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INTRODUCTION
Craniosynostosis is the premature fusion of ≥1 cra-

nial sutures. It affects as many as 1 in 1,500 live births1 
and results in head shape abnormalities. The most 

 common form of craniosynostosis is nonsyndromic sagit-
tal  synostosis, which accounts for approximately 41% of 
cases.  Premature fusion of the sagittal suture results in an 
elongation of the head in an anterioposterior direction, 
which is known as scaphocephaly. Surgical correction is 
mandated to correct the unusual head shape and to pre-
vent the development of raised intracranial pressure.2

There are numerous described techniques for the sur-
gical correction of sagittal synostosis, such as excision of 
the fused suture (strip craniectomy), sagittal osteotomy, 
and distraction osteogenesis and various types of total 
calvarial remodeling.2,3 Spring-mediated cranioplasty for 
sagittal craniosynostosis involves a sagittal osteotomy and 
insertion of cranial springs, with the springs being re-
moved 3 months later.2,4–6

Currently there is no standardized method used to 
quantify the outcomes of surgery for craniosynostosis. 
Methods for assessing “normal” head shape have largely 
focused on 2-dimensional measurements of which the 
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most commonly used is the cephalic index (CI). The CI 
is defined as the ratio of calvarial width to length and has 
traditionally been used to assess scaphocephaly severity, 
treatment outcomes and to define the normal range of 
CI.5–16 However, the sensitivity of the ratio is low and does 
not account for specific anomalies of head shape.3,17–19

Three-dimensional (3D) imaging methods can be 
used to acquire head shapes. Currently there is no stan-
dardized method for 3D head shape quantification that 
has been applied across different surgical approaches for 
craniosynostosis.

The present study aimed to: (1) describe a 6-com-
partment volume measurement for quantification of the 
outcomes of spring-mediated cranioplasty for sagittal syn-
ostosis cases, (2) show how this method can be used with 
computed tomography (CT) and 3D photogrammetry 
data, and (3) demonstrate use of the method to quantify 
volume distribution differences between normal and sagit-
tal craniosynostosis head shapes.

METHODS
Ethics approval was obtained to collect retrospective CT 

and photogrammetry data for pre- and postoperative cra-
niosynostosis patients and normal head shape CTs. Ethics 
approval for the study was sought from the South Eastern 
Sydney Local Health District—Human Research Ethics 
Committee (HREC). Study title “Quantifying head shape 
in craniosynostosis using 3D analysis,” HREC No. 15/105. 
Ethics approval for the study was granted on August 5, 2015.

Data Collection and Sample Composition
The craniofacial database of a tertiary referral cranio-

facial unit was used to identify patients undergoing spring-
mediated cranioplasty for sagittal synostosis. Patients 
underwent 3D digital photogrammetry imaging (3dMD, 
Atlanta, GA) at preoperative and at postoperative review 
(1 year, 2 years, and 3 years postoperatively).

Age at surgery ranged from 13 days to 6.5 years. There 
were 58 males and 40 females included in the total normal 
group (n = 98), with 22 males and 19 females in the nor-
mal preoperative comparison group ranging from 13 days 
to 1.55 years (564 days) old (n = 41). There were 15 males 
with 12 females (and 3 sex unrecorded) included in the 
preoperative craniosynostosis group ranging from 32 days 
old to 1.27 years (464 days) old (n = 30).

The surgical technique was a lazy S incision followed 
by sagittal osteotomy and mobilization of medial parietal 
bones, insertion of 2 or 3 springs (depending on patient). 
The wound was closed with a drain. The springs were re-
moved 3 months post (initial) operation.

CT scans for the control (normal head shape) database 
were from patients aged between 0 and 6 years. Scans were 
excluded where pathology affecting head shape was noted.

Segmentation and 3D Reconstruction of Data
All CT scans were segmented in Materialise MIMICS 

(version 16.0; Leuven, Belgium).20–22 3D surface model re-
constructions were made for both the skin and bone for 
each CT. The skin reconstructions were edited in Materi-

alise 3-Matic (version 8.0) to remove any extraneous materi-
al captured by the scan and then reimported into MIMICS 
to check the final 3D surface models were accurate repre-
sentations of the head shape (see Fig. 1). Note, hair is not 
visible on segmented CT, so does not influence head shape.

Photogrammetry data were reconstructed into 3D 
models using 3dMD software and edited in Materialise’s 
3Matic (version 8.0). Shape abnormalities caused by the 
head cap worn by subjects and the bunching of hair were 
edited to minimize the potential influence on head shape 
(see figure, Supplemental Digital Content 1, which dis-
plays before (off-white) and after (light blue-green) clean-
ing and editing photogrammetry data, http://links.lww.
com/PRSGO/B20).

Alignment
Three orthogonal planes (axial, coronal, sagittal) were 

established with their origin point at the pituitary fossa 
(see figure, Supplemental Digital Content 2, which dis-
plays alignment with planes using bone reconstruction. 
Skin surface reconstruction is shown in gray, and bone 
reconstruction is shown in pale yellow. Alignment in the 
anterioposterior direction for each model was achieved 
with reference to the “atlas” model, http://links.lww.com/
PRSGO/B21).

An initial normal CT 3D reconstruction was aligned 
to these planes manually using a combination of bone re-
construction and skin reconstruction and used as an “at-
las” scan to align the other CT scan reconstructions. Using 
an inferior view of the base of the skull, the midpoint of 
the nose, opisthion, and basion were used as landmarks 
to align the sagittal plane in an anterioposterior direc-
tion (see figure, Supplemental Digital Content 3, which 
displays homologous landmark point registration of an-
other patient (gray) to atlas (yellow), http://links.lww.com/
PRSGO/B22).

The external occipital protuberance, posterior fonta-
nelle, and sagittal sutures were then used to correct the 
alignment to the sagittal plane. The supraorbital foramina 
were used to align the crania in the coronal plane. The 
crania were rotated so that the axial plane passed through 
nasion and external occipital protuberance.

CT scan reconstructions were aligned to the atlas mod-
el in a similar fashion (Fig. 4). The coronal and lambdoid 
sutures of the atlas were used to align the other recon-
structions during anterioposterior rotation.

Preoperative photogrammetry reconstructions were 
aligned to preoperative CT scan (for patients where both 
were available) using iterative closest point registration.23 
Postoperative photogrammetry reconstructions were 
scaled to the preoperative CT anterioposterior length, it-
erative closest point aligned, then manually aligned to the 
preoperative CT before rescaling to the original size. All 
areas below the axial plane, as well as the ears, were then 
removed from each reconstruction.

Data Analysis
The total sample size (N) was 128 individuals, which 

included 98 normals and 30 synostosis patients. The total 
number of scans used was 156 (98 normal, 30 preoperative 
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synostosis, 14 P1, 9 P2, 5 P3 where P1, P2, and P3 scans 
were from a subset of the 30 preoperative synostosis pa-
tients). Patient scans were separated into 5 groups for pre- 
and postoperative analysis:

 1. Controls (control, n = 98). Subset of 41 patients aged 
0–15 months,

 2. Preoperative sagittal synostosis cases (preoperative,  
n = 30), age range 0–15 months,

 3. Postoperative patients 0–1 year after surgery (P1, n = 14),
 4. Postoperative patients 1–2 years after surgery (P2, n = 9),
 5. Postoperative patients 2–4 years after surgery (P3, n = 5).

Definition of 6 Compartments
Planes were constructed that passed through the pi-

tuitary fossa to the middle of the anterior and posterior 
fontanelles of each CT model, and the average angles cal-
culated from normal cranial anatomy (84 degrees clock-
wise from the anterior axial and 31 degrees anticlockwise 
from the posterior axial planes Figs. 2, 3). These com-
partments were then separated by the sagittal plane to 
give anterior, middle, and posterior compartments for 
the left- and right-hand sides. The volumes of these com-
partments were then calculated as a percentage of total 
volume. As the cephalic index (CI) is still widely used 
to quantify head shape, we also calculate the CIs for the 
study groups. A superior axial view was used to measure 
the maximum width and length of each aligned recon-
struction to calculate the CI.

RESULTS

Normal Versus Preoperative Sagittal Synostosis
A least squares linear regression analysis on the natural 

log (Ln) transformed total cranial vault volumes (cubic 
millimeter) against Ln transformed age (days) showed no 
significant difference (P = 0.05) between 30 sagittal syn-
ostosis cases and 41 controls (normals) within the same 
age range (0–1 year and 3 months) (Fig. 4). A separate 
analysis showed no significant difference between males 
and females for these 2 groups (P = 0.05).

Cephalic Index
The mean CI in the normal group was significantly high-

er at 83 compared with the preoperative synostosis group at 
71 (P < 0.05) (Fig. 5). There was a significant difference 
between the normals and postoperative year 1 synostosis 
group (83 versus 77, respectively, P < 0.05). No significant 
differences at the P = 0.05 level were identified between any 
of the postoperative synostosis groups and the preoperative 
synostosis group. Mean CIs: normal (83.1) > P1 (76.6) > P3 
(75.8) > P2 (75.0) > preoperative (71.2).

Symmetry of Volume Distribution across the Midsagittal 
Plane

There was no correlation between asymmetric volume 
distribution (more volume in the left- or right-side com-
partments) and age.

Fig. 1. Steps in Ct segmentation and reconstruction.
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Six-compartment Volume Analysis
Left Anterior Compartment
The left anterior volume in the normal cases was less 

than those in the preoperative synostosis group (14.58% vs 
17.05%, P < 0.05). Following surgery, P1 was significantly 
different from both preoperative and normal groups lying 
between 2 at 15.85% (P < 0.05). There was a trend in ante-
rior compartment volume P3 back toward the  preoperative 

group volume distribution with P3 not significantly differ-
ent at the P = 0.05 level from the preoperative sagittal syn-
ostosis group. Trend: normal (14.58%) < P1 (15.85%) < P2 
(16.23%) < P3 (16.80%) < preoperative (17.05%).

Right Anterior Compartment
Normal cases had less right anterior volume than pre-

operative cases (15.12% versus 17.47%, P < 0.05).  Following 

Fig. 2. anatomical features used to determine divisions of the head: pituitary fossa, anterior fontanelle, and posterior fontanelle on the 
normal case.

Fig. 3. angles for division of the head and labeling of compartments.
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surgery, all postoperative groups were still significantly dif-
ferent from the normal group. P1 and P2 were also differ-
ent (significant reduction in percentage volume) from the 
preoperative sagittal synostosis group at the P < 0.05 level 
(16.59% and 16.35%, respectively). Postoperative 3 was not 
significantly different from the preoperative group at the  
P = 0.05 level. Trend: normal (15.12%) < P2 (16.35%) < P1 
(16.59%) < P3 (17.12%) < preoperative (17.47%).

Left Middle Compartment
The normal left middle volumes were more than the 

preoperative group (24.75% versus 22.11%, P < 0.05) 
and significantly different from all postoperative groups  
(P < 0.05). Postoperative 1 was significantly different 
from both the normal group and preoperative group  

lying between the 2 (23.07%, P < 0.05), as was P2 (22.94%,  
P < 0.05). As with the anterior left compartment, P3 was not 
significantly different from preoperative at the P = 0.05 lev-
el. Trend: normal (24.75%) > P1 (23.08%) > P3 (23.00%)  
> P2 (22.94%) > preoperative (22.11%).

Right Middle Compartment
The normal right middle volumes were larger than 

the preoperative group (25.03% vs 22.12%, P < 0.05). 
P1, P2, and P3 were significantly different from both the 
preoperative group and normal group lying between the 
2 (23.88%, 23.71%, and 23.08%, respectively; P < 0.05). 
P3 was not significantly different from preoperative at the  
P = 0.05 level. Trend: normal (25.03%) > P1 (23.88%) > P2 
(23.71%) > P3 (23.08%) > preoperative (22.12%).

Fig. 4. least squares linear regression plot of ln transformed total volume vs ln trans-
formed age for normal and sagittal cases. red points and line represent the sagittal 
synostosis cases, and blue points and line represent the normal cases. translucent 
bands show the 95% confidence intervals (to dashed lines), with the dotted lines 
showing the 99% confidence intervals. note that these confidence intervals overlap 
considerably, showing that there is no significant difference between the regression 
lines. the best fit lines were (sagittal) y = 12.34 + 0.31x (r2 = 0.88) and (normal) y = 
12.31 + 0.30x (r2 = 0.85).

Fig. 5. Ci frequency distribution of normals (dark blue) vs preoperative (red) vs postop-
erative 1 (orange) vs postoperative 2 (cyan) vs postoperative 3 (green).
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Left Posterior Compartment
The P3 volumes for the left posterior compartment 

were less than the preoperative group (9.34% versus 
10.16%, respectively), which was the only significant 
difference found between any groups for the right 
middle volume (P < 0.05). Trend: P3 (9.34%) < P2 
(9.71%) < P1 (9.72%) < normal (9.78%) < preopera-
tive (10.16%).

Right Posterior Compartment
The normal volumes for the right posterior compart-

ment were less than the preoperative group (9.62% ver-
sus 10.08%), which was the only significant difference 
found between any groups for the right middle volume  
(P < 0.05). Trend: P3 (9.53%) < normal (9.62%) < P1 
(9.86%) < P2 (9.96%) < preoperative (10.08%).

Principal Component Analysis (PCA) of 6-compartment Volumes
PCA is a multivariate statistical analysis method allow-

ing for the volumes of the 6 compartments to be ana-
lyzed together.20,21,24 PCA identifies the main (principal) 
modes (components) of difference within the sample. 
The main variation is distributed along the first princi-
pal component (PC) axis. The analysis also identifies the 
relative weighting of each of the 6 volumes in each of the 
components.

PC1 captured 71.42% of the variance in volume dis-
tribution among the 6 compartments with PC2 explain-
ing 16.18%, PC3 explaining 6.94%, and PC4 explaining 
4.73%. Together, PC1–4 captured 99.28% of the variance 
in volume distribution in the sample. An analysis of vari-
ance (ANOVA) of PC1 scores was able to differentiate be-
tween the normals and preoperative (Figs. 6, 7), normals 
and P1, normals and P2, normals and P3, preoperative 
and P1, preoperative and P2 (P < 0.01) and preoperative 
and P3 (P < 0.04) (Fig. 6).

DISCUSSION
The use of virtual and physical 3D modeling for as-

sessing head shape has become more common place in 
the last decade.25–29 A significant drawback in methods 
presented by previous studies has been the reliance on 
CT scans for data acquisition, subjecting the patients to 
ionizing radiation and a general anesthetic. Wong et al.30 
demonstrated that a photogrammetric method using the 
3dMD system could be effective in capturing cranial mea-
surements. Photogrammetric methods to analyze cranio-
synostosis have also been validated in other studies31,32 and 
in nonsynostotic craniofacial deformities.33

Total Volume Analysis
There is a concern with that craniosynostosis could 

limit brain growth and neurological development by lim-
iting in the cranial vault size.34–36 Hence, measurements 
of intracranial volume (ICV) have been used to quantify 
the outcomes of surgery.9,35,37–40 Comparisons of the ICVs 
of normal and sagittal synostosis patients have found lim-
ited evidence of decreased ICV with sagittal synostosis.9,38,40 
Our results showed no significant difference in cranial 
volume between normal and sagittal synostosis patients  
(0–15 months; Fig. 4). This supports conclusions of Fischer   
et al.,38 Heller et al.,9 and Posnick et al.40 that sagittal synos-
tosis volumes are equal to, or larger than, normal volumes.

Cephalic Index
CI has been widely used to assess the outcome of 

surgery for craniofacial deformities2,5–9,12–16 as the CI is 
generally able to distinguish between normal and scaph-
ocephalic head shapes.2,5,6,40 Although the present study 
found significant differences between the preoperative 
sagittal synostosis group and the normal group, this differ-
ence is not “clear cut” with considerable overlap between 
the 2 groups (see Fig. 5). The CI improved from an av-

Fig. 6. a scatter plot of PC1 (x axis) vs PC2 (y axis) scores for the PCa of the 6-compartment volumes with 
convex hulls showing the distribution of each of the groups. normals = blue (mean represented by n). 
Preoperative = red (mean represented by S). Postoperative 1 = orange (mean represented by S-Po1). 
Postoperative 2 = cyan (mean represented by S-Po2). Postoperative 3 = green (mean represented by 
S-Po3). the polygon shapes denote the convex hulls for each of the groups.
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erage of 71–77 from the preoperative group compared 
with the P1 but was not significant at the P = 0.05 level. 
P2 and P3 both reported slightly decreased CI relative to 
P1, but these differences were not significant. This trend 
is supported by studies by Windh et al.6 and van Veelan et 
al.5 who also report a trend toward a scaphocephalic head 
shape following surgery using the CI at 1- and 3-year post-
operative time points.

Compartment Volume Analysis
Although the CI fails to characterize the location of 

change following surgery, the 6-compartment volume 
analysis introduced here has shown promise in defining 
postoperative changes. David et al.4 using a frontal volume 
to characterize improvements following Spring Mediated 
Crianioplasty (SMC) and Wikberg et al.41 using a ratio of 
the frontal volume to total volume to assess postoperative 
changes for metopic synostosis. A comprehensive study of 
volume analysis by Wilbrand et al.32 divided the head into 
4 compartments and used the ratio of the compartment 
volumes to quantify the outcome of surgery for a variety of 
single-suture cases. Although the use of 4 compartments 
allows for improved quantification and localization of the 
areas affected by surgery, it is limited in its use for isolating 
the affected area of change. For example, it cannot dif-
ferentiate between an increase in the frontal volume and 
a decrease in the posterior volume based on ratios alone.

The present study also applied the 6-compartment 
volume distribution method to sagittal synostosis patients 
following spring-mediated cranioplasty to quantify the 

effects of the surgery on the volume distribution in the 
head. Since a volume distribution is used, the method is 
size invariant, which was shown by the lack of a relation-
ship between volume distribution and age. The method 
aimed to use the minimum number of compartments that 
could (1) account for asymmetry and (2) be sensitive (pre-
cise) enough to identify differences in the main anatomi-
cal regions of the crania that are affected by synostosis. 
The 3 sagittal split lines are based on anatomical regions 
of (normal) crania (see Figs. 2, 3).

The PCA of the 6-compartment volume distributions 
showed that the anterior and middle compartments 
were more useful in differentiating between normal, 
preoperative, and postoperative patients. The PCA and 
ANOVAs showed an increase in the volume distribution 
in the anterior compartment, a similar (unchanged) vol-
ume distribution in the posterior compartments and a 
decrease in the volume distribution in the middle com-
partments of sagittal synostosis patients compared with 
normal (see Fig. 8). Although the anterior and middle 
compartment results were expected, we also expected an 
increase in the posterior compartments as this would fit 
the classic scaphocephalic description of an elongation 
and narrowing of the head42; however, this was not what 
the present study found. The ANOVA of the PC1 results 
demonstrated significant differences between normals, 
the preoperative group, and postoperative groups, show-
ing that 6-compartment volume distribution method is 
effective for differentiating between these head shapes 
in these groups.

Fig. 7. a frequency histogram of PC1 scores. normals are in blue, preoperative sagittal in red. Postop-
erative sagittal are in orange (1 year postoperatively), cyan (2 years postoperatively), and green (3 years 
postoperatively). the preoperative sagittal (negative PC1 scores) and normal (positive PC1 scores) at 
either end of the PC1 axis with minimal overlap (only 1 preoperative sagittal synostosis case fell within 
the convex hull of the normal in figure 6). P1 overlaps both the controls and preoperative groups sit-
ting between the 2, whereas P2 has a lie back toward the preoperative group. anOVa of the PC1 scores 
showed no statistical difference between preoperative and P3, although the sample size for the P3 
group was relatively low (P3, n = 5). the middle volumes (49.54% combined) and the anterior volumes 
(48.69% combined) were evenly weighted in PC1 with the posterior compartment volumes contribut-
ing only 1.77% of the weighting.
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When examining the trends for the anterior and mid-
dle compartments, it is notable that all the postoperative 
groups were between the normal and preoperative groups 
and significantly different from the preoperative group. 
This means that while the spring-mediated cranioplasty 
did not fully restore the head shape of patients to the 
normal group shape, it significantly improved their head 
shape compared with their preoperative state. Unlike the 
CI, the 6-compartment volume analysis was able to identi-
fy significant differences between the preoperative group 
and P1, which potentially indicates greater sensitivity in 
the 6-compartment volume distribution analysis method 
than the CI measurement.

P1 was situated closest to the normal group in 3 of 4 
compartments with the most significant differences (an-
terior and middle compartments). This suggests that the 
biggest impact on head shape is in the first year following 
spring-mediated cranioplasty, after which there may be a 
shift back toward the preoperative shape. The small sam-
ple sizes in P2 and P3 are a clear limitation of this study 
(n = 9 and n = 5, respectively), and future studies with an 
increased number of postoperative follow-ups would allow 
for statistically significant long-term postoperative trends 
to be determined.
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