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Abstract: The growing aging of the world population is leading to an aggravation of diseases, which
affect the autonomy of the elderly. Wireless body sensor networks (WBSN) are part of the solutions
studied for several years to monitor and prevent loss of autonomy. The use of optical wireless
communications (OWC) is seen as an alternative to radio frequencies, relevant when electromagnetic
interference and data security considerations are important. One of the main challenges in this
context is optical channel modeling for efficiently designing high-reliability systems. We propose
here a suitable optical WBSN channel model for tracking the elderly during a walk. We discuss the
specificities related to the model of the body, to movements, and to the walking speed by comparing
elderly and young models, taking into account the walk temporal evolution using the sliding
windowing technique. We point out that, when considering a young body model, performance
is either overestimated or underestimated, depending on which windowing parameter is fixed. It
is, therefore, important to consider the body model of the elderly in the design of the system. To
illustrate this result, we then evaluate the minimal power according to the maximal bandwidth for a
given quality of service.

Keywords: optical wireless communications; channel modeling; wireless body sensor network;
elderly monitoring; mobility

1. Introduction

In view of demographic trends, the proportion of elderly people in our population is
still growing. Aging, even “normally”, is characterized by an increase in frailty, including
muscle weakness and instability that can affect level of autonomy. For example, falls are
the leading global cause of accidental death and disability in older people, as well as the
most common cause of injury and hospitalization [1]. To avoid loss of autonomy, a strategy
is to encourage and help older people to be and stay active [2,3].

In this context, Internet of things (IoT), allowing developers to connect multiple
devices, systems, and technologies, is increasingly used in particular for monitoring health
and physical activity of the elderly through a body sensor network (BSN) [4]. In most cases,
the sensors are connected via wireless technologies offering freedom of movement to the
wearer especially during activity. In such a remote monitoring context, the wireless BSN
(WBSN) system has specific requirements such as high reliability, low power consumption,
and high data security. In addition, a WBSN can involve off-body, on-body, and in-
body sensors; thus, we can differentiate extra-WBSN and intra-WBSN communication [5].
Connectivity solutions mostly use radiofrequency (RF) wireless technologies through
different standards such as Bluetooth Low Energy among others [6,7], with air then being
the communication medium. In addition, the human body is also used as a communication
medium for intra-WBSN [8]. We focus in this study on wearable on-body sensors with
extra-WBSN transmissions.

In the case of extra-WBSN, there are still challenges related to RF spectrum congestion,
interference, data security, and privacy. For example, the use of RF technologies may be
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limited due to potential interference with sensitive devices in environments such as hospi-
tals [9] or due to risks associated with human exposure to RF electromagnetic fields [10].
Other technologies to address these limitations such as optical wireless communications
(OWC) have been recently investigated for WBSN applications for both extra-WBSN and
intra-WBSN [11–17].

OWC technology has been explored in several optical bands, covering ultraviolet (UV),
infrared (IR), and, more recently, the visible, due to light emitting diode (LED) devices used
for both illumination and wireless communications [18–21]. This technology offers many
benefits such as unlicensed spectrum, high bandwidth, simple and cheap front-ends, and
no electromagnetic interference. In addition, OWC can enhance indoor communication
security and confidentiality as optical rays cannot pass through walls or opaque objects.

One main benefit of OWC for WBSN application is the RF interference reduction near
a person wearing a communicating sensor. On the other hand, the presence of the body
inducing strong attenuation or blockages of the optical beams is also a challenge, especially
when the person is in motion. Another advantage of the OWC is the absence of small-scale
fading associated with multipath. A comparative study of the specificities of the optical
channel compared to the radio channel was reported in [22]. It highlighted high sensitivity
to blocking effects due to the body and a slowly varying behavior of the channel with a
relatively long coherence time compared to RF links.

Several studies focusing on OWC channel behavior have highlighted the impact of
body and/or movements when designing dynamic WBSN systems [22–28]. For a realistic
modeling in the case of a walking exercise, the overall body movements depend on the
mobility scenario including the random path, while the movements of the body parts such
as the legs and the arms are more related to the body shape.

Regarding the scenario for the overall mobility, a simple stochastic model commonly
used to describe the behavior of one or more mobile nodes in a confined space is random
waypoint (RWP) [29,30]. However, RWP presents some drawbacks, in particular the path
discontinuities due to sharp rotations. In order to avoid this issue, some studies have
proposed modified models of the RWP (e.g., [22]). Another disadvantage is that the RWP
model exhibits a nonuniform spatial node distribution with a high density in the center of
the simulation area [30,31]. In the case of our study, we only consider a single mobile node
which is the OWC transmitter (Tx) worn by an elderly person during a walk inside a room.
The OWC receiver (Rx) is included in a lighting panel at the room ceiling center, which is a
classical location for illumination purpose. Consequently, using a RWP model can lead to
overestimating the system performance. Thus, we propose to use a different approach, i.e.,
the random walk model (RW), with a rather uniform spatial distribution of nodes [29,31].
This permits evaluating the communication performance more homogeneously over the
entire room area.

In addition to overall mobility, one challenge is related to body part movement
modeling which is linked to the body shape type. In [24–26], simple surfaces or volumes
only considering body position distribution within the environment were first used to
represent the body shape of the person. In [27], a model considering the arm presence
and wrist rotations was proposed. However, the arm movement linked to the walk was
not considered. New more realistic approaches were recently proposed using 3D human
shapes [22,32], which represent a young adult. In [22], the normal walking cycle was
broken down into sequences obtained from 3D animation software. These sequences were
used to model arm and leg movements during walking. These studies have highlighted
that mobility and movement change the geometry of the optical links, which can have an
impact on performance.

However, gait pattern is influenced by age and health factors, among others [33]. It is
recognized that older people take a different gait than younger people, including slower
speed and reduced step length such that the movement of the legs is also reduced [33,34].
In addition, there is also a decrease in the amplitude of the arm swing [35]. Therefore, the
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question is how these characteristics affect communication performance if the system is
designed from a young adult model.

In this article, our contribution is to investigate the behavior of an optical WBSN
channel taking into account the specificities of the elderly in relation to the body shape, the
arm movement, the step length, and the walking speed. To the best of our knowledge, no
study on the performance of OWC-based systems has yet been carried out in the context of
monitoring the elderly taking into account parameters related to aging.

Thanks to the motion-capture recordings available in the literature [36], we define
a model of elderly people with particular movements of the limbs during walking. The
global mobility scenario is based on the RW model. The behavior of the OWC channel
is analyzed from Monte Carlo ray tracing simulations (MCRT) using dedicated software
called RapSor [37]. We discuss the interest of a specific model for the elderly, by comparing
the characteristics of the channel with those obtained with a classic young person model.
Optical WBSN performance for walk monitoring is then dynamically evaluated in terms of
the outage probability with an approach taking into account the time correlation during
the walk.

The rest of the article is organized as follows: the description of the optical WBSN
system, as well as two body models for young people and the elderly, is presented in
Section 2. We also define the movements during walking linked to the limbs, the walking
speed, and the RW trajectory. In Section 3, the channel statistical analysis is performed,
showing the channel gain and delay spread distributions for the two models. Section 4
details the analysis of the performance in terms of outage probability, taking into account
the correlation due to walking and compare the results for both models before conclusion.

2. System Modeling Description

The studied context is the remote monitoring of a walking elderly person, who is
equipped, for example, with an accelerometer and a heart rate sensor. An optical transmitter
included in a wrist-worn system transmits data from the sensors to a receiving system
located on the room ceiling. Visible wavelengths are not used for communication, as the
brightness could be unpleasant to the user’s eyes. Below, we consider transmissions in the
infrared (IR) range.

2.1. Environnement Description

The environment is a room of dimensions 6.7× 6.6× 3 m3 corresponding to the length,
width, and height, respectively. This environment does not contain any object except the
elements of the system (transmitters Tx and receivers Rx) and the body of the person.

We assume that a luminaire is located in the center of the room ceiling, designed as
a panel of standard dimensions of 0.6× 0.6 m2 and 0.20 m thick, with four identical IR
Rxs. According to previously published results [38], all Rx are located at the panel corners
oriented at an angle of 45

◦
to the ceiling (see Figure 1). This configuration provides spatial

diversity using a switched combining technique that permits optimizing room coverage as
the person moves.

The most classical device used as an optical Rx to detect light and convert it into an
electric signal is a photodiode. The main properties of photodiodes are their responsivity
R (A/W), physical active area Ar

(
mm2), and field of view FOV

(◦)
[18]. The values of

these parameters listed in Table 1 are constant throughout the rest of the paper.
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Figure 1. Top view of studied environment and Rx locations.

Table 1. List of Rx parameters.

Definition Values

Positions [X Y Z] (m)

RX1 : [3.0 3.05 2.8]
RX2 : [3.0 3.65 2.8]
RX3 : [3.6 3.65 2.8]
RX4 : [3.6 3.05 2.8]

Receivers Orientation angle (◦) 45
Physical active area Ar (mm2) 34.5

Field of view FOV (◦) 45
Responsivity R (A/W) 1

The Rx orientations represented in Figure 1 are fixed, set to 45
◦
, unlike those of the Tx,

which vary according to the movements of the person.
We consider that the emitter Tx is an IR light-emitting diode (LED), modeled as a

Lambertian source with an order m, linked to the half-power angle (ϕ1/2), as described
in [18].

m =
−ln(2)

ln(cos(ϕ1/2))
(1)

The emitter Tx is even more directional when m is high, i.e., when the half-power
angle ϕ1/2 is small and vice versa [18]. In addition to the half-power angle, the Tx is
characterized by its random location and orientation in the room linked to the random
trajectory of the person wearing the sensor as further described. Consequently, the optical
line-of-sight (LOS) link condition cannot always be fulfilled. Therefore, the uplink received
optical power is due to the power from both LOS and non-LOS paths, i.e., reflected paths
over the room surfaces. Due to the roughness of typical indoor environment surfaces that
are characterized by a reflectivity parameter ρ, we consider perfect diffuse reflection when
the IR beam hits the room surfaces. This latter is consequently modeled using a Lambertian
bidirectional reflectance distribution function (BRDF) [37]. In this work, the reflectivity
parameter ρ is set to 0.8 for all room surfaces.

2.2. Body and Mobility Models
2.2.1. Body Shape Model

To study the impact of specificities related to age, we consider two types of 3D human
body shape model representing a young person with a classical posture (see Figure 2b) and
another much older person with the torso bent forward, as illustrated in Figure 2a. Indeed,
spinal curvature is a common consequence of aging affecting the quality of walking [39].
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shape model.

We can see in Figure 2 that the transmitters located at the wrist are almost at the same
height from the floor. The coordinates of the position and orientation vector

→
v of Tx from

the origin of the coordinate system (0, 0, 0) located between the legs (see Figure 2) are
shown in Table 2 for both body models.

Table 2. Tx positions and orientation vector coordinates on a young and elderly body.

Position [X Y Z] (m) Normalized Orientation vector
→
v [x y z]

Young [0.22 0.14 0.88] [0.75− 0.38 0.53]
Elderly [0.26 0.05 0.85] [0.64− 0.74 0.14]

These body representations correspond to the starting images of a walking cycle,
which can be then modeled using 3D animation software.

2.2.2. Mobility Model Description

In order to consider the mobility, we define two types of movements: the movement
of body parts and that of the whole body in the room. Below, we denote local motion for
the movement of body parts and global motion for the movement of the whole body.

1. Local Motion

In order to consider movements of arms and legs, we use the 3D modeling software
Blender [40] that provides animated bodies of young and old people. These animations are
from a database containing real motion captures of a person [36]. They are recorded on
different frames constituting a walking cycle, as partially illustrated in Figure 3a for the
elderly and in Figure 3b for young people.

There are differences between both movement patterns. The first concerns the orien-
tation changes of the transmitter at the wrist during the gait cycle. Indeed, we can see in
Figure 3a that the orientation vector

→
v in the case of the elderly varies but is always in the

same direction. On the contrary, for the young model in Figure 3b, the vector may vary in
the opposite direction depending on the swing of the arms, for example, between frame 1
and frame 17. This difference is representative of an age-related specificity, which is the
decrease in amplitude of the arm swing with aging [35].
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The second difference concerns the length of steps, which depends on a person’s
height and walking speed, as well as on their age [34,41]. Considering that the young body
model is 1.70 m tall and the person walks at a speed of 2 m/s, we assume a step length
value of 64 cm [41]. The elderly person walks much slower at a speed of 0.5 m/s. As it is
curved, the body height of the elderly person is 1.32 m and we consider that the length of
the steps is 20 cm.

2. Global Motion

In addition to local movements, we consider body movements in the room in terms
of trajectory. Currently, several mobility models can be used to describe the behavior of
one or more mobile nodes in a particular area, the most classic one being RWP [29–31]. In
the RWP model after a given pause time, a mobile node chooses a destination defined by
a random position in the simulation area. The node then travels toward the destination
at a speed randomly and uniformly taken in a given range. Once arrived, after a new
pause, the process starts again. One characteristic of RWP is that spatial node distribution
exhibits a nonuniform behavior mainly concentrated in the center of the area [22], which is
a disadvantage in our context. Indeed, since the Rxs are in the center of the ceiling, such a
model leads to a nonhomogeneous distribution of the OWC uplinks in the environment,
affecting the statistical performance analysis.

Therefore, as described in Section 1, we focus in this study on the RW mobility
model [29]. With a RW model, each node chooses speed and direction instead of destination,
uniformly from preset ranges, and then moves during a constant time interval or over a
constant distance. At the arrival location, it remains stable for a certain time and then starts
moving again following the same rule. In this work, we consider that the pause time is null.
In addition, we use the RW model with a constant travel distance. This distance, called
dstep, is constant throughout the trajectory, as illustrated in Figure 4, and corresponds here
to the average step length, i.e., dstep = 64 cm for the young person and dstep = 20 cm for
the elderly.
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Figure 4. Illustration of a node traveling pattern using RW mobility model.

We propose in Figure 5a the algorithm for generating the RW trajectory used in this
work. In Figure 5a,

→
u is a unit vector on the two dimensions (x and y) and α is the rotation

angle for direction change, randomly and uniformly chosen between −45
◦

and 45
◦

as
shown in Figure 5b. In cases where the node goes outside the area before the change in
direction occurs, we force it to return by choosing a new direction between 0

◦
and 360

◦
.

Moreover, to synchronize local motions to the global ones, a change in direction is made
only after having traveled a certain distance d = 2× dstep corresponding to a walking cycle,
as illustrated in Figure 6.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 20 
 

 

Therefore, as described in Section 1, we focus in this study on the RW mobility model 
[29]. With a RW model, each node chooses speed and direction instead of destination, 
uniformly from preset ranges, and then moves during a constant time interval or over a 
constant distance. At the arrival location, it remains stable for a certain time and then starts 
moving again following the same rule. In this work, we consider that the pause time is 
null. In addition, we use the RW model with a constant travel distance. This distance, 
called 𝑑ୱ୲ୣ୮, is constant throughout the trajectory, as illustrated in Figure 4, and corre-
sponds here to the average step length, i.e.,  𝑑ୱ୲ୣ୮ = 64 cm  for the young person 
and 𝑑ୱ୲ୣ୮ = 20 cm for the elderly.  

We propose in Figure 5a the algorithm for generating the RW trajectory used in this 
work. In Figure 5a, 𝑢ሬ⃗  is a unit vector on the two dimensions (𝑥 and 𝑦) and 𝛼 is the rota-
tion angle for direction change, randomly and uniformly chosen between −45° and 45° 
as shown in Figure 5b. In cases where the node goes outside the area before the change in 
direction occurs, we force it to return by choosing a new direction between 0° and 360°. 
Moreover, to synchronize local motions to the global ones, a change in direction is made 
only after having traveled a certain distance 𝑑 = 2 × 𝑑ୱ୲ୣ୮ corresponding to a walking 
cycle, as illustrated in Figure 6. 

 

Figure 4. Illustration of a node traveling pattern using RW mobility model. 

  
(a) (b) 

Figure 5. RW trajectory: (a) RW trajectory generation algorithm; (b) rotation angle for direction change. Figure 5. RW trajectory: (a) RW trajectory generation algorithm; (b) rotation angle for direction change.



Sensors 2021, 21, 2904 8 of 19
Sensors 2021, 21, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 6. Illustration of direction changes. 

We represent in Figure 7 the spatial distribution of one million node positions in the 
studied area for the RW algorithm described above. The node density is represented by 
the color level. We can verify in Figure 7 that positions of the node are quite homoge-
nously distributed in the room. 

 
Figure 7. Node distribution for RW mobility. 

3. Channel Characterization  
To analyze the optical WBSN channel behavior, we used MCRT-based simulations 

of channel impulse response (CIR) coupled with the body and mobility modeling that we 
previously defined. 

We used the RaPSor simulation software (Ray Propagation Simulator) developed in 
our laboratory. It is an extensible tool based on the Netbeans platform and coded in Java, 
for modeling wave propagation in realistic environments in different frequency domains, 
from the radio range to the optical one. This simulation software has already been vali-
dated for the propagation of IR waves in confined environments and the WBSN context 
[37,42]. It is based on a stochastic Monte Carlo method, associated with a ray-tracing al-
gorithm, numerically determining both LOS and non-LOS paths contributions (time of 
arrival and attenuation) from analytical models of reflection and propagation and for one 
defined link configuration. For all our simulations, in order to manage tradeoffs between 
the computation time and precision, we consider three reflections per optical beam, which 
is a classic approach for nondirected transmissions [43]. From this set of optical path con-
tributions, the CIR ℎ(𝑡) is then numerically determined. 

Figure 6. Illustration of direction changes.

We represent in Figure 7 the spatial distribution of one million node positions in the
studied area for the RW algorithm described above. The node density is represented by the
color level. We can verify in Figure 7 that positions of the node are quite homogenously
distributed in the room.
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3. Channel Characterization

To analyze the optical WBSN channel behavior, we used MCRT-based simulations of
channel impulse response (CIR) coupled with the body and mobility modeling that we
previously defined.

We used the RaPSor simulation software (Ray Propagation Simulator) developed in
our laboratory. It is an extensible tool based on the Netbeans platform and coded in Java,
for modeling wave propagation in realistic environments in different frequency domains,
from the radio range to the optical one. This simulation software has already been validated
for the propagation of IR waves in confined environments and the WBSN context [37,42].
It is based on a stochastic Monte Carlo method, associated with a ray-tracing algorithm,
numerically determining both LOS and non-LOS paths contributions (time of arrival and
attenuation) from analytical models of reflection and propagation and for one defined
link configuration. For all our simulations, in order to manage tradeoffs between the
computation time and precision, we consider three reflections per optical beam, which
is a classic approach for nondirected transmissions [43]. From this set of optical path
contributions, the CIR h(t) is then numerically determined.
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Several metrics can be used to characterize the channel, including the DC gain H0
and the temporal dispersion of h(t). The DC gain is one of the most important features
representing the ratio between the optical received power Pr and the emitted one Pt. It is
defined by the Fourier transform of impulse response taken in f = 0, and it is linked to
h(t) by the following expression [18]:

H(0) =
∫ +∞

−∞
h(t)dt = H0 (2)

Since h(t) is a discrete signal, numerically determined from the ray-tracing technique,
H0 is obtained in this case via a discrete summation.

The temporal dispersion of h(t) allows assessing the impact of inter-symbol interfer-
ence (ISI). Thus, another main channel parameter is the root-mean-square (RMS) delay
spread τRMS defined as follows [18]:

τRMS =

√√√√∫ +∞
0 (t− τ0)

2|h(t)|2dt∫ +∞
0 |h(t)|2dt

(3)

The mean excess delay τ0 is expressed by

τ0 =

∫ +∞
0 t|h(t)|2dt∫ +∞
0 |h(t)|2dt

(4)

When taking into account the mobility of the person in the room, we must consider
the link established, which is a set of impulse responses h(t) resulting from local and global
movements, as defined in Section 2. Therefore, the channel metrics such as DC gain and
RMS delay have to be statistically analyzed, and the channel behavior is characterized
using the statistical distribution.

We first obtained from MCRT simulation results the sets of H0 and τRMS values for
both young and elderly body shape along the generated trajectories with the movements
associated with age. In this work, we assume that the two bodies are characterized by a
reflectivity value ρ equal to 0.1 that corresponds to a very absorbent material. In addition,
we consider for the channel analysis 10,000 CIR values corresponding to different Tx
positions and orientations when the person moves inside the room.

We analyze channel behavior on the basis of the optical gain probability density
function pd f (H0). In Figure 8, the PDFs for the two body models of young (Figure 8a)
and elderly (Figure 8b) people are plotted for different Tx directivity characterized by
half-power angle values ϕ1/2 (corresponding to certain m values).

First, we observe that the distribution of the gain values for the two models follows
the same behavior depending on the directivity of the transmitter Tx.

Indeed, it can be noted that, for both models, low ϕ1/2 values lead to a narrow PDF,
traducing a most probable value around −60.4 dB. More precisely, it is for ϕ1/2 = 20

◦
that

the PDF is the narrowest for both models, and this is even more the case for the elderly one.
For higher ϕ1/2 values, it can be observed that the spreading range increases and differs
between the two models. Actually, gain values are up to −50 dB for the young model
and −54 dB for the elderly one, with ϕ1/2 = 45

◦
, 60

◦
being the angles corresponding to

highest probability in this range. If we focus on the other part of the curves, i.e., the lowest
gain values, we can observe that gain values are more dependent on the ϕ1/2 value for the
young model than for the elderly one. This is linked to the arm movements, which are
more important in the case of the young model, introducing more cases where the optical
link is weakened. On the other hand, for both models, the Tx angle value ϕ1/2 = 45

◦
is the

optimal one, leading to the same highest minimal gain value (around −61 dB).
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Therefore, as a conclusion, ϕ1/2 = 45
◦

is a good tradeoff to optimize optical gain
values for both models; thus, we consider this optimal angle below.

Lastly, it can be noted that, for this angle, the maximum channel gain value for the
young body is −53 dB, while, for the elderly, it is 2 dB lower, around −55 dB. Thus, using
a young body model, the channel behavior could be overestimated when designing the
WBSN system for monitoring the elderly.

Moreover, to study the impact of the model on the channel behavior in terms of delay,
in Figure 9, the PDF of τRMS is plotted for the optimal Tx angle of 45

◦
. We see that, in this

case, the choice of a model has very little impact as the two curves are quite identical.
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We report in Table 3 the maximum delay spread τRMS_MAX and the corresponding
maximal bandwidth BMAX for avoiding ISI considering both models. Indeed, when the
delay spread is significantly shorter than the symbol period TS, the ISI effect can be
neglected. Thus, the maximal bandwidth BMAX = 1

TS
estimated from τRMS_MAX is such that

BMAX ≤
1

10τRMSMAX

(5)

From the results in Table 3, we assume that channel delay dispersion and, hence,
ISI effect are roughly negligible for a bandwidth up to approximately 10 MHz, which
is compatible with the rates of most sensors dedicated to health or activity monitoring,
generally lower than 1 Mbps [12].

Table 3. Maximum delay spread τRMS_MAX and maximum data rate.

τRMS_MAX(ns) BMAX (MHz)

Young 9.90 10.09
Elderly 10.08 9.92

Since the proposed optical WBSN system concerns walk monitoring, it must be able
to transmit data with the greatest reliability regularly during exercise. For this aim, we
develop in the next section an approach taking into account channel behavior evolution
along the trajectory to assess the performance and compare the impact of both channel
models for young and elderly persons.

4. Performance Evaluation
4.1. Metric Definitions

Linked to the optical channel gain obtained in the previous section and depending on
the modulation, the signal-to-noise ratio (SNR) is a key metric used to assess performance,
taking into account the power of the transmitter and the noise contribution. The SNR γ
can be defined in a general manner as follows [18]:

γ =
Pt

2H0
2R2

σ2 (6)

where σ2 represents the total variance of the noise assuming additive white Gaussian
noise (AWGN), Pt is the average emitted optical power, and R is the responsivity of
the photodiode.
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For indoor environments, induced background shot noise and receiver thermal noise
are generally the dominant noise sources [44]. However, the most limiting factor is shot
noise related to the induced ambient current IB, as described in [18].

σ2 = 2qIBB (7)

where q is the electron quantum charge, and B is the bandwidth of the modulated sig-
nal. In our context, we use a value of 200 µA for IB as classically reported for indoor
environments [32,45].

The channel gain is a random variable as seen in Section 3; thus, so is the SNR.
The chosen performance metric in this analysis is the outage probability Pout, classically

defined as the probability that γ becomes lower than a given performance corresponding
to a γ limit value called γ0.

Pout = p(γ < γ0) =
∫ γ0

−∞
pd f (γ)dγ (8)

For a given value of γ0, Pout can be, thus, obtained using the channel gain distribution
linked to the person positions in the room.

We report in Figure 10 the evolution of Pout as a function of γ0 for the models of
young and old people considering various average emitted power Pt and a bandwidth B of
1 MHz. We consider Pt values between 50 mW and 200 mW taking into account the power
constraint due to IR eye-safety considerations [46]. To construct an accurate analysis, we
considered 10,000 values of γ issued from the walking scenario described in Section 2.
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We observe that the Pout curves are similar for both models whatever the emitter power.
This is in accordance with the results shown in Section 3 regarding channel gain PDF.

We could therefore conclude that the specificities linked to age have no impact. How-
ever, this statistical approach considers all the positions without taking into account the
followed trajectory. In order to determine the performance of the transmission continuously
during the walk, the correlation between successive positions must be taken into account.
Indeed, as the person walks, the optical gain and, thus, the SNR γ and the performance
vary. By considering the walking speed, we can study the evolution of the performance
either as a function of time or as a function of the traveled distance.

As an example, we report in Figure 11 the evolution of γ over 1 min considering both
young and elderly models, as defined in Section 2, with Pt = 65 mW and B = 1 MHz.
In addition, as described in Section 2, the models of the young and elderly include the
walking speed, which was set to 2 m/s and 0.5 m/s, respectively.
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This example shows that performance varies over time for the two models. Actually,
we observe that γ undergoes strong variations over time whatever the body model. How-
ever, these variations are more important for the young person than for the elderly. This is
linked to the differences between the two models in terms of velocity and local movements.

To account for correlation between the successive values of γ corresponding to consec-
utive positions along the trajectory, we developed an analysis based on the sliding window
technique. The principle is to evaluate the performance taking into account its variation
over time by using two parameters: the size of the observation window and the value of
the sliding step, related to the overlap between each window.

In the analysis below, the window overlap for the sliding process is chosen equal to
the person step length dstep.

To evaluate Pout considering a sliding window, we only focus on windows where
γ is initially greater than γ0. If γ becomes lower than γ0 at least once over a selected
window, we consider that as a case of outage. The outage probability is then obtained by
dividing the number of cases of outage by the total number of observation windows over
the entire trajectory.

The observation window size is an important parameter for the analysis. Indeed, this
represents the interval during which the system reliability must be ensured with a given
outage probability criteria. We denote T as the time duration of the window, whereas D is
the corresponding distance, related to the walking speed SW , varying with age.

D = Sw × T (9)

Below, we compare performance in terms of Pout as a function of T and D for
both models.

4.2. Outage Performance with Sliding Windowing

The outage probability Pout taking into account correlation was evaluated as a function
of γ0 for the models of young and old people considering an average emitted power Pt of
65 mW and a bandwidth B of 1 MHz.

For both models, results are plotted in Figure 12 considering given window sizes T
equal to 1 s, 3 s, and 7 s.

In addition, we report the uncorrelated outage probability curves for the same power
for comparison.
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The sliding step corresponds to a length dstep = 0.64 m for the young person and
dstep = 0.2 m for the elderly. Considering the used walking speeds for young and elderly
people, this corresponds to a step duration of 0.32 s and 0.4 s, respectively.

First, it is noted that, considering the evolution along the trajectory, the performances
are degraded in comparison to the uncorrelated case. This is all the more significant with
the size of the sliding window. Thus, it is important to take into account correlation for
performance evaluation.

In addition, we see that performance between the two models diverges. It is always
better with elderly model. Thus, including specificities of age with the elderly model allows
not underestimating the WBSN performance.

To complete the analysis, Figure 13 shows the performance by fixing the size of the
observation window in terms of distance D. Here, we observe that, as D increases, the
performance degrades. In this case, whatever D value, and contrary to the previous
analysis, performance is overestimated when using the young model instead of the elderly.
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In conclusion, when considering a young body model and depending on the chosen
windowing parameter (time or distance), the evaluation of correlated performance along
the walking path is either overestimated or underestimated. Therefore, it is more appro-
priate to use a model incorporating the elderly specificities in terms of walking speed and
step length in order to properly design the optical WBSN system for transmission during
person’s walking.

The results presented above were obtained with a half-power angle of the transmitter
ϕ1/2 = 45

◦
, which was shown as the optimal angle in Section 3 when considering a

statistical analysis of H0 without considering the correlation. Thus, in order to study the
impact of the correlation approach we used, in Figure 14, the outage probability Pout is
plotted for the young body model (Figure 14a) and the elderly one (Figure 14b) for different
values of ϕ1/2 and a window size T = 3 s.
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First, we observe in Figure 14a for the young body model that, regardless of the outage
probability, the best performance is obtained for half-power angles greater than 30

◦
. On
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the other hand, for the elderly body model in Figure 14b, when the outage probability is
high (greater than 10−1, i.e., for γ0 greater than 15 dB), performance is quite insensitive to
the value of the directivity of the transmitter. Instead, when the required quality of service
increases, imposing outage probabilities lower than 10−1, we see that the half-power angles
corresponding to the best performances are 45◦ and 60

◦
.

Thus, when the correlation is taken into account, for both models, the optimal ϕ1/2
can always remain 45

◦
.

In the next subsection, we investigate the performance related to emitted power and
bandwidth for both models.

4.3. Performance of WBSN Related to Power and Bandwidth

The WBSN system for walk monitoring is based on a sensor worn by a person and
communicates via OWC. Thus, the emitted power is a main concern due to the lifetime
of the body sensor system, as well as the eye-safety limitation when using IR [46]. In this
context, it is, therefore, preferable to minimize the optical emitted power.

Considering a target value of γ0 and a given value of sliding window parameter (T
or D), we investigate the minimal emitted power Ptmin required to satisfy the quality of
service in terms of outage probability Pout. This power value depends on the bandwidth B
related to the transmission rate.

As an example, for both channel models corresponding to young and elderly persons,
Figure 15 shows the evolution of Ptmin as a function of bandwidth B until 10 MHz for a
given γ0 of 15.6 dB and two targets Pout values of 10−1 and 10−2. Actually, it has been
verified that a packet failure of 10% is a maximum tolerable value [47].
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The value γ0 = 15.6 dB for the most basic OWC modulation, i.e., on–off keying,
corresponds to a bit error rate of 10−9, which is a classical metric for medical WBSN [10].

Moreover, we can consider results in Figure 15 for different window sizes in time and
distance T = 3 s and 12 s and D = 1.5 m and 6 m. As expected, the required minimal
power for a target Pout increases with bandwidth regardless of the channel model and
parameters of sliding windows. In addition, the required power is obviously higher when
the quality of service increases, i.e., Pout diminishes. As the minimal optical power is
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always lower than 250 mW, we can also conclude that eye-safety conditions are respected
for IR using sources with low Lambertian order [10].

By comparing the two models, we verify in Figure 15 that the use of a channel model
with a young person’s body leads to slightly overestimating or underestimating the power
required. Indeed, considering the results for Pout = 10−1 and B = 5 MHz as an example,
we can see that the minimum power is 156 mW for the elderly body model when T = 3 s
and 164 mW when D = 6 m, whereas it is around 161 mW for the young body model for
T = 3 s and D = 6 m.

On the other hand, we remark that the difference is more significant in terms of the
maximal bandwidth to ensure a given Pout when the power is fixed. If the emitted power
is set to 200 mW, for example, using a young body model leads to a maximal bandwidth of
6.5 MHz for Pout = 10−2, whereas it is either 23% lower (equal to 5 MHz) using the elderly
model with D = 6 m or 7% higher (equal to 7 MHz) with T = 3 s.

5. Conclusions

In this article, we studied the behavior of an optical WBSN channel for walk monitor-
ing of elderly, taking into account age-related specificities in relation to body shape, arm
swing, step length, and walking speed. From gait recordings for an elderly person, we
modeled the movements of the limbs and considered a particular body model, different
from that of a young person. In addition, we considered the movement of the whole body
in the room following a random trajectory using an RW mobility model.

To study the impact of age-related specificities, the behavior of the optical WBSN
channel was analyzed when using the proposed model or that based on a young body
model. Simulations based on an MCRT method provided the impulse responses of the
optical links between the transmitter worn on the wrist of the elderly or young person and
a reception system on the ceiling.

Numerical results on channel gain and delay spread statistics determined from the
impulse responses were presented. We first analyzed the results globally and without
taking into account the evolution of the person’s walk. In this case, we concluded that, by
using a young body model, the gain of the channel could be overestimated when designing
the WBSN system for monitoring the elderly. On the other hand, the choice of a young or
elderly model had very little impact on the selectivity of the channel.

Then, the performance was evaluated in terms of outage probability by taking into
account the channel evolution along the random path using the sliding window technique.
Considering an optimal transmitter half-power angle of 45◦, we first verified that the
performance degrades compared to an analysis without correlation. The correlation effect
was studied for different sizes of sliding windows expressed in time or distance. By com-
paring the outage probability results for both models, we showed that, when considering
a young body model, the performance along the walking path is either overestimated or
underestimated. This conclusion also applies to determining the minimum transmit power
and bandwidth required for a given quality of service.

Consequently, it is suitable to use a model incorporating the elderly specificities for
designing the optical WBSN system for regular monitoring during walking.
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