First,
due to the underlying bandpass property of real wavelets, the
coeflicients of real wavelet transform oscillate positive and
negative in the neighborhood of singularities, always causing
a small or even zero wavelet coefficient overlapping a
singularity and consequently making singularity extraction
very challenging [29]. Moreover, poor directionality of the
real wavelet transform complicates edge detection in the
images [30], which may result in blur edges in the recon-
structed image.

Inspired by the better performance of complex wavelet
transform over DWT [31], under the frame of the second
kind of CS-MRI, we utilize the dual-tree complex wavelet
transform (DT CWT) [32-34] as the sparsity representation
owing to its following properties. First of all, DT CWT has
invertible implementation which is vital for image recon-
struction. Furthermore, it can give six directional high fre-
quency information in contrast to the three directional
detail information of real wavelet, enabling more detail
information preservation and the improvement in the preci-
sion of image reconstruction. Finally, the amplitude of DT
CWT coefficients provides a smooth positive envelope
rather than the amplitude oscillating positive and negative,
leading to large wavelet coefficients where wavelets overlap-
ping any singularity. DT CWT was first applied to CS-MRI
as a sparsifying transform in [35] (abbreviated as DTCWTM
in this paper). And then, Zhu et al. [36] utilized a variant
of DT CWT, double-density DT CWT, to convert the
MRI image into a sparser one (this method is called
DADTCWTM for short in this paper). Nevertheless, both
approaches belong to the first class of CS-MRI which is
mentioned before and hence will confront the same
artifact problem induced by phase jumps.

The contribution of this paper is that, in order to recon-
struct better MRI magnitude and phase images, we utilize
DT CWT to be the sparsity transform for the separate mag-
nitude and phase priors under the frame of the second class
of CS-MRL
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2. Materials and Methods

2.1. The Artifact in Magnitude due to Phase Jumps. The sig-
nal of CS-MRI is described as follows:

y=Ax+e, (1)

where y =y, yz,---,yNd}T € CN¢ indicates the undersampled
k-space data,A € CN¢*N» is the system matrix of MRI,
x =[x, %5, x| T'e C™r is the image vector which cascades
all the columns in the matrix of the complex-valued MRI
image, and €= [81,82,"-,£NP]T € C"r denotes the complex
noise vector. CS-MRI aims to calculate the image from the
undersampled measurements.

The regularization model for the first category of CS-
MRI methods mentioned in Section 1 can be summarized as:

1
arg min > |y — Ax|)3 + Bo(x), (2)

where ||-]|2 is L, norm enforcing data fidelity between
k-space measurement and reconstructed image, ¢ (x)
indicates the regularization term for the image after certain
sparse transform, and 3 denotes a positive regularization
parameter.

This model can successfully estimate MR magnitude
image with satisfied quality by multiple effective optimiza-
tion algorithms [11, 37, 38] when the phase part is smooth.
However, if there are some jumps in the phase image, arti-
facts will be introduced in the corresponding locations of
the magnitude counterpart. To illustrate this, we apply four
distinct methods under the frame of the model described
in Equation (2) to recover magnitude image from an
undersampled brain dataset whose original full-sampled
phase image has visible jumps in the upper-right (the back-
ground is removed here for better observation). The results
and error maps of magnitude are shown in Figure 1. Here,
¢ (x) of the first method is composed of a wavelet-based L,
norm and a total variation norm (TV). The first method
employs fast iterative soft-thresholding algorithm (FISTA)
[37] for minimization. So, we refer to it as FISTA just in this
paper. Letting ¢ (x) be a wavelet-based L, norm and
employing alternating direction method of multipliers
(ADMM) algorithm [38] for optimization, we get the second
method (in this paper, we call it ADMM for short). To be the
third method, the structure decomposition method (SD) in
reference [39] divides ¢ (x) into two parts: one is an isotro-
pic second-order total variation (ISOTV) regularization for
smooth component, and the other is a nonlocal TV (NLTV)
regularization [40] plus a contourlet-wavelet-based regulari-
zation for text component. And the last method, projected
iterative soft-thresholding algorithm (pFISTA) [11], simply
uses L, norm of the wavelet coefficients of the image as
¢ (x). Visually, the artifacts arise at the positions where
phase jumps happen in the magnitude results by these dif-
ferent methods of the first kind CS-MRIL
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FiGUre 1: The (a) magnitude and (f) phase images are reconstructed directly from a full-sampled k-space brain dataset. Under 33%
subsampling rate, the magnitude reconstruction results are shown in the upper row, respectively, by (b) FISTA, (c) ADMM, (d) SD [39],
and (e) pFISTA [11]. And the below row displays the corresponding magnitude error maps of (g) FISTA, (c) ADMM, (d) SD, and (e)
pFISTA.



2.2. The Proposed Method. The complex image of MRI can
be stated in another form:

x=m-e?, (3)

where m = [m;, m2,~--,mNP}T € R™ is the magnitude vector
cascading all the columns in the matrix of the magnitude
image, p = [p;> pz,---,pNP]T € RV denotes the phase vector
which cascades all the columns in the phase image matrix,
e indicates the element-wise multiplication, and e is the
element-wise exponential function. Then, Equation (1) is
rewritten as follows:

y=A(m-e?) +e. (4)

The second kind of CS-MRI mentioned in Section 1, as
well as our method, is designed to estimate magnitude m
and phase p images from the undersampled k-space data y
simultaneously.

The objective function of the proposed method is
expressed as:

1 i
argmr;;nnE ||y—A(m-ep)H§ + A, || P(m)[|, + A, [|DP(p) >

(5)

where A,, and A, are the weighting parameters for magnitude
and phase parts, respectively, and @(-) denotes DT CWT.

Because the phase variable is involved in an exponential
part, the function is nonconvex. In order to solve this prob-
lem, we perform the regularizations for magnitude and
phase parts alternately and use the proximal gradient
method [41, 42] for each subproblem, which guarantees that
the value of the objective function descends over iterations.
The formula of magnitude update is as follows:

=t A (y A, oP)). ©

My, =Ty om), (M, + a, Re (1)),

where
T,,(t) = mi —1 —t)> + (7)
,\g( ) = arg min Zoc/\Hs I5 +g(s) ¢

is the proximal operator for the function g, r,, is the gradient
term of the magnitude image with fixed phase images p at
iteration n, «,, is the step size of the magnitude update,
Re (+) extracts the real part, A is the regularization parameter
for function g, and s denotes an assistant variable that trans-
forms the regularization into a convex problem that would be
more readily solved.

In order to avoid the artifacts caused by the accumula-
tion of phase jumps at the same position over each iteration,
we apply the scheme introduced in reference [28] which
shifts the phase discontinuity to a different spatial location
by adding a random constant to the phase image in each
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Input: y, my, py, A, W, N, K
Output: my;, py
Function:
‘xm = I/Mmax(A*A)
While n=0,---,N-1 do
mn,O = mn
For k=0,---,K—-1do
o= € P A" (y = Al )

M1k =T, o(m)), (Mui + 0 Re (1,4))
End for.
mn+1 = mn,K

Pn,0:pn
‘xp = l/tumax(A*A) max ‘mn+l|2
For k=0,---,K—-1do

Randomly draw w, , € W
Zpg = "My e Pnk . A*(y - A(mnﬂ ' eipn'k))

Puji = T%H@(p)u, Drp t W,y + o, Re (Zux)) = Wik
End for

pn+l = Pn,K
End for

ArcoriTHM 1: Pseudocode of the proposed method.

iteration. In this way, the formula of phase is derived as
follows:

£y (= A, ®
Pui1 = Th o)), (P, +w, +a,Re(z,) ~w,
where z, is the gradient term of the phase image with
fixed magnitude image m at iteration n, a, is the step size
of the phase update, and w,, is a constant randomly draw
from a set of the constants W generated from the initial
solution with equal probability.

In our method, the phase and magnitude are initialized as
the images reconstructed from the undersampled zero-
padding measurements, that is m, = |[A*y| and p,=2(A"y).
And the step sizes for magnitude and phase updates are self-
adaptive: the magnitude step-size is 1/p, (A*A), and the
phase step-size is 1/u_, (A*A) max (|m|*), where u__(-)
computes the maximum eigenvalue. The pseudocode of our
method is as follows:

3. Results and Discussion

3.1. Preparation. Two datasets are employed to test the pro-
posed scheme. One is a fully sampled dataset of human
brain, which is obtained on 1.5T GE Signa scanner (GE
Healthcare, Waukesha, WI) [28] with 8-channel head coils,
3D GRE sequence, TE/TR =5.2ms/12.2 ms. The 2D slices
were extracted along the readout direction for experiment.
Another single coil head dataset was provided by Wang
et al. [43]. Partial Fourier sampling is applied to both data-
sets. The factor is 7/16. And the datasets are further retro-
spectively undersampled by 4 with a variable density
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(a)

(b)

FIGURE 2: The sampling patterns for 8-coil and single coil datasets.

Poisson-disk pattern and a 24 x 24 calibration area [28].
The sampling patterns for both datasets are shown in
Figures 2(a) and 2(b).

For performance evaluation, we consider the peak
signal-to-noise ratio (PSNR) and relative error (RE) [44].
They are defined as below:

MAX?
PSNR =10 # log,, [ ———— |, )
sqrt(MSE)
RE =20 log (M) dB, (10)
||xori||2

where MAX denotes the maximum values of all pixels in the
image, MSE indicates the mean squared error, X is the recon-
structed complex image, and x,; is the original full-sampled
complex image.

3.2. Experimental Results and Discussions. The experiments
are implemented in MATLAB under the Windows 10 oper-
ating system and run on the computer with Intel (R) Celeron
(R) G4900 CPU@3.10 GHz. The experiments set external
iterations N as 500 and internal iterations K as 2. DT
CWT in our method uses the near-symmetric biorthogonal
wavelet filter pair of lengths 5 (scaling filter) and 7 (wavelet
filter) for level 1 and the orthogonal Q-shift Hilbert wavelet
filter pair of length 10 for levels not less than 2. Furthermore,
like any CS-MRI method, the weighting parameters for our
method should be set empirically for the best performance.
Here, we set them for the lowest RE. There is no doubt that
it will take added time to tune these parameters. Figure 3
displays the RE convergence rates of the proposed method
against several settings of the weighting parameters for the
first experiment. It is observed that with different regulariza-
tion parameters, all solutions converge. And when A, =
0.003 and A, =0.006, the smallest errors were observed.
Therefore, in implementing the proposed method, the regu-
larization parameters A,, and A,, are set to be 0.003 and 0.006

in the first experiment. And the regularization parameters

-34
-36
-38 4
=)
; -40
—-42 4
L TR o I I
-46 ———————————
0 100 200 300 400 500 600 700 800 900
CPU time (s)
— 1,=0.003,A =0003  —— A =0.006,A =0.006
== A_=0.006, /\P =0.003 A, =0.003, )Lp =0.006
A =0.001, /\p =0.009
FiGURe 3: The RE of different weighting parameters.
A and A, of the second dataset are set to be 0.001 and

0.006, respectively, in the same way.

We compare our method to Zhao’s method [27], PCM
[28], DTCWTM [35], and DADTCWTM [36].

The reconstructed magnitude and phase images of the
first dataset are displayed in Figure 4. The error of the mag-
nitude result by the proposed method visibly diminishes
compared to other methods, especially in the neighbour-
hoods of the contour and the vertical central line (see the
magnitude error maps in Figure 4). Besides, the proposed
method recovers more details along the vertical central line
in the phase result. This is because the multidirectional
selectivity of DT CWT can catch more edge information
comparing with the three-directional details of real DWT.
In addition, the coefficient amplitudes of DT CWT are
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DTCWTM DADTCWTM

FIGURE 4: The first row is the true magnitude image of the first dataset and the magnitude results of the proposed method, PCM, Zhao’s
method, DTCWTM, and DADTCWTM, respectively. The corresponding magnitude error maps are shown in the middle row. The last
line is the true phase image of the first dataset and the phase results of these methods.
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FiGure 5: The RE curves for the first dataset.

slowly varying and free of aliasing distortion in contrast to
the oscillating amplitudes of the real DWT. Therefore, the
process of L; norm regularization can reserve essential coef-
ficients for inverse DT CWT, while it may remove some cru-
cial coefficients for inverse DWT leading to a poor solution.

TaBLE 1: Comparison of PSNRs of the five methods under the same
sampling pattern for the first dataset.

Methods PSNR (magnitude) PSNR (phase)
PCM 32.9260 14.6015
Zhao’s 31.3357 14.0785
DTCWTM 30.2111 15.0024
DADTCWTM 30.8874 15.0110
The proposed 33.6707 15.7558

On the contrary, two-second kind methods of CS-MRI,
DTCWTM and DADTCWTM, produce significant artifacts
in magnitude images around the phase jumps, as the phase
jumps impact the magnitude part in a combined penalty
term (i.e., ¢ (x) in Equation (2)) throughout the entire opti-
mization. We guess at each iteration the phase jumps disturb
the real and imaginary parts of the complex-valued image in
different trigonometric ways. And then, over iterations, there
are different inevitable errors accumulating in the values of
real and imaginary parts, eventually resulting in the artifacts
in the magnitude image. The magnitude map of Zhao’s
method has almost uniform distributed errors all over the
brain area.

To demonstrate the convergence and the performance of
our proposed method, the RE curves of the five methods are
shown in Figure 5. The proposed method is superior to other
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Proposed PCM

Zhao’s DTCWTM DADTCWTM

0.35
03
0.25
0.2
0.15
0.1
0.05

F1GURE 6: The first row is the true magnitude image of the second dataset and the magnitude results of the proposed method, PCM, Zhao’s
method, DTCWTM, and DADTCWTM, respectively. The corresponding magnitude error maps are shown in the middle row. The last line
is the true phase image of the second dataset and the phase results of these methods.

TasLE 2: Comparison of PSNRs of the five methods under the same
sampling pattern for the second dataset.

Methods PSNR (magnitude) PSNR (phase)
PCM 33.3365 11.8018
Zhao’s 29.2600 9.0292
DTCWTM 30.3998 10.7995
DADTCWTM 31.4419 11.0751
The proposed 34.1498 12.2235

methods in terms of relative error, e.g., over PCM by 2.3 dB
and over DADTCWTM by 4.2 dB.

Table 1 lists the PSNRs of the five methods under the
same sampling pattern. The PSNRs of the magnitude and
phase images by the proposed method are ahead of other
methods.

To verify the effectiveness of the proposed method on
data without phase jumps, we test the proposed method with
the single coil head dataset. The reconstruction results are
shown in Figure 6. Comparing to the proposed method,
PCM recovers magnitude image with more artifacts in the
areas of forehead and occiput and generates comparable
phase image. The proposed method is able to detect more
edges distinctly thanks to the multidirectional selectivity of
DT CWT. Zhao’s method produces crack-like artifacts all
over the magnitude image. And the brain area is mixed up
with the background in the phase map of Zhao’s method.
The magnitude results of DTCWTM and DdDTCWTM
are inferior to that of the proposed method. And the phase
counterparts of these two methods appear to contain more
artifacts visually than that of the proposed method and
PCM, while the PSNR values of the former are less than
the latter in Table 2.
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FiGure 7: The RE curves for the second dataset.

Table 2 indicates that the proposed method outperforms
other methods by promoting the quality of both magnitude
and phase images.

Figure 7 gives the RE curves versus the CPU time. The
proposed method converges to the best results within a short
time in terms of relative error.

4. Conclusions

We propose a new CS-MRI method with separate magni-
tude and phase priors by utilizing DT CWT as the sparse



representation. The experiments demonstrate that the pro-
posed method effectively decreases the artifacts in the mag-
nitude image and recovers the contours and edges well.
And the quantitative comparison also confirms the effective-
ness of the proposed method. However, it takes extra time to
adjust the weighting parameters for the best performance of
our method. In the future, artificial intelligence algorithm
could be introduced in the proposed method to help these
parameters to be self-adaptive.

Data Availability

The brain data acquired by an 8-channel head coil are from
previously reported studies and datasets, which have been
cited. The processed data are available in the software pack-
age at https://github.com/mikgroup/phase_cycling.git. The
single coil head data can be obtained in the software package
at https://github.com/yqx7150/WDAEPRec.git.
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