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ABSTRACT Dairy cows respond individually to stressful situations, even under similar
feeding and housing conditions. The phenotypic responsiveness might trace back to
their microbiome and its interactions with the host. This long-term study investigated
the effects of calving, lipopolysaccharide (LPS)-induced inflammation, and L-carnitine
supplementation on fecal bacteria and metabolites, dairy cow milk production, health,
energy metabolism, and blood metabolites. Fifty-four multiparous Holstein dairy cows
were examined over a defined period of life (168 days). The obtained data allowed a
holistic analysis combining microbiome data such as 16S rRNA amplicon sequencing
and fecal targeted metabolome (188 metabolites) with host parameters. The con-
ducted analyses allowed the definition of three enterotype-like microbiome clusters in
dairy cows which could be linked to the community diversity and dynamics over time.
The microbiome clusters were discovered to be treatment independent, governed by
Bifidobacterium (C-Bifi), unclassified (uncl.) Clostridiales (C-Clos), and unclassified
Spirochaetaceae (C-Spiro). Animals between the clusters varied significantly in terms of
illnesses, body weight, microbiome composition, and milk and blood parameters. C-
Bifi animals were healthier and leaner with a less diverse but dynamic microbiome. C-
Spiro animals were heavier, but the diversity of the static microbiome was higher. This
pioneering study uncovered microbiome clusters in dairy cows, each contributing dif-
ferently to animal health and productive performance and with a crucial role of
Bifidobacterium.

IMPORTANCE The health of dairy cows has to be carefully considered for sustainable
and efficient animal production. The microbiome of animals plays an important role
in the host’s nutrient supply and regulation of immune functions. We show that a
certain composition of the fecal microbiome, called microbiome clusters, can be
linked to an animal’s health at challenging life events such as calving and inflamma-
tion. Cows with a specific set of bacteria have coped better under these stressors
than have others. This novel information has great potential for implementing micro-
biome clusters as a trait for sustainable breeding strategies.

KEYWORDS microbiome clusters, dairy cow, metabolome, Bifidobacterium, calving,
transition, lipopolysaccharide, microbiome clusters

For some time, dairy cow breeding has focused on phenotypic ideals with no regard
for intestinal bacterial communities, which have evolved within, or for the cow itself

across evolution. The intestinal symbionts of ruminants are crucial for proper fiber deg-
radation, fermentation, vitamin production, and host immune functions (1, 2). Even
though natural life expectancy can reach up to 20 years, modern dairy cows live
between 4.5 and 6 years (3, 4), since production diseases, such as claw lesions and
lameness, rumen and hindgut acidosis, ketosis, and reproduction disorders have
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become more common among herds (5, 6). These diseases often originate from a non-
physiological, high-energy diet necessary for high milk yields; however, it causes per-
turbation of the established microbiome (1, 6). This diet malnourishes protective, mu-
cus-stimulating gut bacteria, such as Bifidobacterium (7), and promotes potentially
pathogenic consortia (8). Even though it promotes high productivity, this new micro-
bial community is accompanied by gastrointestinal acidosis, followed by epithelial
leakiness (9). The decrease in mucus thickness soon exposes the underlying bare gut
epithelia and increases the risk of infection (6, 7, 9). Such a “leaky gut” poses open
gates for lipopolysaccharide (LPS) and other immune triggers, reaching the blood-
stream and contributing to a latent inflammatory status (6, 8–12). This cascade of
increased intestinal stress makes the host more sensitive to infections or health issues,
thereby triggering a downward spiral of the physiological state. The latest studies have
associated the aforementioned health issues with an impaired gut microbiome (9, 12),
suggesting that the modern dairy industry should focus on maintaining gut health,
including its complex ecosystem and integrity, to increase the cows’ well-being and
performance (9). Additional stressors, such as calving or infection, can pose the final
blow for the animal. In particular, calving, and the subsequent transition period, are
the most critical and energy-requiring periods in the dairy cow’s life. Energy metabo-
lism in animals is crucial for coping with physiological challenges. However, excessive
mobilization of body fat and enhanced ratios of energy in the diet can cause a meta-
bolic imbalance (5). Therefore, finding an optimal balance between the animals’
demands by nature and high performance is a difficult task. Feed supplementation
with L-carnitine (CAR), a metabolite inevitably necessary for the transport of long-chain
fatty acids into the mitochondria for b-oxidation, is suggested to enhance the ener-
getic potential of dairy cows (13). Cows with an improved energy metabolism could
emerge better from stressful phases.

The combined analysis of the fecal microbiome, its metabolites, animal perform-
ance variables, and health indicators has the potential to elucidate and understand the
cow in its complexity. Hence, the objective of this study was to identify the role of the
microbiome in the health of dairy cows during challenging periods. The present work
tested physiological and the microbial differences between individuals of the same
herd during the calving, transition, and an LPS-induced inflammatory challenge with
or without supplementation with rumen-protected L-carnitine.

RESULTS

The present study investigated 54 multiparous Holstein dairy cows over 168 days,
including calving and an inflammatory challenge induced by LPS injection. Fecal sam-
ples were collected at 13 time points to obtain a representative overview of the micro-
biome changes in the host during two physiological challenges (Fig. 1; see Data Sets S1
to S3 at https://github.com/SebasSaenz/Troscher-Mussotter_Cow-enterotypes_2021/
tree/main/Datatsets). (Time points including a “2” or “1” indicate days antepartum or
postpartum, and those including “hC” or “hL” are samples taken at 12, 24, or 72 h after
calving or LPS challenge, respectively.) The herd was randomly split into L-carnitine-sup-
plemented (CAR) and nonsupplemented (CON) cows, defined hereafter as treatment. In
general, the time point of sampling had a significant and stronger impact on opera-
tional taxonomic unit (OTU)-based community structures (Fig. 2a; analysis of similarity
[ANOSIM] global R = 0.298, P = 0.0001; permutational multivariate analysis of variance
[PERMANOVA] F = 6.08, P = 0.0001) see Fig. S1 in the supplemental material) than the
age of the animal (ANOSIM global R = 20.001, P = 0.504; PERMANOVA F = 3.69, P =
0.0001) or treatment (ANOSIM global R = 0.01, P = 0.006; PERMANOVA F = 2.67, P =
0.0001), with drastic changes after calving and feed adjustment (time point 114).
Before calving (time point 214), the microbiomes show the highest within-time similar-
ity (similarity percentage [SIMPER] average at the OTU level = 29.3%), as greater varia-
tions among individual animal communities are seen at all other time points (see Data
Set S4 at https://github.com/SebasSaenz/Troscher-Mussotter_Cow-enterotypes_2021/
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tree/main/Datatsets). The highest dissimilarity between time points at the OTU level
was observed between 12 h after calving (12hC) and time point 142 (86.7%). The high-
est genus contribution to time point similarity was observed at 72hC by Bifidobacterium
(OTU1 and OTU2), accounting for 31.3% of the total similarity.

Community dispersion and alpha-diversity cause the formation of distinct
microbiome clusters. Changes in nutritional and physiological conditions over a long
time period are significant factors to change the microbial composition. But the extent of
such dynamic changes may vary at the individual animal level. This was calculated with-
out considering any a priori groups and using the multivariate dispersion (MVDISP)
approach. Each animal received a dispersion score depending on its respective samples.
This allows for the separation of the herd into a dynamic and a static group (Fig. 2b) by
using the mean MVDISP of 1.000 as the separator. High MVDISP values indicate high het-
erogeneity between the samples and a more variable bacterial composition, while low
values indicate low heterogeneity. As a result, 26 individuals were assigned to the
dynamic group (MVDISP . 1.000) and 28 to the static group (MVDISP # 1.000) over the
entire sampling period. In addition, the alpha-diversity calculated as the Shannon diver-
sity index matches for the majority of samples the calculated dispersions, as higher
Shannon indexes ($5.20) are identified for dynamic animals and lower indexes (,5.19)
for static animals (Fig. 2c; see Data Set S3 at https://github.com/SebasSaenz/Troscher
-Mussotter_Cow-enterotypes_2021/tree/main/Datatsets).

Clusters of distinct community composition types are identified and linked to
dispersion and diversity. Due to the observed differences in dynamics, the hypothe-
sis was that 54 animals could be grouped into distinct community composition clus-
ters for the whole experimental period. The decision to average the data sets per
cow was done based on our intention to identify microbiomes which can be linked
to animals with good performance and health rather than to describe microbial
changes induced by nutrition. Therefore, the enterotype approach of Arumugam et
al. (14) was applied, and three distinct microbiome clusters across the herd and ex-
perimental period were revealed (Fig. 2d and 3) (PERMANOVA F = 9.10, P = 0.0001).
Eleven animals were assigned to the cluster governed by Bifidobacterium (C-Bifi)
(CAR:CON ratio = 7:4), revealing Bifidobacterium, unclassified (uncl.) Coriobacteriales,
and uncl. Lachnospiraceae as the dominant genera (SIMPER average similarity at genus
level = 58.4%) (see Data Set S4 at https://github.com/SebasSaenz/Troscher-Mussotter
_Cow-enterotypes_2021/tree/main/Datatsets). The cluster governed by the uncl.

FIG 1 Trial setup of the MitoCow study, including fecal sampling at 13 time points for 16S rRNA
sequencing and SCFA measurement as well as at seven time points for Biocrates p180 metabolite
analysis. n values are the total number of samples measured per analysis. Time points including a “2”
or “1” indicate days antepartum or postpartum, respectively, and those including “hC” or “hL” are
samples taken at 12, 24 or 72 h after calving or LPS challenge, respectively.
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Clostridiales (C-Clos), which comprised 27 animals (CAR:CON = 12:15), was colonized by
uncl. Clostridiales, uncl. Ruminococcaceae, and Oscillibacter (SIMPER average similarity at
the genus level = 62.4%). Sixteen animals were dominated by uncl. Spirochaetaceae, uncl.
Bacteroidetes, and uncl. Haloplasmatales and clustered into the uncl. Spirochaetaceae (C-
Spiro) group (SIMPER average similarity at genus level = 65.1%; CAR:CON = 6:10). C-Spiro
and C-Bifi genus communities were the most disparate across all time points (ANOSIM
global R = 0.334, P = 0.0001; SIMPER average dissimilarity at genus level = 44.2%), fol-
lowed by C-Bifi versus C-Clos (ANOSIM global R = 0.264, P = 0.0001; SIMPER average dis-
similarity at genus level = 44.0%) and C-Spiro versus C-Clos (ANOSIM global R = 0.079,
P = 0.0001; SIMPER average dissimilarity at genus level = 38.3%). Combining MVDISP and
the microbiome cluster results in 91% C-Bifi, 48% C-Clos, and 19% C-Spiro animals, which
are sorted into the dynamic group (see Fig. S2 in the supplemental material). Hence,
microbiomes of the C-Bifi animals were largely dynamic and those of C-Spiro were largely
static, with C-Clos representing an intermediate cluster.

Copy number counts of quantitative PCR (qPCR)-derived total bacteria are only sig-
nificantly different at time point 114 with C-Clos, showing a significantly higher count

FIG 2 Microbiome dynamics and diversity are associated with defined microbiome clusters. Microbiome analyses included 591 samples of 54 animals with
various labels. (a) Time points (time points including a “–” or “1” indicate days antepartum or postpartum, respectively, and time points including “hC” or
“hL” are samples taken at 12, 24 or 72 h after calving or LPS challenge, respectively); (b) MVDISP (multivariate dispersion) classification of 26 dynamic and
28 static animals; (c) Shannon diversity indexes separated at the average; (d) animal clusters. PCoA data based on Bray-Curtis metrics showed clustering of
operational taxonomic units (OTUs).
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than the other clusters (Fig. S3a). Diversity across individual time points is significantly
higher in C-Spiro, followed by C-Clos, and lowest in C-Bifi (Fig. 4). A significant decrease
in diversity during calving and LPS challenge was observed to different extents.
Regression slopes indicated a stronger significant decrease in diversity during calving
(242 to 72hC) in C-Bifi (R2 = 0.2, P = 0.004) and C-Clos (R2 = 0.2, P = 0.0001) than in C-
Spiro (R2 = 0.1, P = 0.02). The decreasing slope across the LPS challenge (time point
1100 to 72 h after LPS challenge [72hL]) was significant only for C-Bifi (R2 = 0.1,
P = 0.03). ANOSIM analysis reveals significantly stronger effects due to microbiome
clusters than to treatment (see Data Set S4 at https://github.com/SebasSaenz/Troscher
-Mussotter_Cow-enterotypes_2021/tree/main/Datatsets).

Bacterial networks in the microbiome clusters. The main discriminative genus
between the microbiome clusters is Bifidobacterium, which largely contributes to the
total dissimilarity between the three animal clusters (SIMPER average, 15.9%) (see Data
Set S4 at https://github.com/SebasSaenz/Troscher-Mussotter_Cow-enterotypes_2021/
tree/main/Datatsets). It shows the highest relative abundance in C-Bifi (14.6%), fol-
lowed by C-Clos (8.6%) and C-Spiro (6.9%) (Fig. S4 and S5). Copy numbers of
Bifidobacterium matched Illumina sequencing results in trends (Fig. S6) but are not sig-
nificantly different between the clusters across different time points (Fig. S3b).
Members of uncl. Bacteroidales were highest in C-Bifi (28.4%) in comparison to the
other two clusters (C-Clos, 23.1%; C-Spiro, 24.2%) and contributed an average of 13.2%
to dissimilarity among them. Uncl. Lachnospiraceae members were highest in C-Bifi

FIG 3 Three clusters of dairy cows within the same herd. Relative abundance genus data were averaged per animal across all 13
time points, resulting in a total of 54 data points included in this R-supported analysis. Labels in the figure indicate the genera
with the highest taxon weight of the cluster, as follows: for cluster 1, it was uncl. Clostridiales (C-Clos, n = 27, CAR:CON = 12:15),
for cluster 2, it was uncl. Spirochaetaceae (C-Spiro, n = 16, CAR:CON = 6:10), and for cluster 3, it was Bifidobacterium (C-Bifi, n = 11,
CAR:CON = 7:4).
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(14.0%), followed by C-Clos (9.4%) and C-Spiro (7.9%), contributing an average of 9.2%
to the dissimilarity. Uncl. Clostridiales members were the most abundant in C-Clos ani-
mals (15.8%), followed by C-Spiro (12.7%) and C-Bifi (9.9%), contributing an average of
8.2% to cluster dissimilarity. Turicibacter members were lowest in C-Bifi (0.6%) and C-
Spiro (2.9%) and the highest in C-Clos (4.1%), contributing an average of 4.6% to their
dissimilarity. Uncl. Ruminococcaceae members contributed an average of 5.4% to the
cluster separation, with higher abundance in C-Clos (9.8%), followed by C-Spiro (8.0%)
and C-Bifi (5.9%).

Cooccurrence network analysis by nonparametric Spearman’s rank correlation (r)
offers insights into the main interactions between the dominant cluster genera
(Bifidobacterium, uncl. Clostridiales, and uncl. Spirochaetaceae) and other community
members at three levels of interaction (Fig. 5). In Fig. 5, open circle shapes with
overlying genera indicate first-level correlations with the respective dominating ge-
nus. The inner circle lines indicate genera with second-level correlations. From
circles, outwardly directed lines indicate third-level correlating genera (solely jrj $
0.5), which are not directly connected to the respective dominating genus with sim-
ilar strength. Bifidobacterium was negatively associated with first-level genera in the
C-Bifi and C-Clos clusters but also with uncl. Ruminococcaceae at the second level.
Uncl. Marinilabiliaceae was a first-level member in all clusters; however, it was nega-
tively associated with Bifidobacterium in C-Bifi (r # 20.3) and positively associated
with both of the other clusters (r $ 0.3). This genus concatenated a wide range of
positively correlated genera, such as uncl. Proteobacteria in C-Clos (third level), as
well as uncl. Peptostreptococcaceae and Succinivibrio in C-Spiro (second level). Uncl.
Spirochaetaceae in C-Spiro showed an enhanced number of positive correlations
with genera at the selected threshold compared to the other clusters.

Fermentation products and microbiome clusters. Short-chain fatty acids (SCFAs)
of 610 fecal samples of 54 animals, covering 13 time points, were measured (Fig. S7;
see Data Set S5 at https://github.com/SebasSaenz/Troscher-Mussotter_Cow-enterotypes
_2021/tree/main/Datatsets). Generally, time had a more significant impact on SCFA
(ANOSIM global R = 0.207, P = 0.0001; PERMANOVA F = 21.5, P = 0.0001) than treatment

FIG 4 Microbiome clusters with distinct microbial alpha-diversity indices. Shannon diversity indices at the OTU level across 13
time points are given as box plots for each of the three animal clusters. Time points including a “–” or “1” indicate days
antepartum or postpartum, respectively, and time points including “hC” or “hL” are samples taken at 12, 24, or 72 h after calving
(dotted line) or LPS challenge (dashed line), respectively. Letters below boxes indicate significance by the nonparametric Wilcoxon
test (P # 0.05); levels not labeled with the same letter are significantly different. n values are the numbers of cows included per
time point and cluster.
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(ANOSIM global R = 0.008, P = 0.048; PERMANOVA F = 5.4, P = 0.007) or microbiome clus-
ters (ANOSIM global R = 0.007, P = 0.265; PERMANOVA F = 0.4, P = 0.83). During early lac-
tation, C-Spiro showed a rapid and enhanced formation of propionate, butyrate, isobuty-
rate, valerate, and isovalerate. However, during LPS challenge at time point 12hL, clusters
C-Bifi and C-Clos formed higher concentrations of propionate, isobutyrate, valerate, and
isovalerate, with a delay for higher acetate concentrations at 72hL.

Fecal metabolites and microbiome clusters. A metabolomics approach targeting
188 different metabolites is used to obtain additional information about the host and
microbiome function, with respect to time, challenges, and composition (see Data Set
S5 at https://github.com/SebasSaenz/Troscher-Mussotter_Cow-enterotypes_2021/tree/
main/Datatsets). A subset of seven time points was chosen to cover the two challenge
phases in all animals. Time had a strong impact on metabolite composition (ANOSIM
global R = 0.102, P = 0.0001; PERMANOVA F = 11.10, P = 0.0001) compared to micro-
biome clusters (ANOSIM global R = 20.002, P = 0.526; PERMANOVA F = 3.65, P =
0.0001) and treatment (ANOSIM global R = 0.016, P = 0.007; PERMANOVA F = 3.15, P =

FIG 5 Microbiome clusters are defined by divergent correlations among community members. Circular correlation networks including 591 samples were
drawn from nonparametric Spearman’s rank analysis (all significant at a P of #0.006) of microbiome clusters for their respective dominating genera:
Bifidobacterium (C-Bifi), uncl. Clostridiales (C-Clos), and uncl. Spirochaetaceae (C-Spiro). Open circle shapes with overlying taxon names indicate first-level
correlations with the respective dominating genus. Inner-circle lines indicate genera with second-level correlations. From circles, outwardly directed lines
indicate third-level correlating genera (solely jrj $ 0.5), which are not directly connected to the respective dominating genus at a similar strength. For
example, Bifidobacterium in C-Bifi individuals is at first rank negatively correlating with Olsenella (r # 20.3), which in turn was positively correlated at the
second level with Parabacteroides (r $ 0.4). Parabacteroides was at the third level positively correlating with Alistipes (r $ 0.5), for which no direct
correlation with Bifidobacterium was observed. Correlations were calculated using JMP Pro 15.2.1, and the most important correlations were selected and
used to draw the plots.
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0.03). The dominant metabolite groups in the fecal samples were amino acids (.57%)
and hexoses (H1) (.31%), followed by biogenic amines (.4%), with alanine (Ala), glu-
tamine (Glu), and glycine (Gly) as major metabolites, which were all highest in C-Bifi.
The total fecal metabolite concentration is significantly higher in C-Bifi than in C-Spiro
(P = 0.016), with amino acid concentrations contributing the most to this difference
(Fig. S8) (P = 0.04). Bifidobacterium abundance is significantly positively associated with
higher levels of histamine (His), Ala, valine (Val), Gly, methionine (Met), leucine (Leu),
Glu, isoleucine (Ile), methionine sulfoxide (Met-SO), and symmetric dimethylarginine
(SDMA) (Fig. 6). Uncl. Clostridiales was negatively correlated with phosphatidylcholine
diacyl C38:6 (PC.aa.C38.6), asymmetric dimethylarginine (ADMA), SDMA, C18:2, His, Ala,
Val, Met, and Leu but positively correlated with lysophosphatidylcholine C14:0
(lysoPC.a.C14.0). The uncl. Spirochaetaceae genera did not show significant correlations
with the metabolites. Four lysophatidylcholines (lysoPC.a.C14.0, lysoPC.a.C16.0,
lysoPC.a.C17.0, and lysoPC.a.C24.0) were significantly (P , 0.05) higher in dynamic ani-
mals than in static animals. Phosphatidylcholines (PC), irrespective of microbiome clus-
ters, showed a clear gap between time points before 12hC (higher PC.aa.C42.2,
Spearman’s r $ 0.8) and after 72hC. Amino acids, irrespective of microbiome clusters,
revealed a separation between time points before 12hL and after 72hL (higher His,
threonine [Thr], and tryptophan [Trp]; all Spearman’s r$ 0.7).

Functional prediction of the microbiome clusters. Rumen-specific functional pre-
diction of the gut microbiome was performed using CowPI precalculated files and
PICRUSt. In total, 256 KEGG pathways were predicted among all samples, and 17 amino
acid pathways were manually selected as metabolome analyses, indicating differences
in amino acid profiles. The analysis reveals significant differences primarily in amino
acid-related pathways between the microbiome clusters (Fig. S9). Ala, aspartate (Asp),

FIG 6 Microbiome clusters are differentially associated with fecal metabolites. Percentages of variance in
relative abundance of Bifidobacterium (green) and uncl. Clostridiales (blue) are given for 275 metabolite samples
and 47 animals, with significantly associated metabolites (FDR-corrected P , 0.05) derived from the Biocrates
p180 panel.

Tröscher-Mußotter et al.

September/October 2021 Volume 6 Issue 5 e00856-21 msystems.asm.org 8

https://msystems.asm.org


Glu, cysteine (Cys), Met, and tyrosine (Tyr) metabolism and biosynthesis of amino acid-
related enzymes lysine (Lys), Val, Leu, and Ile are increased in C-Bifi. C-Spiro was higher
in amino and nucleotide sugar metabolism, and C-Clos was higher in aminobenzoate
degradation, D-alanine metabolism, and Val, Leu, and Ile degradation.

Microbiome clusters are linked to animal’s health records and production
parameters. The long-term experimental trial, including calving and inflammatory
challenge, affected animal health to different extents. Results of daily visual examina-
tion of dairy cows are shown in Data Set S6 at https://github.com/SebasSaenz/
Troscher-Mussotter_Cow-enterotypes_2021/tree/main/Datatsets and were evaluated
with respect to the microbiome clusters and the corresponding animals. Seventy-two
percent of C-Bifi animals were ill at least once, struggling with one or more illnesses
6.1 days on average (standard error of the mean [SEM], 2.4 days). Seventy-four per-
cent of C-Clos animals were sick 11.4 days on average (SEM, 3.2 days), compared to
81% of all C-Spiro animals, which were sick 9.8 days on average (SEM, 5.3 days).
Animals belonging to C-Clos experienced a broader spectrum of health issues, fol-
lowed by C-Spiro and C-Bifi. Milk yields, body condition scores (BCS), body weight
(BW), and residual energy intake (REI) are significantly higher (P # 0.0001) in C-Spiro ani-
mals than in C-Bifi animals (Fig. 7; see Data Set S7 at https://github.com/SebasSaenz/
Troscher-Mussotter_Cow-enterotypes_2021/tree/main/Datatsets). In turn, C-Bifi animals

FIG 7 Microbiome clusters show differences in production and physiological parameters across multiple time
points. Significant differences among microbiome clusters C-Bifi (11 animals), C-Clos (27 animals), and C-Spiro
(16 animals) are indicated by P values (***, P # 0.0001; **, P # 0.005; *, P # 0.05) derived from the
nonparametric Wilcoxon method. n values are the total number of samples averaged per cluster. Time points
including a “2” or “1” indicate days antepartum or postpartum, respectively, and time points including “hC” or
“hL” are samples taken at 12, 24, or 72 h after calving or LPS challenge, respectively. SSC, somatic cell count;
BCS, body condition score; DMI, dry matter intake; REI, residual energy intake.
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had significantly higher concentrate intakes, REI values, and milk protein (P# 0.0001) and
fat (P # 0.05) concentrations than C-Clos animals. C-Clos animals had significantly higher
milk somatic cell counts (SCC) than both the other clusters, significantly lower dry matter
intakes than C-Bifi (P # 0.05), and were mostly intermediate for the other parameters.
Rectal temperatures were significantly higher at 3 days antepartum for C-Bifi animals
than C-Spiro animals (P = 0.0293) (see Data Set S6 at https://github.com/SebasSaenz/
Troscher-Mussotter_Cow-enterotypes_2021/tree/main/Datatsets).

Influence of microbiome clusters on blood parameters. Blood samples were col-
lected at 37 time points, and 23 time points were included in the present study,
covering 62 metabolites and cellular parameters (see Data Set S8 at https://github
.com/SebasSaenz/Troscher-Mussotter_Cow-enterotypes_2021/tree/main/Datatsets).
The effects of time point and treatment on red blood cell count (15), energy metab-
olism, and electrolytes (16, 17) have recently been published. Among all the param-
eters, chloride (Cl) is significantly different (P , 0.0001) between each microbiome
cluster, with the highest significance in C-Bifi and the lowest in C-Spiro (Fig. S10).
No significant differences in water intake among the microbiome clusters were
observed. In addition, ionized calcium (Ca21) and hematocrit (HCT; measured using
Celltac) were significantly different (P # 0.0001) between each cluster, with the low-
est significance for C-Bifi and the highest for C-Spiro. Mean platelet volumes (MPV)
were significantly different (P , 0.0001) between all three clusters, with that of C-
Clos at the highest and that of C-Bifi at the lowest level. In contrast, C-Bifi had signif-
icantly higher carnitine and gamma-butyrobetaine (gBB) concentrations and ferric
reducing ability of plasma (FRAP) (P # 0.02). In addition, this cluster showed a sig-
nificantly lower mean corpuscular volume (MCV), mean corpuscular hemoglobin
(MCH), glutathione peroxidase (GPx), thrombocrit (PCT), partial pressure of carbon
dioxide (TpCO2, temperature corrected), partial carbon dioxide pressure (pCO2), he-
moglobin (HGB), total carbon dioxide (tCO2), bicarbonate (HCO3), and non-esterified
fatty acids (NEFA) than the other two clusters. For the C-Spiro cluster, blood glu-
cose, lactate, sodium (Na), hematocrit (cHct, measured using blood gas analyzer),
and superoxide dismutase (SOD) were significantly lower, and trimethyllysine (TML),
triglycerides (TG), and beta-hydroxybutyrate (BHB) concentrations were significantly
higher than that of the other clusters. Lymphocytes (LYP) were significantly lower,
and absolute granulocytes (GR), neutrophile granulocyte percentage (GRP), and
white blood cells (WBC) were significantly higher in C-Clos animals than in the other
two clusters.

DISCUSSION

The aim of this long-term study was to elucidate the relationship between the dairy
cow as a host, its fecal metabolites and microbiome during two challenging periods,
and the modulating ability of L-carnitine. Combining these data with blood metabolite
and performance data offered insights into different stages of the dairy cow’s life and
revealed unknown relationships between the above-mentioned players. L-Carnitine
supplementation did not affect fecal metabolites or bacterial consortia in the present
study. However, CAR animals had higher milk fat and serum triacylglyceride concentra-
tions (16), as well as increased blood platelets and plateletcrit (15) during early lacta-
tion. In addition, higher insulin levels and lower NEFA concentrations were observed
after LPS injection (17).

As a major novel finding, this study detected three “robust clusters,” as previously
described in humans and referred to as “enterotypes” (14). Enterotypes are the strong-
est separator for microbial community structures in murine models (18) yet have never
been reported in dairy cows. The respective microbiome clusters were characterized
by different community structures, microbial diversity, fecal SCFA, and metabolite pat-
terns. In addition, the animal’s health conditions and performance data were cluster
specific. As previously observed, enterotype distributions varied over time instead of
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underlying a continuum (19). Hence, it was decided to refer to them as “microbiome
clusters” in the present study.

Finding the “ideal” (20) or “steady state” of the microbiome is a goal in human and
livestock animal studies (21, 22), as it is seen as the “healthy” mode. High stability may
be beneficial in keeping up inherent functional relationships between the host and its
microbiome (23). However, in the case of strong environmental disturbances, the com-
plete system may be at a higher risk of collapse (23). The implications of flexible micro-
biomes, defined by quick losses and gains of taxa, are receiving more attention.
However, the response potential of the host microbiome to environmental changes
has not yet been explored (23). Small sample sizes and the lack of knowledge of physi-
ological fluctuations of microbial communities often do not allow classification into
dynamic or static phenotypes. Therefore, the present study offers new insights into the
response of static and dynamic dairy cow microbiomes to different challenges. It was
observed that animals with a dynamic microbiome had low fecal alpha-diversities and
positive REI values, consistent with the results of previous studies on steers, where
high fecal alpha-diversities correlated with low residual feed intake (RFI) (24). Animals
with a dynamic microbiome, mostly associated with the C-Bifi group, were observed to
have higher milk quality (milk LogSCC, protein, and fat), lower body weight, fewer
health issues, and lower ketosis risk (low NEFA, BHB, and TG; high glucose and carni-
tine). Therefore, it is suggested that animals with a dynamic microbiome might have a
lower risk of ketosis and fatty liver disease. Further research on the flexibility of micro-
biomes should be conducted to evaluate static or dynamic microbial communities and
their implications for the host.

At the start of the lactation period, fiber is considerably replaced by readily ferment-
able carbohydrates to meet the energy demand of the dairy cow. This increases rumi-
nal SCFA concentrations (6) for energy coverage and subsequent milk production, as
well as microbial biomass in feces (25). Most microbial proteins are absorbed in the
small intestine but also enter the large intestine, where they can be implicated in mi-
crobial cross talk of residential microbes (26). Bifidobacterium and other fiber-degrad-
ing bacteria can thrive in the hindgut with the remaining microbial proteins and
metabolites, complex fibers, and host glycoproteins as nutrient sources. The protein
sources were further digested or used for de novo synthesis of free amino acids. In the
present study, concentrations of amino acids in the feces during transition increased
with increasing SCFA concentrations. Therefore, high-grain feeding simplified the cas-
cade of digesta degradation, accelerated its passage rate, and presented postruminal
sections with a highly degradable substrate (9, 25). The physiological purpose of gas-
trointestinal compartments is hereby suspended, and formerly specialized consortia
cannot apply their functions (1). This opens the niche to a more diverse set of invading
bacteria, such as facultative anaerobic Proteobacteria (27). Proteobacteria are involved
in inflammaging processes and leaky gut syndrome in mice (28). In the present study,
Proteobacteria members were 4.5-fold more abundant in static C-Spiro animals than in
dynamic, low-alpha-diversity C-Bifi animals. Interestingly, the latter cluster was found
to struggle with fewer health issues than the C-Clos cluster, which, however, also
included the most individuals. As a result, this may lead to an overinterpretation of the
clusters’ disease status. Cluster C-Clos covered a much broader range of more cost-in-
tensive health impairments, with the highest milk SCC as well as blood MPV, WBC, and
granulocytes, which are involved in the immune response during infections and may
indicate a disruption of the gut intestinal barrier (12). C-Clos animals had higher
Turicibacter abundances, which were positively associated with high-grain feeding and
cecal mucosa damage via interleukin 6 (IL-6) and IL-12 mRNA expression in goats (29).
This may indicate that enterotypes may be able to group animals according to their
inflammatory status (18). Fecal Turicibacter abundances were negatively associated
with functional traits such as amino acid metabolism, biosynthesis of secondary
metabolites, enzyme families, and lipid metabolism in a previous dairy cow study (30).
In the present study, high Turicibacter abundance was associated with low
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concentrations of free fecal amino acids and a lowered abundance of predicted amino
acid metabolism, which corroborates previous findings. The respective animal produc-
tions were characterized by lower milk protein and milk fat levels. A pronounced
increase in Turicibacter was observed during the challenging phases for C-Clos and C-
Spiro, but Turicibacter was almost absent in C-Bifi animals. The findings of Liu et al. (29)
combined with the present results may indicate that C-Clos and C-Spiro animals might
have struggled with intestinal damage. Whether the increase in Turicibacter is the
cause or the consequence of possible inflammation needs to be evaluated.

Clostridiales are involved in amino acid fermentation in the large intestine and use
ethanol and lactate as substrates to produce CO2, hydrogen, and SCFA (31), and intesti-
nal CO2, derived from digestive fermentation is absorbed from the small intestine (26,
32). Increased CO2 levels in the intestine (hypercapnia) promote hypoxia-inducible fac-
tor degradation, which plays a major role in intestinal tight junction integrity and mu-
cus stabilization (33, 34). CO2 is also produced during hepatic b-oxidation and stimu-
lates satiety (35). Additionally, high blood pCO2 concentrations have been associated
with subacute ruminal acidosis (SARA) (36). Here, animals with microbiome clusters
having a high abundance of uncl. Clostridiales (C-Clos . C-Spiro) and higher blood
pCO2, and the respective OTUs were mostly linked to the degradation of fecal amino
acids rather than biosynthesis. This is usually accompanied by an increased production
of fecal branched-chain fatty acids (isobutyrate and isovalerate) (26), which was not
observed. In addition, saturation signaling via high blood pCO2 levels in animals with
high abundance of uncl. Clostridiales (C-Clos) are mirrored by significantly lower dry
matter intake (DMI) and concentration intake than animals with low abundance of
uncl. Clostridiales (C-Bifi), thereby supporting the findings of previous studies (35).
Together, these results indicate that the microbiome clusters coped differently meta-
bolically and may mirror different health conditions. In addition, high Turicibacter, uncl.
Clostridiales, and uncl. Ruminococcaeae abundances may indicate a stiffened and inflex-
ible fecal microbiome with static dispersions and high alpha-diversity. This was detected
in the present study in heavy animals, with impaired energy metabolism (e.g., low blood
glucose and high TG, NEFA, and BHB), lowered milk quality (LogSCC, fat, protein), and
high blood TML concentrations, the precursor of carnitine (37). C-Bifi was observed to
have significantly less TML but the highest carnitine and gBB concentrations and vice
versa for C-Spiro, therefore suggesting that C-Spiro covered carnitine demands via TML
upregulation. Both TML and gBB are known to be involved in cardiovascular diseases (26,
38). The significantly higher concentration of blood carnitine and gBB in C-Bifi animals
might be due to an unbalanced CAR:CON animal ratio (7:4), as significantly higher con-
centrations were observed previously in the same CAR animals (16).

The fecal microbiome of C-Bifi animals showed an increase in Bifidobacterium at
3 days postpartum. Other studies on the development of the calf microbiome showed
concurrent enrichment with Bifidobacterium during the first days after birth (39, 40). The
trigger for this common development is unknown. Increased involvement in amino
acid traits and high milk protein concentrations may indicate that C-Bifi animals possi-
bly provide their calves with higher amounts of prebiotic glycoproteins and possibly
even intact probiotic bifidobacteria via the entero-mammalian pathway (41, 42). Milk
glycoproteins promote Bifidobacterium in the infant’s gut, which increases fecal acetate
production in human infants (43). An appropriate acetate increase was confirmed in the
present study and during high Bifidobacterium abundance in C-Bifi animals. Cows with a
microbiome low in Bifidobacterium, as well as the conventional premature separation of
the calf from the cow, may pose poor initial conditions for the calf and, as data suggest,
for the dam at the onset of lactation. To confirm this connection between bifidobacte-
rial strains and Bifidobacterium-promoting and/or derived metabolites, a study up to a
minimum of 7 days postpartum should be conducted to examine both calves and
dams. Bifidobacteria are the first settlers in the calf’s intestine and produce bacteriocins
(44), which may protect against an explosive or adverse establishment of pathogenic
bacteria, which bear the risk of diarrhea, the most common cause of early deaths in calf

Tröscher-Mußotter et al.

September/October 2021 Volume 6 Issue 5 e00856-21 msystems.asm.org 12

https://msystems.asm.org


husbandry (45, 46). Bifidobacteria may instead allow a controlled settlement of this bare
and sensitive niche in newborns. The same is true for the dam, as bifidobacteria may
have protective effects against Enterobacteriaceae, obesity during gestation, and ketosis,
as observed in women (47). Largely negative associations of Bifidobacterium with other
bacteria were found in the C-Bifi and C-Clos animals. This may indicate their ability to
modulate the microbial community composition in later stages of the cow’s life, possi-
bly via bacteriocin expression. In the present study, animals with lower body weights
had higher abundances of Bifidobacterium, which has recently been found in human
enterotype studies (48). Furthermore, C-Bifi had negative third-level correlations with
uncl. Gammaproteobacteria compared to the other two clusters. C-Bifi individuals
increased BCS and BW just before calving, to almost the same weight at day27 as both
other clusters. This indicates the growth of the fetus in C-Bifi animals, rather than an
increase in body mass, which was different in C-Spiro animals. The latter struggled with
higher blood TG and NEFA levels at low blood glucose levels compared to C-Bifi ani-
mals, which suggests a higher fat mobilization, possibly due to a negative energy bal-
ance (5). NEFA contribute to milk fat and energy synthesis via b-oxidation in the liver
(5). As milk fat was significantly lower in C-Spiro animals than in C-Bifi animals, NEFA
might have largely gone into liver b-oxidation rather than milk fat production. This
might have resulted in a higher risk of developing milk fat depression, ketosis, and fatty
liver disease in highly productive and “efficient” animals, according to negative REI val-
ues (5, 35).

A negative REI has been a breeding target for decades, aiming for highly energy-ef-
ficient animals defined by low feed intakes with high milk yields and therefore high
profitability (24, 49), yet at high body mass mobilization. Negative REI values and other
breeding targets, such as high milk yields with low SCC, were found within the static
C-Spiro cluster animals, and herein assorted animals would be labeled as “efficient.” C-
Bifi animals, in turn, would be labeled as “inefficient,” due to largely positive REI values
(50, 51). However, C-Bifi individuals recovered faster from LPS injection, indicated by
an earlier restart of SCFA production, quicker fever recovery (not significant), higher
blood glucose levels, and higher milk fat and protein levels, with lower BCS, BW, and
average days of illness. Hence, the dilemma of modern dairy cows can be addressed by
these findings and should be further elucidated by large cohort studies. Data suggest
that grouping dairy cows as “inefficient” and “efficient” according to the REI value
needs to be rethought, as “inefficient” animals seem to be those with better fitness.
Therefore, breeding positive-REI dairy cows may have unbeneficial outcomes for the
cow’s fitness in the long run.

Previous studies have observed enriched enzymes for protein digestion and amino
acid biosynthesis in the rumen samples of inefficient animals (51). A similar trend was
observed in the C-Bifi animals. However, higher fecal excretion of amino acids points
toward the higher environmental pollution potential of C-Bifi animals.

Increased Bifidobacteriaceae and a largely negative correlation with other families (e.g.,
Ruminococcaceae) have been previously observed in fecal samples of high-RFI steers,
which together with no significant difference in fecal SCFA concentrations between the
groups is in accordance with the present data (24). The above-mentioned attributes indi-
cate that higher abundances of Bifidobacterium in the large intestine of ruminants might
keep the total microbiome more flexible and, hence, with quicker reactions to challeng-
ing environmental changes than animals with a more static microbiome.

How is it possible that highly synchronized animals (e.g., parents, diet, reproductive
cycle, environment) develop different community structures that have beneficial or
harmful health and physiological outcomes? In addition to the supplementation, which
did not show strong effects, the trial animals varied by their trial animal history of par-
ticipation in multiple short- and long-term studies, such as studies of milk replacers,
antibiotics, or fungal infestation of feed on the cow’s physiology. These studies were
performed at all life stages of a dairy cow: as a calf or a mature cow and during gesta-
tion, lactation, and rearing. Bifidobacteria and possibly other bacteria are highly
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sensitive to antibiotics, and long-lasting impacts have been documented, mainly in
humans (52, 53). It is suggested that the identified microbiome clusters may reflect
long-term and cumulative effects on manipulated intestinal conditions due to multi-
ple previous trials. As the latest studies discuss host genetic influences on intestinal
microbial compositions, it may also be possible that clusters genetically mirror more
similar groups. For example, host genetic effects on rumen bacteria have been
observed for Bifidobacterium and Proteobacteria (54).

The enterotype approach has been discussed critically (19). In the present study,
the calculation of the microbiome clusters resulted in a loss of taxonomic information,
as an average of all genera per cow was used to obtain a robust cluster formation.
Accepting this, the study proves that the power of this analysis lies in its integrative
association with microbiome, metabolite, health, and milk production data and thus
has the strength to concatenate blind ends of existing knowledge in dairy cow science.

This long-term study uncovered three distinct microbiome clusters linked to differ-
ent characteristics of the animal’s physical conditions and body parameters. Each
microbiome cluster coped differently with a challenging calving period and an LPS-
induced inflammatory stimulus. They differed significantly in their bacterial dynamics,
composition and diversity indexes, health status, body mass, milk, and blood parame-
ters. The same diet and housing resulted in different community structure outcomes,
showing that it is not only the feed itself that matters but also what the cow’s individ-
ual microbiome makes out of it. It would be of great interest if cows from regular farms
also showed microbiome clusters and if breeding cows with fewer health issues and
positive REI values would sooner or later result in herds and animals with higher
Bifidobacterium abundances.

The study demonstrated that it might not be the stable microbiome that animal
husbandry should aim for but, rather, dairy cows with a more dynamic microbiome
that might be more robust by responding quicker to environmental changes. In the
future, the importance of Bifidobacterium in lactating dairy cows should be as inten-
sively studied as it is in calves, as this study proved the positive effects of a higher fecal
abundance of Bifidobacterium. Preserving this bifidobacterial community might be a
long-term goal, which may yield rich benefits for animal husbandry.

MATERIALS ANDMETHODS
Animal experiment and sampling. This study is part of the cooperative project “Mitochondrial

functionality in dairy cows” (MitoCow) funded by the German Research Foundation (DFG), including 54
multiparous Holstein Frisian dairy cows ranging between 3 and 7 years of age and grouped into a con-
trol (CON; n = 30) and a carnitine-supplemented (CAR; n = 24) herd. Detailed dietary and nutritional
composition and study approaches for the calving period are described by Meyer et al. (16) and for the
LPS challenge by Meyer et al. (17). In short, 80% roughage and 20% of concentrate were fed until calving
(day 0) and contained the supplements in the concentrate feed. Until day 14 postpartum (pp, time point
114), concentrate amounts were gradually increased up to a ratio of 50:50. This regimen was continued
until the end of the trial. Roughage comprised 70% maize silage and 30% grass silage; water was offered
ad libitum. Samples were taken regularly at 7 a.m. after milking at seven time points, between 42 days
antepartum (ap, 242) and 126 days pp (Fig. 1) as well as at 12, 24, and 72 h after the calving (hC) and
the LPS challenge (hL). This resulted in 13 sampling time points per cow. Calving functioned as an indi-
vidual, and the LPS challenge functioned at 111 days postpartum (pp, 1111) as a standardized stimulus.
At this time point, cows are suggested to be out of negative energy balance, which could interfere with
the LPS challenge. Before the LPS injection, the animals were examined by veterinarians in order to con-
firm their state of health. Each cow received 0.5 mg LPS/kg of body weight, which was applied via the
jugular vein to provoke an inflammatory challenge. The cows were headlocked at the feeding table dur-
ing regular sampling and greatly sampled unlocked during the challenges, to reduce stress. Defecation
was awaited, and the feces were collected manually before falling to the ground, using long, disposable
gloves and aluminum dishes for temporal storage. The fecal heap was then sampled at three different
spots for randomization reasons using a sterile metal spoon and avoiding the top layer due to excessive
oxygen exposure. A total of 626 fecal samples were stored at 280°C, and not all samples were included
in all analysis. Blood was collected from the external jugular vein by needle puncture or by indwelling
catheters for the frequent sampling during the challenges as described by Meyer et al. (17).

Bacterial DNA extraction and amplification for Illumina sequencing. Microbial DNA of 616 fecal
samples was extracted using the FastDNA spin kit for soil (MP Biomedicals, Solon, OH, USA) in accord-
ance with the manufacturer’s instructions with minimal changes (55). DNA quantity and quality were
measured using NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA), and subsequently, the DNA
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extracts were stored at 220°C. The V1-2 region of the 16S rRNA gene was targeted to construct an
amplicon Illumina sequencing library amplified using a two-step PCR approach, similar to that described
by Kaewtapee et al. (56). During the first and second PCR, barcodes and indexes were attached to the
amplicons using TaKaRa PrimerStar HS DNA polymerase (TaKaRa Bio USA, Inc.) (56). PCR amplicons were
verified by agarose gel electrophoresis and normalized using the Sequalprep normalization kit (Thermo
Fisher Scientific, Waltham, MA, USA), in accordance with the manufacturer’s instructions. Samples were
pooled and purified with a MinElute PCR purification kit (Qiagen). The final DNA concentration was
measured using a Qubit 2.0 fluorometer (Invitrogen) and a QuantiFluor double-stranded DNA (dsDNA)
system (Promega). Samples were sequenced by 250-bp paired-end sequencing on an Illumina MiSeq.

Sequencing data analysis and taxonomic assignation. QIIME2 v.2019 (http://qiime2.org) was used
to analyze the obtained raw sequences (57). The default parameters of the pipeline were used to per-
form quality filtering, trimming, and demultiplexing, resulting in a maximum sequence length of 360 bp.
The subsequent data set was dereplicated and denoised, chimeras were removed, and data were
merged through DADA2 (58). A prefitted sklearn-based classifier (59) was used for taxonomy assigna-
tion, equipping the SILVA database (release 132) (https://www.arb-silva.de/) (60). Filtration of 11,187,005
reads and 19,409 operational taxonomic units (OTU) (97% identity) was performed by cutting those
appearing only once across 616 fecal samples (countif = 1), and that summed up in total 2 to 10 counts
with a maximum of #1,000 reads across all samples (maximum = 2 to 10). Those OTUs appearing in only
11 to 20 samples with #100 reads were deleted as well. Data filtering resulted in 9,437,285 total reads,
grouped into 3,921 OTUs with an average of 15,941 6 367 reads per sample. The Ribosomal Database
Project (RDP) seqmatch tool was used to identify the closest representative of each OTU (61, 62).
Subsequently, the taxonomy levels were assigned by following the threshold cutoff values of Yarza et al.
(63). The blastn tool of the National Center for Biotechnology Information (NCBI) was used to specify the
uncl. Firmicutes and uncl. Spirochaetaceae genera for the microbiome cluster analysis.

Microbiome cluster analysis. Sequence data of the samples were clustered based on the mean rela-
tive genus abundance of 591 samples representing 54 animals (CON, 30; CAR, 24). The mean was calcu-
lated based on all samples per individual (#13 samples) to detect global information of the genera con-
tributing to the respective microbiome clusters during a defined production lifespan in dairy cows. This
resulted in one set of abundance data across all genera per cow. Microbiome clusters among the ani-
mals were identified as formerly described by Arumugam et al. (14) (https://enterotype.embl.de), includ-
ing the unclassified taxa. Briefly, a Jensen-Shannon divergence matrix was calculated based on the ge-
nus-relative abundance using R v.3.6.1 and the “tidyverse” package (64). Then, the partitioning around
medoids clustering algorithm was done with “cluster” (65), and the optimal number of clusters, resulting
in three clusters, was assessed using the Calinski-Harabasz index and the Elbow method using
“clusterSim” (66) and “factoextra” (67). Finally, “ade4” was used to performed a principal-component
analysis (PCoA) of the data and visually explore the clusters (68).

qPCR. Nine time points (242, 12hC, 24hC, 72hC, 114, 1100, 12hL, 72hL, and 1126) and 11 animals
per cluster were randomly selected for quantitative PCR (qPCR) analysis, using the above-mentioned
DNA extracts, with a total of 287 samples. By following the principles of Lengowski et al. (69), a pooled
DNA sample was used as a “sample-derived DNA standard,” confirming the DNA load using Qubit and
Nanodrop. Primer pair products were tested on this pooled DNA standard by using a conventional PCR.
According to the method described by Lee et al. (70), a 10-fold serial dilution series of each PCR product
with six dilutions was used for generating standard curves. For qPCR, two replicates per sample, two
negatives, and three replicates of the standard were run on every plate using a CFX real-time PCR instru-
ment (Bio-Rad). Quantification of bacterial copy numbers was done using primers 338F 59-
ACTCCTACGGGAGGCAG and 805R 59-GACTACCAGGGTATCTAATCC with a product length of 468 bp. The
PCR mix contained 160 nM each primer, 2.3 mM MgCl2, 3.2% bovine serum albumin (BSA) (1 mg/1 ml),
1� GoTaq qPCR polymerase mix (Promega), and 1 ml of template undiluted DNA. The following condi-
tions were applied to the samples: initial denaturation at 95°C for 2 min, 40 cycles of denaturation at
95°C (15 s), annealing at 50°C (20 s). followed by 60°C for 15 s (two-step qPCR), and a final elongation at
72°C for 1 min. Thereafter, melting curves were measured with slow heating from 65°C for 5 s to 95°C in
0.5-degree steps. Copy numbers of Bifidobacterium were determined using a PCR mixture of 200 nM each
primer (Bifido_5 GATTCTGGCTCAGGATGAACGC, Bifido_3 CTGATAGGACGCGACCCCAT) (71), 1� GoTaq
qPCR polymerase mix (Promega), and 1 ml of 1:10-diluted DNA template, resulting in a product length of
236 bp. Cycle conditions were equivalent to those for total bacteria; however, after denaturation, an anneal-
ing step at 60°C for 1 min was used (one-step qPCR). Total copy numbers per sample were calculated using
the standard curves.

Functional prediction. Amplicon data of seven time points (242, 12hC, 72hC, 1100, 12hL, 72hL,
1126) chosen in accordance with the fecal metabolite analyses (275 samples and 47 animals) were used
to perform a functional prediction of the fecal microbiome using CowPI and PICRUSt in Galaxy as
described by Wilkinson et al. (72).

SCFA measurement. From 610 thawed samples, three aliquots per sample were taken, each weigh-
ing 4 g. Samples were homogenized, acidified using sulfuric acid (H2SO4), and supplemented with 80
mM 2-methylvaleric acid in 50% formic acid as an internal standard. The samples were frozen in an
Erlenmeyer flask and incubated using a 230°C ethanol bath under continuous movement. The undisso-
ciated fatty acids were distilled with liquid nitrogen under vacuum, and 1 ml of distillate sample was
used for the determination of acetic (C2), propionic (C3), butyric (C4), isobutyric (C4I), valeric (C5), and iso-
valeric (C5I) acid. For the analysis of short-chain fatty acids (SCFA) in the fecal samples, a gas chromato-
graph (GC) (Hewlett-Packard 6890; Agilent) connected to a fused silica capillary column (HP-FFAP; 25 m
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by 0.32 mm with a film thickness of 0.5 mm; HP 7683; Agilent) and a flame ionization detector (GC-FID)
as described by Wischer et al. (73) was used.

Metabolomic analysis. Targeted measurements of metabolites were performed using 293 fecal
samples from a subset of 7 time points (242, 12hC, 72hC, 1100, 12hL, 72hL, 1126; samples per time
point for 39 to 45 animals). Metabolite extraction was done as suggested by Biocrates Life Science AG
using a buffer with a high extraction efficiency for amino acids, biogenic amines, acylcarnitines, and
hexoses. The buffer comprised 80 ml ethanol (Supelco, LiChrosolv) and 320 ml phosphate buffer
(20 mM; Sigma P5244; 0.1 M, pH 7.5 at 25°C) (vol/vol). Two hundred milligrams of thawed sample was
mixed on ice with 600 ml of buffer B on a shaker at 200 rpm for 30 min, followed by a centrifugation
step for 15 s at 19,000 � g. Thereafter, samples were tip sonicated on ice for 5 min at 100% amplitude
and at 0.5 duty cycle (Ultrasonic UP50H processor with MS1 sonotrode; Hielscher, Germany). Cell debris,
feed, and other particles were precipitated by centrifugation at 800 � g for 10 min and at 2°C. The super-
natant was centrifuged at 19,000 � g for 10 min and 2°C. The clean supernatant was stored at 280°C
until measurements within the days after processing were done. Fecal samples were further treated in
accordance with the manufacturer’s manual for blood plasma samples. Target metabolomics measure-
ments were done using an AbsoluteIDQ p180Kit (Biocrates Life Science AG, Innsbruck, Austria) according
to the manufacturer’s instructions. Quantified metabolites (188) included amino acids (21), biogenic
amines (21), hexoses (1), acylcarnitines (40), glycerophospholipids (90), and sphingomyelins (15). The
first two groups of metabolites were measured using liquid chromatography-tandem mass spectrometry
(LC-MS/MS). All other metabolites were analyzed using a flow injection analysis measurement (FIA)-MS/
MS equipping a Sciex 4000 QTRAP (Sciex, Darmstadt, Germany) or Xevo TQ-S Micro (Waters, Vienna,
Austria) machine combined with electrospray ionization (ESI). The metabolite measurement was
described in detail before (74) and was used with the following adjustments: quantification of the bio-
genic amines was improved by adding the calibration standard 0.25 to the calibration standard curve.
The incubation time with phenyl isothiocyanate was extended by 5 min for improved derivatization of
the samples. A nitrogen pressure unit was used to elute the extraction solvent. Then, 50 ml was removed
from the filtrate, transferred to a fresh multiwell plate, and diluted with 450 ml of 40% HPLC-grade meth-
anol for LC-MS analysis. For FIA-MS/MS analysis, 10 ml from the filtrate and 490 ml of the mobile-phase
solvent were added to a new multiwell plate.

Blood, health, and milk production parameters. Heparinized blood samples were analyzed imme-
diately after sampling using a GEM Premier 400 blood gas analyzer (Werfen, Kirchheim, Germany) as pre-
viously described by Meyer et al. (16). Total blood cell counts were determined in EDTA blood samples
using an automated hematology analyzer (Celltac-a MEK 6450; Nihon Kohden Corporation, Japan).
Blood metabolites (nonesterified fatty acids, triglycerides, glucose, beta-hydroxybutyrate) were deter-
mined in serum samples by using an automatic clinical chemistry analyzer (Eurolyser CCA 180; Eurolyser
Diagnostica GmbH, Salzburg, Austria) (15). Residual energy intake (REI), milk parameters, body weights,
and daily visual health examinations by the same veterinarian were recorded and recently published
(16, 17). The average number of sick days per sick cow was calculated, ignoring the quantity of multiple
health issues at 1 day per individual.

Statistical analysis of sequencing data. The total number of reads per sample was standardized by
the total. The Bray-Curtis similarity coefficient (75) was used to calculate and visualize similarity matrixes
and intersample similarity plots (principal-coordinate analysis [PCoA] plots) using PRIMER-E 6 (Plymouth
Marine Laboratory, UK) (76). The alpha-diversity and animal’s microbial flexibility over time were eval-
uated using the Shannon diversity index and multivariate dispersion indices (MVDISP). The average
MVDISP across all animals functioned as a separator between “dynamic” (MVDISP . 1.000) and “static”
(MVDISP # 1.000) individuals (see Data Set 3 at https://github.com/SebasSaenz/Troscher-Mussotter
_Cow-enterotypes_2021/tree/main/Datatsets). Global R and P values were generated using one-way
analysis of similarity (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA).
PERMANOVA (permutations = 9,999) was used to test for significance of time point, age, MVDISP, micro-
biome cluster, and supplementation. The similarity percentages (SIMPER) tool was applied to find the
main contributors of differences between groups. Data distribution was analyzed using the Shapiro test
in JMP Pro 15.2.1 software (SAS Institute, NC, USA). A mixed model analysis was used to evaluated the
differences between the predicted functional pathways (CowPI), and animals were included as a random
effect nested by the microbiome clusters (275 samples representing 47 animals). Briefly, R (v.4.0.2) and
tidyverse (64) were used to transform and arrange the data. Additionally, the linear mixed-effects model
was calculated with ime4 (77), and the differences between each cluster per amino acid were found
using ImerTest (78). Copy numbers of Bifidobacterium and total bacteria were obtained by qPCR. The
Shapiro test in JMP Pro 15.2.1 software was used to test the normality of distribution of bacteria and
metabolites, and the Wilcoxon/Kruskal-Wallis test was used to test for significance. The same software
and herein the Bivariate Fit tool were used to draw regression slopes for the calving period (242 to
72hC) and the LPS challenge (1100 to 72hL), in order to evaluate how strongly each microbiome cluster
decreased in alpha-diversity.

Statistics of metabolomics data. The Biocrates metabolite data were normalized by using the tar-
get value of the mean of quality control 2. JMP Pro 15.2.1 software was used to create graphs and to
confirm the nonnormal distribution of metabolites, including SCFA using the Shapiro test. As JMP Pro
does not require deletion of values below the detection level, 293 samples and 188 Biocrates-derived
metabolites were included. The Wilcoxon/Kruskal-Wallis test was used for evaluation of significance.
PERMANOVA and ANOSIM analyses of the metabolomics data set were done using PRIMER-E 6. Working
with the Biocrates metabolites in PRIMER-E 6 required removal of samples which included values below
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the detection level, resulting in 177 fecal metabolites and 275 samples from 47 animals (CAR:
CON = 22:25).

Correlation analyses. Circular correlation networks on genera across microbiome clusters included
591 samples and were drawn from nonparametric Spearman’s r multivariate methods, using JMP Pro
15.2.1 software. Only significant (P # 0.006) and high correlations (jrj $ 0.2) between genera were con-
sidered. Third-level genera were restricted to an jrj of$0.5.

The linear mixed-model correlations on genera and fecal metabolites included 275 samples from 47
animals and were corrected by age, L-carnitine supplementation, and time point. Animals were consid-
ered a random effect, and only significant correlating metabolites were included in the figure (false dis-
covery rate [FDR]-corrected P, 0.05). The model was calculated with ime4 (77).

Data and software availability. Finally, the sequences were submitted to the European Nucleotide
Archive under accession number PRJEB44871. The raw metabolomics data sets are available from the corre-
sponding author on reasonable request. Analyzed data are provided as Data Sets S1 to S8 at https://github
.com/SebasSaenz/Troscher-Mussotter_Cow-enterotypes_2021/tree/main/Datatsets. Detailed information on
data analyses and codes used are provided at https://github.com/SebasSaenz/Troscher-Mussotter_Cow
-enterotypes_2021.
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