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ABSTRACT
Objective: The current study was undertaken for use
of the decision tree (DT) method for development of
different prediction models for incidence of type
2 diabetes (T2D) and for exploring interactions
between predictor variables in those models.
Design: Prospective cohort study.
Setting: Tehran Lipid and Glucose Study (TLGS).
Methods: A total of 6647 participants (43.4% men)
aged >20 years, without T2D at baselines ((1999–
2001) and (2002–2005)), were followed until 2012. 2
series of models (with and without 2-hour
postchallenge plasma glucose (2h-PCPG)) were
developed using 3 types of DT algorithms. The
performances of the models were assessed using
sensitivity, specificity, area under the ROC curve (AUC),
geometric mean (G-Mean) and F-Measure.
Primary outcome measure: T2D was primary
outcome which defined if fasting plasma glucose (FPG)
was ≥7 mmol/L or if the 2h-PCPG was ≥11.1 mmol/L
or if the participant was taking antidiabetic medication.
Results: During a median follow-up of 9.5 years, 729
new cases of T2D were identified. The Quick Unbiased
Efficient Statistical Tree (QUEST) algorithm had the
highest sensitivity and G-Mean among all the models
for men and women. The models that included
2h-PCPG had sensitivity and G-Mean of (78% and
0.75%) and (78% and 0.78%) for men and women,
respectively. Both models achieved good discrimination
power with AUC above 0.78. FPG, 2h-PCPG, waist-to-
height ratio (WHtR) and mean arterial blood pressure
(MAP) were the most important factors to incidence of
T2D in both genders. Among men, those with an
FPG≤4.9 mmol/L and 2h-PCPG≤7.7 mmol/L had the
lowest risk, and those with an FPG>5.3 mmol/L and
2h-PCPG>4.4 mmol/L had the highest risk for T2D
incidence. In women, those with an FPG≤5.2 mmol/L
and WHtR≤0.55 had the lowest risk, and those with an
FPG>5.2 mmol/L and WHtR>0.56 had the highest risk
for T2D incidence.
Conclusions: Our study emphasises the utility of
DT for exploring interactions between predictor
variables.

INTRODUCTION
The prevalence of type 2 diabetes (T2D)
mellitus has been increasing rapidly over the
past decade. Around 366 million people
worldwide had diabetes mellitus in 2011, and
this number is expected to reach 552 million
by 2030.1 Several risk factors, such as age, sex,
ethnicity, family history, obesity and hyperten-
sion, are well documented. However, detect-
ing the precise interaction of these and other
risk factors with one another is a complex
process that varies both within and across
populations.2–4

During the past two decades, dozens of
prediction models for diabetes have been
developed using logistic or Cox regression
models,4 5 while recently a systematic search
of those multivariable models has shown that
few reported prediction models contain
interactions, and it seems that few research-
ers examine them.6 There are a number of
reasons for not using interactions in trad-
itional statistical methods. First, there are
generally many possible predictor variables
in medical research which make the task of

Strengths and limitations of this study

▪ We used a large population-based sample for
our study.

▪ The direct measurements of glucose value and
anthropometric indices were used rather than
self-reported information for predictor variables
and outcome.

▪ Our study proposes a new approach for detect-
ing interactions between predictors.

▪ There were no data available on the dietary
intake among participants.

▪ External validity did not perform for the derived
prediction models.
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variable selection difficult. Hence, traditional statistical
methods are poorly suited for this type of multiple com-
parisons. Second, many clinical variables are not nor-
mally distributed and different groups of participants
may have markedly different degrees of variations.
Third, assessment of interactions, using the traditional
regression models, requires prespecification of the inter-
action terms, for example, in a linear model involving
outcome Y, and two predictor variables (x1 and x2), the
product term x1x2 is the common representation of the
two-way interaction effect. As the number of variables in
the model increases, the number of possible interactions
that can be investigated is large and leads to a compli-
cated model that can be difficult to fit and interpret.6 7

Non-parametric regression has been introduced in 1963
which are another class of simple regression models for
explanation and prediction nowadays known as ‘recur-
sive partitioning’ or ‘decision trees’ (DT). Many variants
and extensions of the tree methods have been published
in the past 50 years, which have been widely used in
many fields such as machine learning, data mining and
pattern recognition.8 9 Recursive partitioning is a
statistical method for exploration of interactions or
non-linear relationships among explanatory variables,
identification of different subgroups, detection of the
most important variables in those subgroups, and finally
offering a new way to look at complex data.8 10 11 Since
there will never be enough resources to implement every
prevention programme for all target groups, health pol-
icymakers prefer interventions that target high-risk
groups.12 Therefore, DT models might be helpful for
identifying different groups which allow implementation
of specific interventions for each group according to
their risk probabilities (low-risk and high-risk groups).
The aim of this study was to develop a series of classifica-

tion trees for adult men and women based on three com-
monly used DT algorithms (Classification and Regression
Tree (CART), Quick Unbiased Efficient Statistical Tree
(QUEST) and commercial version (C5.0)) to gain more
information on interactions between factors contributing
to the incidence of T2D. We used the Tehran Lipid and
Glucose Study (TLGS) database for our analysis.

METHODS
Study population
The TLGS, an ongoing prospective study, has been
described in detail elsewhere.13 Briefly, the baseline
study (phase 1) was performed from 1999 to 2001, with
follow-ups in three consecutive phases, 2002–2005
(phase 2), 2005–2008 (phase 3), and the last 2009–2012
(phase 4). After the cross-sectional phase (phase 1),
participants were assigned to a cohort and a prospective
interventional study. For this study, 10 368 participants
aged ≥20 years from the first phase were selected and
followed from the date of enrolment through phase 4;
moreover, in the second phase, 2440 new participants
entered and were followed in the next two phases

(3 and 4). We excluded participants with prevalent T2D
at baseline (n=1376) and those with missing data regard-
ing fasting plasma glucose (FPG) and 2-hour postchal-
lenge plasma glucose ( 2h-PCPG) (n=1122). Overall,
3663 (35%) participants were lost to follow-up and 729
new cases of T2D were identified by the end of phase 4
(figure 1). The written informed consent was obtained
from each participant.

Clinical, anthropometric and laboratory measurements
Information on demographics, education, smoking
status, physical activity, and medical and drug history was
collected by interview. For women, additional informa-
tion on reproductive history, menstruation status and
interventions to prevent pregnancy was collected using a
pretested questionnaire. Anthropometric measures
including weight, height and waist circumference (WC)
were measured, according to a standard protocol.14 Body
mass index (BMI) was calculated as weight (kg)/height
(m)2. Waist-to-hip ratio (WHpR) was calculated as WC/
hip circumference and waist-to-height ratio (WHtR) was
calculated as WC/height. Systolic and diastolic blood
pressure (SBP and DBP, respectively), and blood para-
meters such as FPG, 2h-PCPG, triglycerides (TGs), total
cholesterol (TC) and high-density lipoprotein cholesterol
(HDL-c) were measured using previously reported
methods.15 TGs to HDL-c ratio (TG/HDL) ratio was
obtained as TG/HDL-c and TC-to-HDL-c (TC/HDL) was
calculated as TC/HDL-c.

Definition of variables and outcome
Education level was categorised to five levels as illiterate,
1–5 years, 6–12 years, 13–16 years and more than
16 years schooling. Marital status was categorised as
single, married, widowed and divorced. A current
smoker was defined as a person who smokes cigarettes
daily or occasionally. Former smokers were defined as
individuals who have smoked daily or occasionally and
who had quit smoking. Passive smoking was defined as
exposure to secondhand cigarette smoke in the home,
at work or in other environments. A family history of
premature cardiovascular diseases (CVD) was considered
as any experience of fatal or non-fatal myocardial infarc-
tion, stroke or sudden cardiac arrest in first-degree rela-
tives, if it occurred before 55 years of age in male
relatives and before 65 years of age in female relatives. A
history of CVD was defined as previous ischaemic heart
disease and/or cerebrovascular accidents. A family
history of diabetes (FHD) was defined as having T2D in
first-degree relatives. On the basis of their self-reported
levels of leisure time physical activity, participants were
categorised into two groups in which ‘inactive’ means
those doing exercise or labour less than three times a
week or performing activities achieving lower than 600
MET. Mean arterial blood pressure (MAP) was obtained
as ([(2×diastolic)+systolic]/3).16 Pulse pressure was
defined as SBP minus DBP. Participants were grouped
into two categories based on participating in the lifestyle
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intervention. Women were categorised into three groups
on the basis of their menstruation status: having normal
menstrual cycle by taking medication, normal meno-
pause, early menopause because of surgery or other
reasons. Women were also categorised to six levels con-
sidering pregnancy prevention methods: use of hormo-
nal contraceptive drugs, intrauterine devices (IUDs),
using condoms, withdrawal method, tubectomy/vasec-
tomy and not applicable. They were also categorised
into two groups based on birth history, a history of
hypertension and hyperglycaemia in pregnancy.
Incidence of T2D (outcome variable) was defined based
on an FPG≥7.0 mmol/L or 2h-PCPG≥11.1 mmol/L or
taking antidiabetic medication in all phases of the
study.17 Final data sets consisted of 6647 cases (3762
women) which included 54 and 44 primary predictor
variables in women and men, respectively.

Statistical methods
Data preparation
Data were prepared before analysis. Data preparation
included: missing data handling, variables selection,
defining the train and validation data sets and balancing
the train data sets.

Missing data handling
Results of the Little’s missing completely at random
(MCAR) test18 on the primary set of predictor variables
showed that in men the pattern of missing data was com-
pletely at random (MCAR) (p=0.15), but for women
missing values were not MCAR (p<0.001).19 We used
single imputation for imputing the missing data. For
imputation, all the primary variables were included,
except for the outcome variable. Continuous variables
were imputed by the CART method,10 using SPSS
modeler (V.14.2.0.3, IBM), and for categorical variables
we applied the weighted K-Nearest Neighbor approach
using RapidMiner (V.5).20

Training and validation data
The entire data sets of men and women were divided into
two sets using stratified random sampling: a training set
consisted of 70% of the data for model development, and
a test or validation set consisted of the remaining (30%)
for model validation (internal validation) (figure 2).

Data balancing
Most of the popular classification algorithms such as DT
work well when the positive and negative cases are

Figure 1 Flow diagram for the selection of study participants in the Tehran Lipid and Glucose Study. 2h-PCPG, 2-hour

postchallenge plasma glucose; FPG, fasting plasma glucose.
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evenly distributed and problems arise when the data set
is imbalanced.21 The class imbalance in medical data
occurs when there are many more cases of some classes
(majority class or negative) than others (minority class
or positive).22 In such cases, standard classifiers tend to
produce high accuracy over that of the majority class.23

There are a finite number of solutions to handle imbal-
anced data sets.21–23 In our previous work, we showed
the effectiveness of Synthetic Minority Oversampling
Technique (SMOTE) for handling imbalanced data
sets.24 In this study, we balanced two training data sets of
men and women using SMOTE as previously reported
(figure 2).24

Variables selection
Variable or feature selection methods have been used
since the 1970s in the fields of statistics and machine
learning techniques.25 Variable selection methods have
been shown to be effective in removing redundant and
irrelevant variables, improving prediction performance
of learning algorithms and reducing the effects of high
dimensionality in the data.26 Therefore, in order to
identify the best subset of variables while retaining the
predictive power of the original variables, we applied the
multivariate filter approach, using correlation-based
feature selection and consistency-based feature selection
as two evaluation criteria in conjunction with the Best
First, Genetic Algorithm as two search strategies.27

Therefore, four subsets of variables were selected using
a combination of the two search strategies and two evalu-
ation criteria. To arrive at the final set, the four subsets
were reviewed to choose the variables that were observed
at least in two subsets. Variable selection methods were
applied on the training data sets after imputation of
missing data. We used the Weka toolkit (V.3.2.) for
selecting variables.

Statistical analysis
Baseline characteristics were compared between partici-
pants with and without T2D across men and women.
Also, characteristics were compared between followed up
versus non-followed up participants. Comparisons were
done using Student’s t-test and χ2 with a two-tailed
p<0.05 being considered significant.

Methods for DT modelling
There are many different algorithms for fitting
tree-structured models coming from different communi-
ties.9 28 All the DT algorithms generate a set of classifica-
tion rules and construct a DT. A tree has three types of
nodes: root node, internal node and terminal nodes.
Both the root and the internal nodes are partitioned
into two nodes in the next layer; however, the terminal
nodes do not have offspring nodes. The root node con-
tains the learning sample from which the tree is grown.
The basic process of developing a DT includes three ele-
ments: the selection of variable for splits the data (split-
ting criteria), stopping rule to decision of when to stop
splitting a node and mark it terminal, and the pruning
methods.8

To choose the right algorithm for our problem, we
applied three types of DT algorithms which are widely
used for generating a binary tree: the CART algorithm,8

QUEST29 and C5.0.30 All the DT models were per-
formed using IBM SPSS modeler 14.2.

Model evaluation
Performances of the models were evaluated on the test
or validation data sets. In data mining, the classifier is
basically evaluated by accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV) and the area under the curve (AUC). When data
are imbalanced, accuracy performs better on the

Figure 2 Generation of training and validation data set diagram.
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majority classes (negative cases). The geometric mean
(G-Mean), however, indicates the balance between
model performance on the negative and positive classes
and avoids overfitting to the negative class.31

G�mean =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p ð1Þ

F-Measure, harmonic mean of PPV (precision) and sen-
sitivity (recall), is another measure that increases pro-
portionally to the increase of precision and recall. A
high value of F-Measure indicates that the model per-
forms better on the positive class.31 32 We chose sensitiv-
ity and G-Mean for comparison of the models and select
the best one.

F�measure =
2� precision � recall

precision� recall
ð2Þ

RESULTS
Missing data analysis showed that about 59% and 70% of
primary variables (44 and 54 in men and women,
respectively) had at least two missing data. The ranges of
missing data were (0.1–6%) and (0.1–5%) in the women
and men data set, respectively. Using the variable selec-
tion methods, 15 and 20 variables were identified to
include in the model building process for men and
women, respectively. The percentage of missing data for
selected variables has been shown in tables 1 and 2.

Characteristics of participants
Baseline characteristics of the study population are pre-
sented in tables 1 and 2. During a median 9.5 years of
follow-up (IQR 6.13–10.2 years), T2D developed in 302
men (10%) and 427 women (11%). Comparison of base-
line characteristics between the followed and non-
followed participants (only for selected variables) is
shown in tables 3 and 4. Followed men had higher value
for TC/HDL (5.5 vs 5.4), but lower age (41.8 vs
43.4 years). The proportion of individuals with low educa-
tion levels (≤5 years) was higher in followed men (20.5%
vs 26.2%). Followed women had lower value for age (39.6
vs 40.5 years), pulse pressure (39.3 vs 40.2 bpm) and MAP
(89.2 vs 89.9 mmHg). The proportion of illiterate
women was lower in followed women (8.1% vs 13.2%).

Model performances
We constructed the DT models using the balanced train-
ing data sets with two set of variables: (1) selected vari-
ables that included 2h-PCPG, and (2) selected variables
without 2h-PCPG. The performance measures for the
two types of DT models are shown in tables 5 and 6.
Comparison between models 1 and 2 shows that by
removing 2h-PCPG from the variables list, the sensitivity
for all three models decreases by 5–10% and 2–5% in
men and women, respectively. Results show that QUEST
has the highest sensitivity and G-Mean among all models

for both men and women; therefore, we chose it as the
best DT models.

DT analysis in men
Figure 3 depicts the DT for model 1, including the pre-
dictor variables and the cut-off points for each predictor.
It used four variables (FPG, 2h-PCPG, age and WHtR)
for classification and generated seven decision rules;
each rule identifies a special subgroup with a certain
probability of outcome (positive or negative) for each
person belonging to that subgroup. The FPG, located
on the top of the tree, was the most important factor in
incidence of T2D.
Table 7 shows the seven subgroups identified by the DT

of model 1. Each group was specified by a combination of
variables that identified a probability for incidence of
T2D. For example, group 1 (low risk) consisted of men
with an FPG<4.9 mmol/L and 2h-PCPG<7.7 mmol/L who
had a 10% probability for incidence of T2D in the study
period. Group 7 (high risk) consisted of men with an
FPG>5.3 mmol/L and 2h-PCPG>4.4 mmol/L who had a
79% probability for incidence of T2D. The observed risk
pattern in each subgroup revealed the interaction between
a set of variables; that is, the patterns for group 2 show that
in men with an FPG of 4.9–5.3 mmol/L and
2h-PCPG<7.7 mmol/L, risk of incidence depends on the
value of WHtR. There was also an interaction between
FPG, 2h-PCPG and age such that age >43 years increased
the risk of T2D among men who had an FPG>5.3 mmol/L
and 2h-PCPG≤4.4 mmol/L (groups 3 and 6). In model 2
(without 2h-PCPG), 9 subgroups were identified. The DT
used four variables (FPG, WHtR, MAP and FHD) for classi-
fication (table 7). Results showed that FPG was the most
important predictor for incidence of T2D; men with an
FPG<4.9 mmol/L had a lower risk, but with FPG above
5.3 mmol/L, the risk of incidence depended on the
WHtR and MAP.

DT analysis in women
The DT created for women is shown in figure 4. The
model used three variables (FPG, 2h-PCPG and WHtR)
for identification of seven subgroups (table 8). Group 1
(low risk) consisted of women who had an
FPG≤5.2 mmol/L and WHtR≤0.55 (12% probability for
incidence of T2D). Group 7 (high risk) consisted of
women who had an FPG>5.2 mmol/L and WHtR>0.52
(81% probability for incidence of T2D). The observed
patterns in the subgroups show that when the FPG level
is <5.2 mmol/L, WHtR and 2h-PCPG are the most
important factors in incidence of T2D, whereas if FPG
is >5.2 mmol/L, WHtR is the most important factor.
Some types of interactions were observed between FPG,
WHtR and 2h-PCPG in women; for example, the patterns
in groups 4 and 7 show that in women with an
FPG>5.2 mmol/L, T2D incidence will increase by about
55% with an WHtR of over 0.52. In model 2 for women,
in which we excluded 2h-PCPG from the variables list,
nine subgroups were identified using three variables
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Table 1 Baseline characteristics of men (TLGS 1999–2012)

Variables

Diabetes

n=302

No

diabetes

n=2583

Total

population

n=2885

p

Value*

Percentage of

missing

data†

Age (years) 48.5 (13.3) 41.1 (13.5) 41.8 (13.7) <0.001 0

2-hour postchallenge plasma glucose(mmol/L) 7.3 (2.0) 5.5 (1.5) 5.7 (1.7) <0.001 0

Fasting plasma glucose (mmol/L) 5.6 (0.6) 5.0 (0.5) 5.0 (0.5) <0.001 0

Wrist circumference (cm) 18 (0.9) 17.6 (0.9) 17.6 (0.9) <0.001 1.2%

Waist circumferences (cm) 95.1 (11.0) 88.3 (10.7) 89.0 (10.9) <0.001 1.2%

BMI (kg/m2) 27.9 (4.1) 25.5 (3.8) 25.8 (3.9) <0.001 1.2%

Waist-to-hip ratio 0.95 (0.1) 0.91 (0.1) 0.90 (0.1) <0.001 1.2%

Waist-to-height ratio 0.56 (0.1) 0.51 (0.1) 0.50 (0.1) <0.001 1.2%

Triglyceride (mmol/L) 2.7 (2.1) 1.9 (1.3) 2.1 (1.4) <0.001 0

Total cholesterol (mmol/L) 5.6 (1.1) 5.2 (1.1) 5.2 (1.1) <0.001 0

HDL cholesterol (mmol/L) 0.9 (0.2) 0.9 (0.2) 0.9 (0.2) 0.196 0

Triglyceride-to-HDL ratio 5.1 (4.3) 7.4 (8.4) 5.3 (4.9) <0.001 0

Cholesterol-to-HDL ratio 6.1 (1.9) 5.5 (1.6) 5.5 (1.7) <0.001 0.1%

Estimated glomerular filtration rate (mL/min/

1.73 m2)

63.2 (11.2) 67.6 (11.0) 110.9 (67.1) <0.001 0

Systolic blood pressure (mm Hg) 126.2 (17.5) 117.4 (15.7) 118.3 (16.1) <0.001 1.4%

Diastolic blood pressure (mm Hg) 81.6 (11.6) 76.4 (10.3) 76.9 (10.5) <0.001 1.4%

Pulse pressure (mm Hg) 44.6 (12.3) 40.9 (11.8) 41.3 (11.9) <0.001 1.4%

Mean arterial blood pressure (mm Hg) 96.3 (12.4) 90.0 (10.9) 90.7 (11.3) <0.001 1.5%

Total length of stay in the city (years) 40.7 (14.1) 34.3 (12.6) 35.0 (12.9) <0.001 0.3%

Goitre size

Grade 0 226 (74.8) 1872 (72.5) 2098 (72.7) 0.511 0

Grade 1 55 (18.2) 483 (18.7) 538 (18.6)

Grade 2 21 (7.0) 228 (8.8) 249 (8.6)

History of hospitalisation until now 165 (54.6) 1260 (48.7) 1425 (49.4) 0.059 0

Family history of diabetes in first-degree relatives 108 (36.1) 611 (23.9) 719 (25.1) <0.001 0.9%

Family history of premature cardiovascular

diseases in male relatives

24 (7.9) 212 (8.2) 236 (8.2) 0.876 0.9%

Family history of premature cardiovascular

diseases in female relatives

34 (11.3) 179 (6.9) 213 (7.4) 0.006 0.9%

Former cigarette smoking 55 (18.2) 385 (14.9) 440 (15.2) 0.220 0

Current cigarette smoking 76 (25.1) 652 (25.2) 728 (25.2) 0.989 0

Exposed to secondhand smoke at home or at work 83 (27.5) 827 (32.0) 910 (31.5) 0.1 0

Education 0

Level 1 (illiterate) 13 (4.3) 80 (3.1) 93 (3.2) <0.001

Level 2 (≤5 years) 90 (29.8) 409 (15.8) 499 (17.3)

Level 3 (6–12 years) 164 (54.3) 1573 (60.9) 1737 (60.2)

Level 4 (13–16 years) 28 (9.3) 455 (17.6) 483 (16.7)

Level 5 (>16 years) 7 (2.3) 66 (2.6) 73 (2.5)

Marital status 0

Single 17 (5.6) 488 (18.9) 505 (17.5) <0.001

Married 282 (93.4) 2081 (80.6) 2363 (81.9)

Divorced 0 (0) 8 (0.3) 8 (0.3)

Widowed 3 (1.0) 6 (0.2) 9 (0.3)

Physical activity levels

Inactive‡ 215 (74.7) 1744 (71.2) 1959 (71.5) 0.217 5%

Use of the ACE inhibitors 6 (1.9) 24 (0.9) 30 (1.1) 0.134 0

Use of blood lipid-lowering drugs 11 (3.6) 37 (1.4) 48 (1.7) 0.005 0

Use of antihypertensive drugs 21 (6.9) 76 (2.9) 97 (3.4) <0.001 0

Use of aspirin 55 (19.0) 257 (11.2) 312 (11.1) <0.001 2.6%

Participating in the lifestyle intervention group 100 (33.1) 821 (31.8) 921 (31.9) 0.777 0

Figures are either mean (SD) or N (%) for continuously and categorically distributed variables, respectively, in the data set with no missing
values (after imputation of missing values). Data were collected from the TLGS study between 1999 and 2012.
*Continuous and categorical variables were compared by Student’s t-test and χ2, respectively.
†Per cent of missing data in the original data set.
‡Doing exercise or labour less than three times a week or performing activities achieving a lower than 600 MET.
BMI, body mass index; HDL, high-density lipoprotein; TLGS, Tehran Lipid and Glucose Study.
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Table 2 Baseline characteristics of women (TLGS 1999–2012)

Variables

Diabetes

n=427

No diabetes

n=3335

Total

population

n=3762

p

Value*

Percentage of

missing data†

Age (years) 47.1 (11.7) 38.7 (12.1) 39.6 (12.3) <0.001 0

2-hour postchallenge plasma glucose(mmol/L) 7.7 (1.8) 5.8 (1.4) 6.0 (1.5) <0.001 0

Fasting plasma glucose (mmol/L) 5.5 (0.6) 4.9 (0.5) 4.9 (0.5) <0.001 0

Wrist circumference (cm) 16.5 (1.0) 15.9 (0.99) 15.9 (1.0) <0.001 2.5%

Waist circumferences (cm) 95.9 (11.2) 85.5 (11.6) 86.6 (12.0) <0.001 3.8%

BMI (kg/m2) 30.5 (4.9) 26.9 (4.5) 27.3 (4.7) <0.001 3.2%

Waist-to-hip ratio 0.88 (0.1) 0.82 (0.1) 0.83 (0.1) <0.001 3.8%

Waist-to-height ratio 0.61 (0.1) 0.54 (0.1) 0.5 (0.1) <0.001 3.8%

Triglyceride (mmol/L) 2.3 (1.3) 1.6 (0.9) 1.7 (1.0) <0.001 0

Total cholesterol (mmol/L) 5.8 (1.3) 5.3 (1.2) 5.3 (1.2) <0.001 0

HDL cholesterol (mmol/L) 1.1 (0.3) 1.2 (0.3) 1.1 (0.3) <0.001 0

Triglyceride-to-HDL ratio 5.2 (3.7) 3.5 (2.7) 3.7 (2.9) <0.001 0.1%

Cholesterol-to-HDL ratio 5.5 (1.7) 4.7 (1.5) 4.8 (1.6) <0.001 0.1%

Estimated glomerular filtration rate (mL/min/1.73 m2) 59.4 (9.9) 63.8 (10.9) 63.3 (10.8) <0.001 0.1%

Systolic blood pressure (mm Hg) 126.4 (19.8) 114.1 (16.4) 115.4 (17.2) <0.001 1.2%

Diastolic blood pressure (mm Hg) 81.7 (10.5) 75.4 (10.1) 76.1 (10.3) <0.001 1.2%

Pulse pressure (mm Hg) 44.6 (14.9) 38.6 (11.5) 39.2 (12.1) <0.001 1.2%

Mean arterial blood pressure (mm Hg) 96.6 (12.6) 88.3 (11.3) 89.2 (11.7) <0.001 1.2%

Total length of stay in the city (years) 47.1 (11.7) 38.7 (12.1) 33.1 (12.3) <0.001 0.3%

Goiter size 0

Grade 0 342 (80.1) 2443 (73.3) 2785 (74) 0.009

Grade 1 53 (12.4) 530 (15.9) 583 (15.5)

Grade 2 394 (10.5) 362 (10.9) 32 (7.5)

History of hospitalisation until now 373 (87.4) 2768 (83.0) 3141 (83.5) 0.022 0

Family history of diabetes in first-degree relatives 174 (40.7) 838 (25.1) 1012 (26.9) <0.001 1%

Family history of premature cardiovascular diseases

in male relatives

27 (6.4) 260 (7.9) 287 (7.7) 0.284 0

Family history of premature cardiovascular diseases

in female relatives

55 (13.0) 298 (9.0) 353 (9.5) 0.008 0

Former cigarette smoking 6 (1.4) 43 (1.3) 49 (1.3) 0.747 3.8%

Current cigarette smoking 11 (2.6) 91 (2.7) 102 (2.7) 0.075 1.1%

Exposed to secondhand smoke at home or at work 81 (19.0) 699 (21.0) 780 (20.7) 0.340 0

Education 0

Level 1 (illiterate) 68 (15.9) 236 (7.1) 304 (8.1) <0.001

Level 2 (≤5 years) 168 (39.3) 717 (21.5) 885 (23.5)

Level 3 (6–12 years) 159 (37.2) 1980 (59.4) 2139 (56.9)

Level 4 (13–16 years) 30 (7.0) 385 (11.5) 415 (11.0)

Level 5 (>16 years) 2 (0.5) 17 (0.5) 19 (0.5)

Marital status 0

Single 11 (2.6) 353 (10.6) 364 (9.7) <0.001

Married 372 (87.1) 2777 (83.3) 3149 (83.7)

Divorced 8 (1.9) 40 (1.2) 48 (1.3)

Widowed 36 (8.4) 165 (4.9) 201 (5.3)

Physical activity levels 6%

Inactive‡ 311 (72.8) 2387 (71.6) 2698 (71.7) 0.608

Use of the ACE inhibitors 12 (2.8) 29 (0.9) 41 (1.1) <0.001 0

Use of blood lipid-lowering drugs 26 (6.1) 75 (2.3) 101 (2.7) <0.001 0

Use of antihypertensive drugs 61 (14.3) 166 (5.0%) 227 (6.1) <0.001 0

Use of aspirin 66 (15.5) 265 (7.9) 331 (8.8) <0.001 2.5%

Participating in the lifestyle intervention group 183 (42.9) 1472 (44.1) 1655 (44.0) 0.036 0

Menstruation status 0

Normal menstrual cycle 235 (55.0) 2578 (77.3) 2813 (74.8) <0.001

Normal menopause 120 (28.1) 478 (14.3) 598 (15.9)

Early menopause 72 (16.9) 279 (8.3) 351 (9.3)

Continued
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(FPG, 2h-PCPG and MAP). This model had a lower
sensitivity than model 1. Different interactions were
found by this model; that is, when FPG is
>5.2 mmol/L, WHtR≥0.56 is the most important risk
factor for T2D, whereas when FPG is <5.2 mmol/L,
WHtR and MAP play an important role in T2D
incidence.

DISCUSSION
In this study, we used the three types of DT-based
methods to provide insight into the factors that have
an important role in the incidence of T2D and how
these factors might interact to reveal specific sub-
groups. We used the more established and widely
available algorithms to select the one with the best

Table 2 Continued

Variables

Diabetes

n=427

No diabetes

n=3335

Total

population

n=3762

p

Value*

Percentage of

missing data†

Pregnancy prevention methods 0

Use of hormonal contraceptive drugs 19 (4.4) 243 (7.3) 262 (7.0) <0.001

IUDs 6 (1.4) 197 (5.9) 203 (5.4)

Using condoms 10 (2.3) 181 (5.4) 191 (5.1)

Withdrawal method/tubectomy/vasectomy 381 (89.2) 2361 (70.8) 2742 (72.9)

Not applicable 11 (2.6) 353 (10.6) 364 (9.7)

Having a birth history 388 (90.9) 2720 (81.6) 3108 (82.6) <0.001

Current status of pregnancy 2 (0.5) 48 (1.4) 50 (1.3) <0.001 0

History of hypertension in pregnancy 35 (8.2) 189 (5.7) 224 (6.0) <0.001 0

History of hyperglycaemia in pregnancy 9 (2.1) 19 (0.6) 28 (0.7) <0.001 0

Figures are either mean (SD) or N (%) for continuously and categorically distributed variables, respectively, in the data set with no missing
values (after imputation of missing values). Data were collected from the TLGS study between 1999 and 2012.
*Continuous and categorical variables were compared by Student’s t-test and χ2, respectively.
†Per cent of missing data in the original data set.
‡Doing exercise or labour less than three times a week or performing activities achieving a lower than 600 MET.
BMI, body mass index; HDL, high-density lipoprotein; IUDs, intrauterine devices; TLGS, Tehran Lipid and Glucose Study.

Table 3 Baseline characteristics of followed up and non-followed up men (TLGS 1999–2012)

Selected variables Followed up (n=2885) Non-followed up (n=1592) p Value*

Age (year) 41.8 (13.7)† 43.4 (16.2) 0.001

2-hour postchallenge plasma glucose (mmol/L) 5.7 (1.7) 5.6 (1.7) 0.42

Fasting plasma glucose (mmol/L) 5.0 (0.5) 5.0 (0.5) 0.10

Wrist circumference (cm) 17.6 (0.9) 17.6 (0.9) 0.06

Waist-to-hip ratio 0.91 (0.07) 0.91 (0.07) 0.19

Waist-to-height ratio 0.52 (0.06) 0.52 (0.07) 0.24

Cholesterol-to-HDL ratio 5.5 (1.7) 5.4 (1.7) 0.014

Mean arterial blood pressure (mm Hg) 90.7 (11.3) 91.4 (12.7) 0.07

History of hospitalisation until now 1425 (49.4) 813 (51.1) 0.28

Family history of diabetes in first-degree relatives 724 (25.1) 360 (22.6) 0.07

Exposed to secondhand smoke at home or at work 910 (31.5) 461 (29.0) 0.07

Goitre size

Grade 0 2085 (72.3) 1155 (72.6) 0.75

Grade 1 545 (18.9) 307 (19.3)

Grade 2 255 (8.8) 128 (8.1)

Use of aspirin during the last month 321 (11.1) 194 (12.1) 0.33

Education

Level 1 (illiterate) 93 (3.2) 103 (6.5) 0.001

Level 2 (≤5 years) 498 (17.3) 314 (19.7)

Level 3 (6-12 years) 1738 (60.2) 884 (55.5)

Level 4 (13-16 years) 483 (16.7) 255 (16.0)

Level 5 (>16 years) 73 (2.5) 36 (2.3)

Participating in the lifestyle intervention group 1230 (42.6) 740 (46.5) 0.01

*Continuous and categorical variables were compared by Student’s t-test and χ2, respectively.
†Figures are either mean (SD) or N (%) for continuously and categorically distributed variables, respectively, in the data set with no missing
values (after imputation of missing values). Data were collected from the TLGS study between 1999 and 2012.
HDL, high-density lipoprotein; TLGS, Tehran Lipid and Glucose Study.
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performance. Considering sensitivity and G-Mean,
QUEST had the best performance in both men and
women data sets. Although our study focused on
exploration of interactions, DT models can be used
for predicting the 9 years risk of developing T2D.
Also, it is possible to identify who needs more or
different treatments if we take interactions into
account.
Two sets of variables were used for DT development.

In model (1), we used selected variables which included
2h-PCPG, and in model (2), we excluded the 2h-PCPG
from the variables list. Results of QUEST showed that
although four similar predictors had the highest power
both in men and women, they had different interaction
patterns in the two genders; for instance, women with
WHtR≤0.52 had a lower risk (26%) for T2D even with
an FPG level of above 5.2 mmol/L. However, in men,
the results showed that when FPG is >5.3 mmol/L, there
was still 56% of T2D risk, even with a lowering of WHtR
to below 0.45. A systematic review of existing evidences
has shown that the mean of suggested cut-off values for
WHtR in men and women, respectively, was 0.52 and

0.53 for incidence of T2D.33 However, the results of this
study showed that the recommended cut-off of 0.52 for
WHtR is not a safe value for decreasing the risk of T2D
among men,since significant risk of T2D was observed
among men with WHtR≤0.45, as we pointed out above.
Therefore, men with WHtR below 0.52 should not be
given false assurances about their risk of incident T2D if
their FPG level is >5.3 mmol/L.
A review of current studies shows that being aged

>40 years is a risk factor fordeveloping T2D.34Theresults
of our study show that age ≥43 years is a risk factor for
men who have an FPG level >5.3 mmol/L. Results from
this study confirm previous findings about the FPG
cut-off point, obtained using traditional methods; add-
itionally, we found the FPG cut-off point for men and
women separately. For instance, two published studies of
TLGS have shown that individuals with FPG levels
<5.1 mmol/L are very unlikely to develop T2D during 6
and 9 years follow-up.35 36 This study shows that among
men with an FPG level <4.9 mmol/L, there is only 14%
risk for T2D incidence within about 9 years. Another
interesting finding of our study was the important role

Table 4 Baseline characteristics of followed up and non-followed up women (TLGS 1999–2012)

Selected variables

Followed up

(n=3762)

Non-followed up

(n=2071)

p

Value*

Age (years) 39.6 (12.3)† 40.5 (15.1) 0.03

2-hour postchallenge plasma glucose (mmol/L) 6.0 (1.5) 6.0 (1.6) 0.87

Fasting plasma glucose (mmol/L) 4.9 (0.5) 4.9 (0.5) 0.16

Wrist circumference (cm) 15.9 (1.03) 15.9 (1.07) 0.56

BMI (kg/m2) 27.4 (4.7) 27.4 (5.3) 0.84

Waist-to-hip ratio 0.8 (0.08) 0.8 (0.08) 0.06

Waist-to-height ratio 0.5 (0.08) 0.5 (0.08) 0.09

Cholesterol-to-HDL ratio 4.8 (1.6) 4.8 (1.6) 0.93

Triglyceride-to-HDL ratio 3.7 (2.9) 3.7 (3.7) 0.47

Pulse pressure (bpm) 39.3 (12.1) 40.2 (13.7) 0.01

Mean arterial blood pressure(mm Hg) 89.2 (11.8) 89.9 (12.7) 0.04

Glomerular filtration rate (mL/min/1.73 m2) 63.3 (10.9) 63.2 (12.1) 0.9

Total length of stay in the city (years) 33.1 (13.2) 33.4 (15.5) 0.48

Goitre size

Grade 0 2785 (74.0) 1551 (74.9) 0.74

Grade 1 583 (15.5) 316 (15.2)

Grade 2 394 (10.5) 204 (9.8)

Use of the ACE inhibitors 33 (0.9) 29 (1.4) 0.06

Current status of pregnancy 50 (1.3) 23 (1.1)

Use of aspirin 331 (8.8) 178 (8.6)

Educational level

Level 1 (illiterate) 304 (8.1) 273 (13.2) 0.001

Level 2 (≤5 years) 885 (23.5) 456 (22.0)

Level 3 (6–12 years) 2139 (56.9) 1099 (53.1)

Level 4 (13–16 years) 415 (11.0) 236 (11.4)

Level 5 (>16 years) 19 (0.5) 7 (0.3)

Family history of premature cardiovascular diseases in male

relatives

353 (9.4) 201 (9.7) 0.63

Family history of diabetes in first-degree relatives 1012 (26.9) 533 (25.8) 0.06

*Continuous and categorical variables were compared by Student’s t-test and χ2, respectively.
†Figures are either mean (SD) or N (%) for continuously and categorically distributed variables, respectively, in the data set with no missing
values (after imputation of missing values). Data were collected from the TLGS study between 1999 and 2012.
BMI, body mass index; HDL, high-density lipoprotein; TLGS, Tehran Lipid and Glucose Study.
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Table 5 Performances of the decision tree models for

men (Tehran Lipid and Glucose Study 1999–2012)

Types of

decision tree

models

Performance

measures C5.0 QUEST CART

Models (1) Sensitivity 72% 78% 74%

Specificity 70% 72% 72%

PPV 23% 25% 24%

NPV 95% 96% 96%

Accuracy 71% 73% 72%

F-Measure 0.35 0.38 0.36

G-Mean 0.71 0.75 0.73

AUC 0.80 0.78 0.79

Models (2) Sensitivity 67% 68% 64%

Specificity 73% 78% 74%

PPV 23% 27% 23%

NPV 95% 95% 94%

Accuracy 73% 77% 73%

F-Measure 0.34 0.39 0.34

G-Mean 0.70 0.73 0.69

AUC 0.74 0.77 0.78

Model (1) was developed based on 15 variables which included
2h-PCPG.
Model (2) was developed based on 14 variables (2h-PCPG was
excluded).
F-Measure: Harmonic mean between PPV and sensitivity,
F-Measure=2 (sensitivity×PPV)/(sensitivity+PPV).
G-Mean of sensitivity and specificity, G=√sensitivity×specificity.
2h-PCPG, 2-hour postchallenge plasma glucose; AUC, area
under the curve; CART, Classification and Regression Tree;
G-Mean, geometric mean; NPV, negative predictive value; PPV,
positive predictive value; QUEST, Quick Unbiased Efficient
Statistical Tree.

Table 6 Performances of the decision tree models for

women (Tehran Lipid and Glucose Study 1999–2012)

Types of

decision tree

models

Performance

measures C5.0 QUEST CART

Models (1) Sensitivity 75% 78% 70%

Specificity 78% 78% 79%

PPV 29% 30% 29%

NPV 96% 97% 96%

Accuracy 78% 78% 78%

F-Measure 0.42 0.43 0.41

G-Mean 0.76 0.78 0.74

AUC 0.81 0.81 0.81

Models (2) Sensitivity 73% 73% 66%

Specificity 77% 78% 78%

PPV 28% 29% 27%

NPV 96% 96% 95%

Accuracy 77% 78% 77%

F-Measure 0.40 0.42 0.38

G-Mean 0.75 0.75 0.72

AUC 0.80 0.81 0.81

Model (1) was developed based on 20 variables which included
2h-PCPG.
Model (2) was developed based on 19 variables (2h-PCPG was
excluded).
F-Measure: Harmonic mean between PPV and sensitivity,
F-Measure=2 (sensitivity×PPV)/(sensitivity+PPV).
G-Mean of sensitivity and specificity, G=√sensitivity×specificity.
2h-PCPG, 2-hour postchallenge plasma glucose; AUC, area
under the curve; CART, Classification and Regression Tree;
G-Mean, geometric mean; NPV, negative predictive value; PPV,
positive predictive value; QUEST, Quick Unbiased Efficient
Statistical Tree.

Figure 3 Decision tree for model 1 in men. Performance measures: sensitivity: 78%, specificity: 72%, G-Mean: 0.75, AUC:

0.78. 2h-PCPG, 2-hour postchallenge plasma glucose; AUC, area under the curve; FPG, fasting plasma glucose; G-Mean,

geometric mean; WHtR, waist-to-height ratio.

10 Ramezankhani A, et al. BMJ Open 2016;6:e013336. doi:10.1136/bmjopen-2016-013336

Open Access



of MAP in incidence of T2D in men and women. There
are very few studies assessing the role of MAP in T2D
incidence. Based on some previous studies, hypertension
has been recognised as a risk factor for incident T2D in
various populations.37 The inter-related pathophysiology
of hypertension and T2D is complex and not fully

understood.38 Our study showed that an MAP of
≥92 mm Hg is a risk factor among men with an
FPG>5.3 mmol/L even if WHtR is <0.49. In women, an
MAP of ≥97 mm Hg is a risk factor when WHtR is >0.66,
even if the FPG level is ≤5.2 mmol/L. These results
imply that the co-occurrence of a high level of MAP and

Table 7 Groups identified by decision tree models for men (Tehran Lipid and Glucose Study 1999–2012)

Models Groups Definition (rules) Probability* Predicted class†

Model (1) 1 FPG≤4.9 and 2h-PCPG≤7.7 0.90 Non-diabetic

2 4.9<FPG≤5.3 and 2h-PCPG≤7.7 and WHtR≤0.6 0.72 Non-diabetic

3 FPG>5.3 and 2h-PCPG≤4.4 and age ≤43 0.67 Non-diabetic

4 4.9<FPG≤5.3 and 2h-PCPG≤7.7 and WHtR>0.6 0.53 Diabetic

5 FPG≤5.3 and 2h-PCPG>7.7 0.70 Diabetic

6 FPG>5.3 and 2h-PCPG≤4.4 and age >43 0.68 Diabetic

7 FPG>5.3 and 2h-PCPG>4.4 0.79 Diabetic

Model (2) 1 FPG≤4.9 0.86 Non-diabetic

2 4.9<FPG≤5.3 and WHtR≤0.56 0.70 Non-diabetic

3 4.9<FPG≤5.3 and WHtR>0.56 and FHD=‘no’ 0.58 Non-diabetic

4 FPG>5.3 and 0.4<WHtR≤0.49and MAP≤92 0.75 Non-diabetic

5 4.9<FPG≤5.3 and WHtR>0.56 and FHD=‘yes’ 0.78 Diabetic

6 FPG>5.3 and WHtR≤0.45 0.56 Diabetic

7 FPG>5.3 and 0.45<WHtR≤0.49 and MAP>92 0.67 Diabetic

8 FPG>5.3 and≤0.49≤WHtR<0.56 0.74 Diabetic

9 FPG>5.3 and WHtR>0.56 0.84 Diabetic

Model (1) was developed based on 15 variables which included 2h-PCPG.
Model (2) was developed based on 14 variables (2h-PCPG was excluded).
*The percentage of population in the defined subgroup, which can be interpreted as probability of an outcome.
†Predicted outcome for men who belong to the defined subgroup.
2h-PCPG, 2-hour postchallenge plasma glucose (mmol/L); FHD, family history of diabetes; FPG, fasting plasma glucose (mmol/L); MAP,
mean arterial blood pressure (mm Hg); WHtR, waist-to-height ratio.

Figure 4 Decision tree for model 1 in women. Performance measures: sensitivity: 78%, specificity: 78%, G-Mean: 0.78, AUC:

0.81. 2h-PCPG, 2-hour postchallenge plasma glucose; AUC, area under the curve; FPG, fasting plasma glucose; G-Mean,

geometric mean; WHtR, waist-to-height ratio.
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central obesity among women is a risk factor for T2D,
whereas in men an increased level of FPG and MAP
together is a risk factor for T2D. A simple point score
system has recently been developed based on the TLGS
database, including SBP, FHD, WHtR, TG/HDL-c and
FPG as predictors;39 continuous variables such as FPG
and WHtR were, however, categorised into three or four
groups. In other words, the cut-off points were prede-
fined for prediction of T2D. In our study, DT algorithms
generated optimal cut-off points for these variables as
they relate to the best classification of participants with
and without T2D.
Some strengths of this study include a large

population-based sample. We used direct measurements
of glucose value and anthropometric indices rather than
self-reported information for both predictor variables
and outcomes. Applying two variable selection methods
with two evaluation criteria, missing data imputation and
construction of DT models for both genders are other
notable strengths. We have described the methodology
in detail, allowing medical researchers to perform
similar studies in different domains using DT methods.
The limitation of this study is the 35% loss to follow-up

rate, although a number of authors have proposed a
value of 50–80% as an acceptable level of follow-up
rates.40 In this study, we found statistically but not clinic-
ally important differences between the followed versus
non-followed population in some baseline variables. The
followed men had a higher value for the TC-to-HDL
ratio, but lower age. In women, age, pulse pressure and
MAP were lower for the followed population. Since these
factors were associated with T2D, the results may be biased
towards an underestimation of the association between

these risk factors such as age and MAP and T2D.
Additionally, we did not have data on dietary intake, which
is an important factor in T2D studies. Finally, the models
need to be validated on an independent population con-
sidering the ethnic and racial variations in T2D incidence.

CONCLUSIONS
DT analysis identified different interactions between
predictor variables of T2D incidence in men and
women. Sensitivity and G-Mean were measured on the
validation data and showed acceptable performance of
the DT models. Our results showed that WHtR and
FPG were important risk factors in women and men,
respectively.
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Table 8 Groups identified by decision tree models for women (Tehran Lipid and Glucose Study 1999–2012)

Models Groups Definition (rules) Probability* Predicted class†

Model (1) 1 FPG≤5.2 and WHtR≤0.55 0.88 Non-diabetic

2 FPG≤5.2 and 0.55<WHtR≤0.66 and 2h-PCPG≤7.4 0.72 Non-diabetic

3 FPG≤5.2 and WHtR>0.66 and 2h-PCPG≤6.9 0.57 Non-diabetic

4 FPG>5.2 and WHtR≤0.52 0.74 Non-diabetic

5 FPG≤5.2 and 0.55<WHtR≤0.66 and 2h-PCPG>7.4 0.69 Diabetic

6 FPG≤5.2 and WHtR>0.66 and 2h-PCPG>6.9 0.75 Diabetic

7 FPG>5.2 and WHtR>0.52 0.81 Diabetic

Model (2) 1 FPG≤5.2 and WHtR≤0.55 0.88 Non-diabetic

2 FPG≤4.9 and 0.55<WHtR≤0.66 0.73 Non-diabetic

3 4.9<FPG≤5.2 and 0.55<WHtR≤0.66 and MAP≤97 0.64 Non-diabetic

4 FPG≤5.2 and WHtR>0.66 and MAP≤99 0.59 Non-diabetic

5 FPG>5.2 and WHtR≤0.52 0.74 Non-diabetic

6 4.9<FPG≤5.2 and 0.55<WHtR≤0.66 and MAP>97 0.67 Diabetic

7 FPG≤5.2 and WHtR>0.66 and MAP>99 0.66 Diabetic

8 FPG>5.2 and WHtR>0.52 0.81 Diabetic

9 FPG>5.2 and WHtR>0.56 0.84 Diabetic

Model (1) was developed based on 20 variables which included 2h-PCPG.
Model (2) was developed based on 19 variables (2h-PCPG was excluded).
*The percentage of population in the defined subgroup, which can be interpreted as probability of an outcome.
†Predicted outcome for women who belong to the defined subgroup.
2h-PCPG, 2-hour postchallenge plasma glucose (mmol/L); FPG, fasting plasma glucose (mmol/L); MAP, mean arterial blood pressure
(mm Hg); WHtR, waist-to-height ratio.
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