
Citation: Waterhouse, M.; Pennisi, S.;

Pfeifer, D.; Scherer, F.; Zeiser, R.;

Duyster, J.; Bertz, H.; Finke, J.;

Duque-Afonso, J. Monitoring of

Measurable Residual Disease Using

Circulating DNA after Allogeneic

Hematopoietic Cell Transplantation.

Cancers 2022, 14, 3307. https://

doi.org/10.3390/cancers14143307

Academic Editor: Fabrizio Bianchi

Received: 7 May 2022

Accepted: 30 June 2022

Published: 7 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Monitoring of Measurable Residual Disease Using Circulating
DNA after Allogeneic Hematopoietic Cell Transplantation
Miguel Waterhouse 1,*,†, Sandra Pennisi 1,2,†, Dietmar Pfeifer 1, Florian Scherer 1, Robert Zeiser 1 ,
Justus Duyster 1 , Hartmut Bertz 1 , Jürgen Finke 1 and Jesús Duque-Afonso 1,*

1 Department of Hematology Oncology and Stem Cell Transplantation, University of Freiburg Medical Center,
79106 Freiburg, Germany; sandra.pennisi@uniklinik-freiburg.de (S.P.);
dietmar.pfeifer@uniklinik-freiburg.de (D.P.); florian.scherer@uniklinik-freiburg.de (F.S.);
robert.zeiser@uniklinik-freiburg.de (R.Z.); justus.duyster@uniklinik-freiburg.de (J.D.);
hartmut.bertz@uniklinik-freiburg.de (H.B.); juergen.finke@uniklinik-freiburg.de (J.F.)

2 Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
* Correspondence: miguel.waterhouse@uniklinik-freiburg.de (M.W.);

jesus.duque.afonso@uniklinik-freiburg.de (J.D.-A.); Tel.: +49-761-270-36000 (M.W. & J.D.-A.)
† These authors contributed equally to this work.

Simple Summary: The major cause of treatment failure after allogeneic stem cell transplantation
(allo-HSCT) is due to relapse of the underlying disease. Novel methods and strategies are needed
to detect early relapse after allo-HSCT. The present study reports the clinical utility of monitoring
measurable residual disease (MRD) and mixed chimerism (MC) by droplet-digital PCR in circulating
cell-free DNA (cfDNA) in 62 patients with myeloid malignancies undergoing allo-HSCT. MC in
circulating cfDNA at an optimal threshold of 18% discriminated patients with hematological relapse
from patients in complete remission after allo-HSCT. Most of the mutations identified using a targeted
next-generation sequencing (NGS) panel were detected in cfDNA at relapse and were suitable for the
monitoring of MRD. In several cases, mutations were detected earlier in cfDNA than in peripheral
blood mononuclear cells. In conclusion, longitudinal analysis of cfDNA for MRD and MC can be
used as a complementary tool for early detection of relapse in patients after allo-HSCT and could be
used to guide clinical interventions.

Abstract: Relapse of the underlying disease is a frequent complication after allogeneic hematopoietic
stem cell transplantation (allo-HSCT). In this study, we describe the clinical utility of measurable
residual disease (MRD) and mixed chimerism (MC) assessment in circulating cell-free DNA (cfDNA)
analysis to detect earlier relapse in patients with hematological malignancies after allo-HSCT. A total
of 326 plasma and peripheral blood mononuclear cell (PBMCs) samples obtained from 62 patients
with myeloid malignancies were analyzed by droplet-digital PCR (median follow-up: 827 days).
Comparison of MC in patients at relapse and in complete remission identified an optimal discrimi-
nating threshold of 18% of recipient-derived cfDNA. After performing a targeted next-generation
sequencing (NGS) panel, 136 mutations in 58 patients were detected. In a total of 119 paired samples,
the putative mutations were detected in both cfDNA and PBMCs in 73 samples (61.3%). In 45 samples
(37.8%) they were detected only in cfDNA, and in only one patient (0.9%) were they detected solely in
DNA from PBMCs. Hence, in 6 out of 23 patients (26%) with relapse after allo-HSCT, MRD positivity
was detected earlier in cfDNA (mean 397 days) than in DNA derived from PBMCs (mean 451 days).
In summary, monitoring of MRD and MC in cfDNA might be useful for earlier relapse detection in
patients with myeloid malignancies after allo-HSCT.

Keywords: measurable residual disease; mixed chimerism; circulating cell-free DNA; hematological
relapse; allogeneic stem cell transplantation; extramedullary relapse
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1. Introduction

The major cause of treatment failure after allogeneic stem cell transplantation (allo-
HSCT) is relapse of the underlying disease [1]. Detection of disease recurrence after
allo-HSCT allows prompt intervention, which in turn results in improved outcomes [2,3].

Long-standing evidence suggests that early detection of measurable residual disease
(MRD) by identifying leukemia-associated immunophenotypes (LAIP) by flow cytometry,
and fusion transcripts as well as gene expression (e.g., WT1) by quantitative RT-PCR,
are able to predict relapse in patients with acute myeloid leukemia (AML) [4–6]. Recent
technological advances to detect MRD after allo-HSCT such as multicolor flow cytometry,
the introduction of droplet digital PCR (ddPCR) and next-generation sequencing (NGS),
have resulted in improved MRD detection [7–10]. As recently reported by an expert panel,
MRD detection in AML is based either on PCR amplification of leukemia-associated targets
or on flow cytometric detection of LAIPs. In addition, the same expert panel suggests
the use of hematopoietic chimerism as a surrogate method for MRD detection after allo-
HSCT [11].

Currently, quantification of AML MRD levels after allo-HSCT and the clinical im-
plications thereof are defined on peripheral blood, bone marrow or isolated cell subsets.
Peri-transplant detection of MRD in peripheral blood mononuclear cells (PBMCs) and
bone marrow mononuclear cells (BMMCs) after allo-HSCT by flow cytometry, gene expres-
sion profiling, quantitative RT-PCR and NGS methods, have been associated with worse
outcomes [12–16]. However, a frequent event such as isolated extramedullary relapse
cannot, by definition, be detected in PBMCs or BMMCs. Furthermore, there is a lack of an
appropriate and accurate method for early detection of extramedullary relapse.

In recent years, we and others have been investigating the potential use of cell-free
DNA (cfDNA) isolated from plasma for complication assessment after allo-HSCT [17–22].
We were able to show that longitudinal analysis of chimerism in cfDNA can be reliably
used for detection of graft-versus-host disease (GvHD) during the follow-up visit after
allo-HSCT [22]. By using cfDNA and methylated organ-specific genes, patients responding
to GvHD treatment could be identified [22]. These initial studies prompted us to fur-
ther investigate the use of cfDNA in another relevant allo-HSCT complications, namely
relapse of the underlying disease through the detection of mixed chimerism and leukemia-
associated genetic aberrations in cfDNA after allo-HSCT. Furthermore, we analyzed MRD
and chimerism kinetics in cfDNA in patients relapsing after allo-HSCT.

2. Materials and Methods
2.1. Patient Samples

A total of 326 peripheral blood (PB) samples obtained from 62 patients diagnosed with
myeloid malignancies and undergoing allo-HSCT were included in the study (Table 1).
Samples were collected during treatment in the hospital and in the standard routine
controls in the outpatient clinic. There were no fixed time points to collect samples from the
patients. Nevertheless, a mean of 5.2 samples per patient during the study were collected
and analyzed. The median follow-up of the patients was 827 days (range: 52–4363 days)
after allo-HSCT (Figure S1). PB samples from donors were not included in the study.
Samples from healthy controls were used as negative controls to establish ddPCR assays
for chimerism and MRD. The transplantation procedure and GvHD prophylaxis were
performed as previously described [23]. Post-transplant events such as hematological
relapse, GvHD and infections, among others, were defined based on standard clinical
and laboratory criteria. The study was approved by the Ethics Committee of the Albert
Ludwigs University of Freiburg, Freiburg, Germany (Nr 471/17). Written informed consent
was obtained from the patients in accordance with the declaration of Helsinki.
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Table 1. Clinical characteristics of patients and transplant.

Mean follow-up in days (range) 827 (52–4363)

Gender male/female 37/25
Mean age at transplant (range) 57 (21–76)

Disease
AML 48
MDS 4
MPN 7

CMML 2
AA 1

Karyotype
Normal 29

Complex 24
No data 9

Remission status at allo-HSCT
CR 21

Non-CR 41
- Partial remission 8

- Stable disease 1
- Progressive disease/relapse 27

- Upfront 5

Karnofsky index (%)
100 8
90 21
80 14
≤70 19

Donor female/recipient male 10

HLA mismatch
Yes 7
No 55

Donor type
Related 17

Non related 45

Conditioning regimen
Myeloablative 5

Reduced toxicity 57

GvHD prophylaxis
CyA/MMF/ATG 44

CyA/MMF 10
CyA/MTX 1

Everolimus/MMF/ATG 5
CyA/MMF/cyclophosphamide 1

AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasia; CMML,
chronic myelomonocytic leukemia; AA, aplastic anemia; CR, complete remission; HLA, histocompatibility
leucocyte antigen; GvHD, graft-versus-host disease; CyA, cyclosporine A; MMF, mycophenolate mofetil; MTX,
methotrexate; ATG, anti-thymocyte globulin.

2.2. DNA Isolation

Peripheral blood and bone marrow processing, isolation of PBMCs and BMMCs,
plasma isolation and storage were performed as previously described [9]. Genomic DNA
was extracted from PBMCs and cfDNA from plasma using the Qiasymphony miniDNA
and the QIAmp circulating nucleic acid kit according to the manufacturer’s instructions
(Qiagen GmbH, Hilden, Germany).
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2.3. Next-Generation Sequencing

BMMC or PBMC specimens were analyzed for gene/mutation hotspots using a
54-gene/hotspot targeted NGS panel (whole coding sequences for 15 genes and hotspots
for 39 additional genes, TruSight myeloid panel, Illumina) and sequencing was performed
using a MiSeq platform (Illumina). Samples were analyzed either at initial diagnosis or in
those patients with active disease before allo-HSCT.

2.4. Chimerism Testing and Mutational Analysis

With the exception of the FLT3-ITD mutation, both chimerism status and MRD de-
tection in DNA derived from PBMCs and plasma were performed simultaneously and
analyzed using the QX200 ddPCR system (Bio-Rad Laboratories, Munich, Germany). Deter-
mination of the length of FLT3 insertion fragment and quantification of FLT3-ITD mutation
load were performed by fragment analysis (Fragment Analyzer, Agilent Technologies
GmbH, Waldbronn, Germany). The panel of insertion/deletion polymorphic markers used
for chimerism testing and their interpretation has already been described [7,8]. We have
previously shown that patients with either acute or chronic GvHD have increased MC
in cfDNA samples [19]. Therefore, patients with active GvHD were excluded from the
analysis for chimerism assessment in cfDNA (n = 10; total number of patients analyzed for
chimerism status n = 52).

Mutations associated with myeloid neoplasms and identified using the targeted NGS
panel were used as MRD markers. A total of 18 assays were designed for MRD detection
by ddPCR (NPM1 mutation type A and B, IDH1 R132C, IDH1 R132H, IDH2 R140Q, NRAS
G13C, NRAS G12S, DNMT3A R882H, JAK2 V617F, KRAS Q61R, U2AF1 Q157P, U2AF1
Q157R, FLT3-ITD, Calreticulin 52 base pair deletion, SETBP1 G870S, SF3B1 K700E and MPL
S505N). According to the European Leukemia Net (ELN) suggestion, the assays used to
detect MRD in our study were able to detect leukemic cells to a level of 0.1% [11]. In this
study, MRD positivity was defined as the detection of a residual disease marker above
the assay-defined limit of detection. To analyze the mutation load relationship between
cfDNA and PBMCs, a mutation ratio between both sample types was calculated using the
following formula: mutation ratio = mutation load cfDNA/mutation load PB.

2.5. Statistical Analysis

Statistical parameters were calculated using Analyse-it software version 5.51 (Analyse-
it, Leeds, UK). Correlation coefficients were calculated by Spearman rank correlation
analysis. For the comparison of qualitative or quantitative variables without a normal
distribution the Mann–Whitney, Wilcoxon signed-rank or Kruskal–Wallis tests were used.
Quantitative variables were analyzed with the Student’s paired t-test or Fisher’s exact test
in the case of small numbers [12]. All tests were 2-sided, accepting p ≤ 0.05 as indicating a
statistically significant difference. The general performance of the assays used for chimerism
detection was analyzed by plotting the true-positive rate (sensitivity) and the false-positive
rate (1-specificity) in a receiver operating characteristic (ROC) space. The Youden index
was used to estimate the optimal threshold value for each assay. The threshold for each
molecular marker was established as suggested by the Clinical and Laboratory Standards
Institute (CLSI guideline EP 17 A2).

3. Results
3.1. Chimerism Analysis of cfDNA at Relapse

A total of 281 samples from 52 patients were analyzed for chimerism assessment after
excluding patients with active GvHD, which has been found to increase MC in plasma [22].
Relapse of the underlying disease after allo-HSCT was detected in 24 patients. Among this
group, extramedullary relapse was detected in three patients (extramedullary relapse site:
central nervous system, skin and breast). All patients without hematological relapse, as
well as patients with extramedullary relapse showed complete donor chimerism in PBMCs
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after allo-HSCT at the time points analyzed. Meanwhile, increasing MC was detected in
PBMCs in all patients before hematological relapse.

We next analyzed the chimerism status in cfDNA and compared it with PBMCs.
The mean percentage of recipient cfDNA from patients in complete remission and with-
out GvHD or other transplant-related complication (n = 28) was 6.7% (range: 0–25%),
whereas recipient cfDNA in patients with hematological relapse was 47.3% (range: 6–94%).
In patients with extramedullary relapse the percentage of recipient cfDNA was 11.3%
(range: 6–16%). A significant difference in the recipient-derived cfDNA percentage at
relapse when compared with cfDNA from patients in complete remission was observed
(p < 0.001). In contrast, in those patients with extramedullary relapse no significant differ-
ence in recipient-derived cfDNA was observed when compared with patients in complete
remission (Figure 1A). The mean percentage of recipient-derived DNA in PBMCs in those
patients with hematological relapse was 16.7% (range: 1–82%). The difference between the
recipient-derived cfDNA and genomic DNA from PBMCs at this time point was statistically
significant (p-value < 0.001) (Figure 1B).
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Figure 1. Chimerism assessment in cfDNA after allo-HSCT. (A) Graph represents the recipient-
derived cfDNA after allo-HSCT in patients with hematological relapse (�), in complete hematological
remission (•) and with extramedullary relapse (N). (B) Comparison of recipient-derived DNA in
cfDNA (•) and in PBMCs (�) in patients with hematological relapse. Each dot represents a patient,
long bars represent the mean and the short bars the standard deviation. ** p-value < 0.01, n.s.
not significant. (C) The resulting area under the curve (AUC: 0.968) revealed cfDNA chimerism
analysis as an adequate assay for discriminating relapse from non-relapse. The optimal threshold
that discriminates relapse from non-relapse was derived from Youden index and resulted to be 18%
of recipient-derived cfDNA. (D) To analyze the general performance of cfDNA chimerism assay
the true-positive rate (sensitivity) and false-positive rate (1-specificity) was plotted in a receiver
operating characteristic (ROC) space. The ROC curve (black line) represents true positive fraction
(TPF) against the false positive fraction (FPF). The diagonal (gray line) corresponds to random chance.
cfDNA, circulating-free DNA; allo-HSCT, allogeneic hematopoietic stem cell transplantation; PBMCs,
peripheral blood mononuclear cells; TPF, true-positive fraction; FPF, false-positive fraction.

After performing the ROC curve, the obtained area under the curve was 0.968 (95% CI;
0.929–1.003, p-value < 0.001) and the optimal discriminating threshold between patients
at the relapse time point and those in complete remission, was 18% of recipient-derived
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cfDNA (sensitivity: 93.4% specificity: 90.9%) (Figure 1C,D). The percentage of recipient
DNA in paired plasma and PBMCs samples showed no significant correlation (Spearman
r = 0.148) (Figure S2).

3.2. MRD Monitoring in cfDNA and PBMCs in Patients Relapsing after Allo-HSCT

In our previous work, we showed that recipient DNA or MC could be detected in
cfDNA in patients with hematological relapse, aGvHD and other allo-HSCT complica-
tions [22]. In order to distinguish patients with relapse from those with other allo-HSCT
complications, we established MRD monitoring of leukemia-specific mutations. After
performing targeted NGS in patient-derived BMMC or PBMC samples at diagnosis, we
were able to detect a total of 136 mutations in 58 patients (Figure 2A,B). The mean mutation
number per patient was 2.3 (range: 1–5). Therefore, in 45 out of 58 patients at least one
mutation could be used as a MRD marker. For some mutations detected in our targeted
NGS panel, a ddPCR assay could not be established with enough sensitivity and speci-
ficity for MRD assessment in cfDNA and PBMCs. From the group of 45 patients with an
MRD marker, 17 of them developed hematological relapse, whereas 3 patients developed
extramedullary relapse after allo-HSCT. The most frequent mutations found by targeted
NGS at diagnosis or before allo-HSCT were NPM1 (n = 19, 31%), DNMT3A (n = 14, 23%)
and TET2 (n = 10, 16%).
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Figure 2. Identification of mutations for MRD monitoring in patients after allo-HSCT. (A) Workflow
for identification of mutations for MRD monitoring in cfDNA in BMMCs from bone marrow aspirates
or in PBMCs from peripheral blood. (B) Upper grid panel showing the identified mutations in single
patients for MRD monitoring using droplet-digital PCR (ddPCR). Lower grid panel, disease and
transplantation characteristics for each individual patient. ddPCR, droplet-digital PCR; cfDNA,
circulating-free DNA; MRD, measurable residual disease; allo-HSCT, allogeneic hematopoietic stem
cell transplantation; BMMCs, bone marrow mononuclear cells; PBMCs, peripheral blood mononuclear
cells; NGS, next-generation sequencing; AML, acute myeloid leukemia; MDS, myelodysplastic
syndrome; CMML, chronic myelomonocytic leukemia; MPN, myeloproliferative neoplasia; AA,
aplastic anemia; CR, complete remission; PR, partial remission; SD, stable disease; PD, progressive
disease; MAC, myeloablative conditioning; RIC, reduced intensity conditioning; ATG, anti-thymocyte
globulin; Freq, frequency.
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Based on our findings that the plasma from patients relapsing after allo-HSCT showed
a significantly higher percentage of recipient-derived cfDNA compared with those patients
in complete remission, we hypothesized that part of this recipient-derived cfDNA contained
the mutation originally detected in leukemic cells before allo-HSCT when examined by
NGS. For this purpose, paired PBMCs and plasma samples were compared at different
time points after allo-HSCT. A total of 119 samples from 24 patients were above the limit of
detection of the designated mutation. The putative mutation was detected in both cfDNA
and PBMCs in 73 samples (61.3%), whereas in 45 samples from 17 patients the mutation was
detected only in plasma (37.8%). This would suggest that cfDNA shows higher sensitivity
for mutation detection. In the remaining sample (0.9%) the mutation was detected only in
PBMCs (Figure 3A).
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Figure 3. Kinetics of mixed chimerism and measurable residual disease in cfDNA and in PBMCs after
allo-HSCT. (A) Comparison of mutations detected in paired PBMC and cfDNA samples (n = 119)
included in this study. Most of the mutations were detected in both, PBMCs and cfDNA (n = 73,
61.3%) and a part of the mutations only in cfDNA but not in PBMCs (n = 45, 37%). (B,C) Graphs
represent the time to first detection of MC and MRD after allo-HSCT in patients, respectively. Groups
of patients were divided, if MC or MRD was detected simultaneously in paired samples (no diff.)
or consecutively (with diff.). One patient died because of pneumonia (non-relapse mortality) with
MRD detected in cfDNA but not in PBMCs. cfDNA, circulating-free DNA; PBMCs, peripheral blood
mononuclear cells; allo-HSCT, allogeneic hematopoietic stem cell transplantation; MRD, measurable
residual disease; MC, mixed chimerism; no diff, no difference; with diff., with difference.

We analyzed the number of samples per patient with MC or detection of MRD pos-
itivity in cfDNA (Figure S3). A significantly higher number of samples in patients with
MC in cfDNA were analyzed compared with patients without MC (median number of
samples per patient 5.5 vs. 2.5, p-value 0.015, Mann–Whitney test). Similarly, more sam-
ples were analyzed in patients with MRD positivity in cfDNA compared with patients
with MRD negativity (median number of samples per patient 6 vs. 4, p-value 0.041,
Mann–Whitney test). We hypothesize that patients with complications after allo-HSCT, i.e.,
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molecular/hematological relapse, more often underwent diagnostic measurements in the
outpatient clinic.

Interestingly, in 12 samples obtained from the three patients with extramedullary
relapse, the MRD mutation could be detected in the cfDNA but not in the PBMCs. In
this last group of patients, the internal tandem duplication of the FLT3 mutation (FLT3-
ITD) in the DNA obtained from cerebrospinal fluid and the one found in cfDNA showed
the same size. When analyzing the mutation tumor load between cfDNA and paired
individual PBMC samples, a mean of 2.6-fold difference in cfDNA (range: 1.3–6.1) when
compared with PBMCs was found. The mean mutational tumor load grouped by mutated
genes in PBMCs was 4.9 (range: 0.2–10) and in cfDNA was 10.7 (range: 0.5–20) (Table 2,
Figure S4). Individual mutational tumor load comparison between cfDNA and PBMCs
shows significant differences in selected mutations (FLT3-ITD, KRAS, NPM1, DNMT3A),
whereas in the rest of the analyzed mutations no significant difference in the tumor load was
found (SF3B1, U2AF1, IDH1/2, JAK2, NRAS). With the exception of FLT3-ITD, a moderate
to significant correlation in the mutational tumor load between cfDNA and PBMCs in the
analyzed mutations was observed (Table 2).

Table 2. Mutation tumor load in PBMCs and cfDNA.

Mutation N 1 Tumor Load
PBMCs

Tumor Load
cfDNA p-Value

FLT3-ITD 20 0.2 0.5 0.01
KRAS 11 3.3 20 0.0014
NPM1 28 1.5 5.4 0.002

DNMT3A 7 6.8 7.6 0.02
SF3B1 9 3.3 4.2 0.4

IDH1/2 22 5.9 9.7 0.3
JAK2 8 10 17 0.2
NRAS 6 10 16 0.3
U2AF1 8 3.1 15.8 0.06

N 1 refers to the number of samples. KRAS, DNMT3A, SF1B3, IDH1/2, JAK2, NRAS and U2AF1 are expressed
as percentage of the mutation. NPM1 is expressed as normalized copy number. FLT3-ITD is expressed as ratio:
ITD/WT. PBMCs, peripheral blood mononuclear cells; cfDNA, circulating-free DNA.

3.3. Chimerism and Mutation Kinetics in cfDNA after Transplantation

In twenty-six patients after allo-HSCT, recipient-derived cfDNA above the established
chimerism discriminating threshold (18%) was detected before MC could be found in
PBMCs. In this last group of patients, the mean detection time of MC for the first time after
allo-HSCT was 328 days in cfDNA (range: 26–645 days) and 404 days in PBMCs (range:
48–1098 days). However, this time difference did not reach statistical significance (p = 0.31).
In the remaining patients (n = 15), MC was detected for the first time at the same time point
in cfDNA and PBMCs. The mean time for MC detection in this last group was 230 days
(range: 27–652 days) (Figure 3B). MC levels in cfDNA from patients in complete remission
and without evidence of complications after allo-HSCT remained stable, with moderate
intra-individual fluctuations under the established threshold.

In agreement with the findings mentioned above, MRD positivity after allo-HSCT
was detected earlier in cfDNA than in PBMCs in six patients. In this case, the mean MRD
detection time after allo-HSCT was 247 days (range: 52 to 395 days) in cfDNA, and 534 days
in PBMCs (range: 211 to 838 days). This time difference shows a trend for significance
(p = 0.06). The clinical characteristics of these six patients are shown in Table 3. In the
remaining patients (n = 17) MRD positivity in PBMCs and cfDNA was detected at the same
time point with a mean of 249 days (range: 10 to 652 days) (Figure 3C). We next investigated
the correlation between the tumor load measured as MRD and MC in cfDNA in patients
with hematological relapse. With the exception of FLT3-ITD, all other tested mutations
(IDH2 R140Q, SF3B1 K700E, NRAS G13C, KRAS Q61R) reveal a moderate to significant
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correlation with MC in cfDNA. NPM1 mutation shows a negative correlation with MC in
cfDNA (Table S1).

Table 3. Clinical characteristics of patients with MRD positivity in cfDNA before MRD detection in
PBMCs after allo-HSCT.

Patient
Age at

Allo-HSCT
(Years)

Disease Donor Conditio-
Ning

MRD Pos. in
cfDNA (Days)

MRD Pos. in
PBMCs (Days)

Hematological
Relapse (Days) Outcome

#1 68 tAML Unrelated Reduced 325 673 802 Death after 2.
allo-HSCT

#2 23 AML Unrelated Reduced 374 402 877 (skin) Alive after 3.
allo-HSCT

#3 59 AML Related Myeloa-
blative 57 211 1243 Alive after 2.

allo-HSCT

#4 60 sAML Related Reduced 281 838 366
(CNS-relapse)

Death after
after 2.

allo-HSCT

#5 52 OMF Unrelated Reduced 52 Not detected n.a.
Non-relapse

mortality
(pneumonia)

#6 66 CMML Related Reduced 395 549
No

hematological
relapse

Alive at last
follow-up

allo-HSCT, allogeneic hematopoietic stem cell transplantation; MRD, measurable residual disease; cfDNA,
circulating cell-free DNA; PBMCs, peripheral blood mononuclear cells; tAML, therapy-related acute myeloid
leukemia; sAML, secondary acute myeloid leukemia; CNS, central nervous system; OMF, osteomyelofibrosis;
CMML, chronic myelomonocytic leukemia.

Chimerism and MRD kinetics in PBMCs and cfDNA showed different time-course
patterns, independent of the chimerism or MRD marker used (Figure S5). Interestingly, in
those patients with extramedullary relapse, MRD positivity increased whereas the levels of
MC in cfDNA were found to be stable or show only moderate fluctuations (Figure 4A,B).
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Figure 4. Kinetics of measurable residual disease in cfDNA and PBMCs. (A) Representative example
of the MRD kinetics of hematological relapse kinetics in an AML patient after allo-HSCT. Increasing
MC and MRD (MRD marker: SF3B1 R625C) could be detected earlier in cfDNA (•�) when compared
with PBMCs (N�). (B) In a patient with extramedullary relapse (breast), the MRD marker (NPM1) *
increased (N) and after relapse therapy, a decrease in MRD could be observed. In the same patient
a fluctuating MC could be detected during this period (�). cfDNA, circulating-free DNA; PBMCs,
peripheral blood mononuclear cells; MRD, measurable residual disease; MC, mixed chimerism;
allo-HSCT, allogeneic hematopoietic stem cell transplantation. * NPM1 NCN was multiplied by 100
to fit the scale. #Relapse therapy included local radiation, decitabine and venetoclax.
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4. Discussion

Early detection of MRD positivity after allo-HSCT prompts clinical decision making
and eventually therapeutic intervention to control impending disease relapse. Several
studies have shown the clinical utility of MRD detection in PBMCs or BMMCs [24–26].
However, few studies have investigated the usefulness of cfDNA for MRD detection after
allo-HSCT [20,21,27]. In addition, data comparing PBMCs and/or BMMCs with cfDNA for
MRD assessment is scarce [28]. In this study we investigated the potential use of cfDNA
for MRD detection and further compared cfDNA utility with PBMCs.

Our results reveal that the MC status in cfDNA in patients with evidence of hemato-
logical relapse is significantly higher when compared with patients in complete remission
(mean 6.7% vs. 47.3%, p < 0.001). We have previously shown that patients with either active
colon or liver aGvHD have an increased amount of recipient-derived cfDNA, similar to
that of patients with hematological relapse (mean control 6.8% vs. colon GvHD 31.6% vs.
liver GvHD 45.9%) [22]. Taking this into consideration, we excluded those patients with
active GvHD. However, in the current study we cannot rule out other conditions that result
in increased cfDNA MC, although the most likely explanation for the difference in MC
between complete remission and relapse samples is the presence of relapsed disease. For
example, drug-induced toxicity and secondary neoplasias have been reported to increase
patient-derived cfDNA [29–31]. Therefore, increasing MC in cfDNA after allo-HSCT should
be interpreted with caution, and other potential sources of recipient-derived cfDNA should
be considered. Detection of MRD in cfDNA as described here, along with biomarkers for
GvHD in cfDNA as methylated genes [22], might help to elucidate the source of MC and
assess the risk for either relapse or GvHD.

A relevant point of our study was the observation that increasing MC and MRD
positivity could be detected earlier in cfDNA when compared with PBMCs in a proportion
of patients. Although this time difference did not reach statistical significance, earlier
MC or MRD positivity detection in cfDNA when compared with PBMCs may identify
patients with an increased risk of hematological relapse. Furthermore, earlier relapse
detection allows prompt clinical intervention (i.e., tapering of the immunosuppression,
donor lymphocyte infusions and novel combination therapies such as decitabine and
venetoclax), which in turn might result in an improved allo-HSCT outcome. Nevertheless,
due to the small size of our patient cohort and a relatively short follow-up period, our results
regarding earlier relapse prediction through the use of cfDNA needs further confirmation
by additional studies with larger cohorts and longer follow-up times.

Recently, the clinical utility of mutations identified by targeted NGS in circulating
cfDNA was compared with those detected in BMMCs in patients with AML [28]. The
authors found 39 unique mutations in 28 genes in 22 patients. Interestingly 5 mutations
(13%) were only detected in cfDNA and 15 (38%) only in BMMCs. This study has some
important differences to our study. BMMCs were employed as the DNA source for the
detection of mutations in their study, whereas we used PBMCs from most of the patients.
The targeted NGS panel in BMMCs and in cfDNA was performed at two different time
points: at diagnosis and in complete remission. In contrast, we analyzed MRD sequentially
at several time points after allo-HSCT (mean = 5.2 samples per patient). Moreover, patients
with AML were treated with conventional induction chemotherapy and the patients in
our study were treated with allo-HSCT. Therefore, and in line with the mentioned study,
our results show that MRD monitoring in BMMCs/PBMCs and in cfDNA in patients with
myeloid malignancies are complementary tools.

Of note, in those patients with extramedullary relapse after allo-HSCT we detected the
same mutation in cfDNA found originally by NGS at diagnosis or before allo-HSCT. This
finding might be clinically relevant, since in those patients with extramedullary relapse
there is no circulating biomarker reported to date. In addition, the relapse site in this
group of patients was localized in different tissues (breast, skin, central nervous system),
suggesting that the relapse anatomical site has no relation with the MRD positivity detected
in cfDNA. Further studies in the context of multicenter clinical trials are needed to establish
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the clinical usefulness of MRD detection in cfDNA in patients with extramedullary relapse
after allo-HSCT.

No correlation between the MC levels in cfDNA and MRD load was detected in the
internal tandem duplication of the FLT3 mutation. This finding suggests that even with MC
percentages below the threshold found in the present study, this particular mutation could
be efficiently amplified in cfDNA. This observation also challenges our above-mentioned
hypothesis that the plasma from patients with a high percentage of recipient-derived
cfDNA relapsing after allo-HSCT should contain the mutation originally found at initial
diagnosis. A tentative explanation could be that the kinetics of recipient-derived cfDNA
and the mutated DNA found in plasma have different dynamics related to the progression
of relapse. Prospective studies with fixed sampling time points are needed to clarify this
last issue.

Our study has several limitations that should be acknowledged. A majority of the
patient cohort received a reduced intensity conditioning regimen. Future studies should
also characterize patients undergoing allo-HSCT after treatment with different condition-
ing regimens (myeloablative). The patient cohort was relatively small and the median
follow-up was also relative short. Our studies focused primarily on patients with myeloid
malignancies such as AML and MDS. Further studies in patients with lymphoid malignan-
cies and at high risk for extramedullary relapse (diffuse large B-NHL, acute lymphoblastic
lymphoma) should be undertaken to establish MC and MRD positivity in cfDNA for the
early detection of hematological relapse across disease entities. Prospective studies with
larger more homogenous cohorts of patients (f.e. AML in CR previous allo-HSCT) should
assess the relapse risk by MC and MRD positivity at different time points. Several mu-
tations might not be able to identify patients with MRD positivity with high confidence
in patients due to, for example, the sensitivity of the assay or the clonal evolution of the
leukemic clones. Therefore, the combination of MC and different mutations in cfDNA
and PBMCs should increase the detection yield of our approach. Lastly, some mutations
detected by NGS analysis in recipient samples have been described as clonal hematopoiesis
of indeterminate potential (CHIP) (e.g., DNMT3A) and, in exceptional cases, they may be
derived from donor hematopoiesis [32].

5. Conclusions

Our data suggest that detection of MRD positivity in cfDNA is comparable to detection
in PBMCs, and is able to detect extramedullary relapse, reinforcing its clinical utility
in patients after allo-HSCT. In brief, longitudinal analysis of cfDNA for MRD and MC
detection can be used as a complementary tool for the detection of MRD and MC in PBMCs
and to assess the risk of relapse after allo-HSCT and guide clinical interventions. Further
studies are needed, in particular to evaluate the potential use of cfDNA as a response-to-
treatment biomarker.
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