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Abstract

Summary: Functional analysis has become a common approach to incorporate biological knowledge into the ana-
lysis of omics data, and to explore molecular events that govern a disease state. It is though only one step in a wider
analytical pipeline that typically requires use of multiple individual analysis software. There is currently a need for a
well-integrated omics analysis tool that performs all the steps. The ProteoMill portal is developed as an R Shiny ap-
plication and integrates all necessary steps from data-upload, converting identifiers, to quality control, differential
expression and network-based functional analysis into a single fast, interactive easy to use workflow. Further, it
maintains annotation data sources up to date, overcoming a common problem with use of outdated information
and seamlessly integrates multiple R-packages for an improved user-experience. The functionality provided in this
software can benefit researchers by facilitating the exploratory analysis of proteomics data.

Availability and implementation: ProteoMill is available at https://proteomill.com.

Contact: martin.ryden@med.lu.se

1 Introduction

The large amounts of data generated from omics experiments have
stressed the need for methods to reveal and extract critical compo-
nents of dynamic biological systems in a readable manner, which
connects to the specific study question. Expression data that are
derived from high throughput analysis have multiple levels of bio-
logical features connected to it. In a real biological environment, the
physical, genetic, regulatory and functional properties of a molecu-
lar set work together in a response to environmental stimuli.
Holistically evaluating these attributes is a way to reveal the inter-
communication between these properties and to provide a biological
context. However, this task encompasses some impending chal-
lenges, including differences in biomolecule identification, data
dimensionality reduction, biological contextualization, statistical
analysis and data visualization and this differs among the various
types of individual datasets.

Existing omics analysis tools are typically specialized for individ-
ual parts of the analysis workflow and differences in data format
standards means the tools do not integrate well when used as part of
an analysis workflow. This requires the researcher not only to have
knowledge of the different individual software, but also knowing
how to format the generated output from one software for use in the
next software. This often poses a time-consuming task, particularly

for researchers with little computational experience or little experi-
ence with the software(s) in question and is prone to errors.

Omics analysis platforms such as Perseus (Tyanova and Cox,
2018) and Qlucore (Qlucore, 2021) offer thorough analytical and
explorative features, but require users to download and install their
software and is not open source. While there are many existing web-
based omics tools which are able to perform individual parts of an
analysis workflow (Efstathiou et al., 2017; Kuleshov et al., 2016;
Luo et al., 2017; Merico et al., 2010; Perlasca et al., 2019;
Schweppe et al., 2017; Zheng and Wang, 2008), many lack the abil-
ity to perform complete pipelines in fast, interactive web-environ-
ments. Reimand et al. lists the protocols and time consumption for
popular enrichment software, with the time expense ranging from
minutes to several hours (Reimand et al., 2019). In contrast, the run
time for ProteoMill functions are a few seconds at the most, as
described in Table 1.

Another important but often overlooked aspect for generating reliable
and biologically relevant results is the quality of annotation data, and, by
extension, a tool’s ability to maintain annotation data sources up to date.
Lina Wadi et al. reported that 67% of publications in their survey refer-
enced software using outdated annotation data (Wadi et al., 2016). Web-
based tools have an inherit advantage in that back-end data sources can
be dynamically updated without requiring manual action by the user
(such as downloading and installing software).

VC The Author(s) 2021. Published by Oxford University Press. 3491

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(20), 2021, 3491–3493

doi: 10.1093/bioinformatics/btab373

Advance Access Publication Date: 12 May 2021

Original Paper

https://orcid.org/0000-0001-6968-4314
https://proteomill.com
https://academic.oup.com/


Analysis of proteomic data faces additional challenges (Kirik
et al., 2012). Different gene- and protein level identifier types are
utilized in the various omics tools, which often require the research-
er to convert between identifier types before proceeding to the next
step of the analysis. This can result in loss of data since there can
exist one-to-many mappings between two identifier types or that an
identifier cannot be mapped between two identifier types (Reimand
et al., 2019). Furthermore, a frequent concern in mass spectrometry-
derived data is the abundance of missing values (Lazar et al., 2016;
Wang et al., 2017).

Thus, a tool that could help to transform the biological research
into integrated framework is preferred. The aim of this study is to de-
scribe a newly developed software that addresses many of the existing
shortcomings. The fundamental concepts of this software are to pro-
vide sets of well-integrated, easy-to-use and to a large extent auto-
mated functions for exploratory analysis of proteomic data.

2 Materials and methods

2.1 Architecture
ProteoMill runs as a web application using Shiny Server and is
hosted on Amazon Web Services. The software is developed in R
(version 3.6.1) and the interface was created using the R-package
Shiny (Chang et al., 2021) and shinydashboard (Chang and Ribeiro,
2018) (version 0.7.1) with a customized CSS theme. Animations
were created using jQuery and the library animejs. Plotly (Plotly
Technologies Inc., 2015), ggplot2 (Wickham, 2009), heatmaply
(Galili et al., 2018), networkD3 (Allaire et al., 2017) and
visNetwork (Almende et al., 2019) were used for plotting.

2.2 Identifier conversion
The Bioconductor packages AnnotationDbi (Pagès et al., 2020) and
ensembldb (Rainer et al., 2019) was used for converting between
identifiers. The identifier type of the user’s uploaded data is auto-
matically recognized and converted to four different identifier types
(where applicable). This way, the user can choose to display protein
labels as any of the five identifier types, but do not need to worry
about manually converting between identifiers.

2.3 Data quality control
Principal component analysis (PCA) was implemented using the R-pack-
age stats. Another package, mixOmics, was used for multilevel PCA.

2.4 Differential expression analysis
Two R-packages, limma (Ritchie et al., 2015) and DESeq2 (Love
et al., 2014) were implemented for differential expression analysis.
Each package is commonly used for fitting gene-wise linear models
to expression data. limma was originally developed with a primary
focus on the analysis of microarray data, while DESeq2 for the ana-
lysis of RNA-seq data and is based on the negative binomial
distribution.

Differential expression analysis is conducted by specifying two
contrasts and choosing a paired or non-paired design. The results
are evaluated by inspecting the table in the ‘Differential expression’
tab.

The results are displayed as estimated by the specific software,
using the software’s default settings for shrinkage parameters, cor-
rection for multiple testing, significance level and etc. For example,
the correction for multiple testing is done using the Benjamini–
Hochberg method and is applied to the tests performed within one
run of the analysis and not with respect to all tests performed within
one family of hypotheses in a study, which sometimes may be mis-
leading (Ranstam, 2016). The user needs to verify if these setting are
appropriate for the specific analysis done.

2.5 Functional enrichment and network analysis
The hypergeometric distribution was used to calculate the probabil-
ity of protein list overlap.
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(1)

In this formula, N is the total number of proteins in the back-
ground distribution, M is the number of proteins in the background
distribution annotated to a pathway, n is the total number of
selected proteins of interest and x are the proteins of interest anno-
tated to a pathway.

Pathway data and interaction data are dynamically collected
from Reactome (Fabregat et al., 2018) and STRING (Szklarczyk
et al., 2015) (https://reactome.org/download-data). MD5sum hashes
are used to ensure that the local database is up to date.

For each entry in the main pathway data file, the top-level parent
pathway was annotated. This was done by creating a directed acyclic
graph object using the R-package igraph (Csárdi and Nepusz, 2006).

2.6 Data sources
An important aspect of this software is to maintain data sources up
to date. This is done by using an automated workflow at a bi-
monthly interval. Data are collected from the two primary data
sources, Reactome (Fabregat et al., 2018) for pathway data and
STRING (Szklarczyk et al., 2015) for protein interaction data.
These data are then structured to a predefined format, making it
possible to integrate them in the analysis.

3 Results

The presented software, ProteoMill, proposes a unique approach to
conducting explorative analysis of proteomics data. The data visualiza-
tion capabilities present in this software are designed to make it possible
even for researchers without any particular computational training to
gain insights about the biological meaning of their data. Many of the
graphical components are interactive, which is a useful feature for ana-
lysing protein interactions and selecting subnetworks of interest.

A common goal in many of ProteoMill’s functionalities is to re-
duce data complexity, and to provide a framework for extracting
elements of biological relevance. PCA reduces a dataset of hundreds
or thousands of expression datapoints into a single datapoint for
each condition, plotted in 2–3 principal components, which in turn
describes the dimensions with largest variability. The datapoints
cluster together based on the similarity of their expression profiles.

Categorizing proteins into biological entities, described as path-
ways, is another way to reduce complexity and make sense of one’s
data. Network graphs produced from interaction data can be diffi-
cult to interpret. In ProteoMill, pathways are used to categorize and
label groups of interacting proteins, and as a way to inspect subnet-
works based on these common biological themes.

The integrated enrichment- and network analysis provides a
way for users to simultaneously explore functional analysis output
and interaction data, and this feature has been specifically designed
to easily identify and select subnetworks of interest for further ana-
lysis.

3.1 Reproducibility
ProteoMill supports the use of reproducibility tokens as a simple
way to load settings and database versions from a prior session. The
token contains information about all user defined settings that affect
the outcome of the analysis—every statistical result and its graphical
representations. The token also contains an MD5sum hash for the
uploaded dataset and warns the user if the uploaded file is not iden-
tical to the file used in the previous session.

3.2 Performance
To assess the performance of ProteoMill, we measured the execution
speed of its most prominent functions directly on the server (Table 1),
using a publicly available dataset consisting of 12 samples and 12 320
proteins (Wertheim et al., 2009). The time elapsed for rendering plots
depends on the client-side machine and browser. The column labeled
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‘Exec. Time’ describe the elapsed time of server-side calculations/data
sub-setting operations and the column ‘Total time’ also describes the
rendering time as measured on a 2018 MacBook Pro (2.2 GHz 6-
Core Intel Core i7).

4 Discussion

The integrated features in this software provide powerful visualiza-
tion strategies for the exploration of omics data, with a particular
focus on the management and manipulation of proteomics data. By
using this platform, researchers can expect to discover biologically
relevant rendering of their data through results aggregated from reli-
able and up-to-date data sources.

The software offers innovative strategies to interactively explore
quantitative proteomics data in a comprehensive workflow from
data-upload to network analysis. It has a strong focus on well-main-
tained data sources, computational efficiency and user-friendliness.

Importantly, ProteoMill utilizes many existing R packages for
statistical analysis and pathway annotation that are standard in the
field. However, these methods are strongly focused on estimation of
P-values and classifications of results based on P-value thresholds.
This is an unfavorable approach to use of statistical methods and
there is a need to move further in better estimation methods and
expressing uncertainty (Benjamin et al., 2018).
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Table 1. Benchmark results of ProteoMill functions

Function Exec. time (ms) Total time (ms)

Upload data 2560 ––

Set missing value cutoff 90 ––

Differential expression (limma) 215 ––

Differential expression (DESeq2) 5042 ––

Pathway over-representation 367 ––

Interaction networka 53 1041

Interaction networkb 58 5580

aUsing 162 nodes and 582 edges.

bUsing 1356 nodes and 17 718 edges.
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