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Abstract: Protein–protein interaction (PPI) sites play a key role in the formation of protein complexes,
which is the basis of a variety of biological processes. Experimental methods to solve PPI sites are
expensive and time-consuming, which has led to the development of different kinds of prediction
algorithms. We propose a convolutional neural network for PPI site prediction and use residue
binding propensity to improve the positive samples. Our method obtains a remarkable result of the
area under the curve (AUC) = 0.912 on the improved data set. In addition, it yields much better
results on samples with high binding propensity than on randomly selected samples. This suggests
that there are considerable false-positive PPI sites in the positive samples defined by the distance
between residue atoms.
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1. Introduction

Proteins play key roles in various aspects of life [1] by physically interacting with other proteins [2,3].
Protein–protein interactions (PPIs) are the molecular basis for many biological processes, such as
signal transduction, transport, metabolism, gene expression, growth and proliferation of cells [4,5].
Protein-binding interfaces are heterogeneous and some interface residues contribute more to binding
than the others. These residues are called “hotspots” [6–10]. Hotspots are often pre-organized in the
unbound protein state. So it is suggested that much of the protein surface does not accommodate
binding and the potential binding sites of a protein are already imprinted in its unbound state [8].

PPI sites are critical domains for selective recognition of molecules and the formation of complexes [11].
Identification of protein interaction sites is pivotal for understanding protein function, elucidating
signal transduction networks, and drug design [12]. Experimental methods such as NMR and X-ray
crystallography have been used to characterize PPI sites [13,14]. However, these techniques are expensive
and time-consuming [15,16]. With the fast expansion of resolved sequences and structural data of proteins,
several kinds of computational methods such as molecular dynamics methods [17,18] and machine learning
methods have been proposed to predict PPI sites. Among these methods, machine-learning methods
are most successful, using the following models [14,19]: support vector machine (SVM) [20–25] and
fuzzy SVM [26], neural networks (NN) [27–32], Bayesian networks (BN) [33,34], naive Bayes classifier
(NBC) [35,36], random forests (RF) [12,37–39], cascade random forests (CRF) [40], conditional random
fields (CRF) [41], extreme learning machine (ELM) [42], L1-logreg classifier [43], and the ensemble
method [14,15,44,45]. As a recent development of neural networks, deep-learning is a rapidly growing
branch of machine learning and has also been used to predict PPI sites [19]. As a representative algorithm
of deep learning, the convolutional neural network (CNN) [46,47] can be used for representation learning
and extracting high-order features from the input information.
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Popular PPI sites prediction methods can be sorted into three groups according to the information
they are based on.

1. Sequence-based methods. Methods based on sequence information use features extracted from
protein sequences to predict protein interaction sites. PPiPP [48] uses the position-specific scoring
matrix (PSSM) and amino acid composition to predict PPI sites and achieves an area under the
receiver operating characteristic (ROC) curve (AUC) of 0.729. DLPred [19], which uses long-short
term memory (LSTM) to learn features such as PSSM, physical properties, and hydropathy index,
obtains a higher AUC score of 0.811. Still, we need more information to improve prediction accuracy.

2. Structure-based methods. Knowledge of the three-dimensional (3D) structure of the protein
complex provides much valuable information on the protein interaction sites [14]. Some PPI sites
predictors utilize 3D structural information of proteins for prediction. ProMate combines all the
significant interface properties and reaches a success rate of 0.70 [33]. Bradford and Westhead [21]
achieved a successful prediction rate of 0.76 based on protein structure data.

3. Methods based on integrated information. Three-dimensional structure of proteins are far more
difficult and expensive to elucidate than protein sequences, so its magnitude in protein structure
databases such as the Protein Data Bank (PDB) [49] is remarkably smaller compared to that of sequences
in protein sequence databases like UniProt [50]. Therefore, most methods use a combination of
structural and sequence information for the prediction of PPI sites. Li et al. [38] use physicochemical
properties, sequence conservation, residue disorder, secondary structure, solvent accessibility, and five
3D structural features to train a random forest model to predict PPI sites. SPPIDER [51] uses relative
solvent accessibility (RSA), sequence and structure features to predict PPI sites and demonstrates that
RSA prediction-based fingerprints of protein interactions significantly improve the discrimination
between interacting and noninteracting sites. It yields an overall classification accuracy of about 0.74
and Matthews correlation coefficients (MCC) of 0.42. IntPred [39] uses 11 features of both sequence
and structure and obtains a specificity of 0.916 and a sensitivity of 0.411. PAIRpred [24] captures
sequence and structure information about residue pairs through pairwise kernels that are used for
training a support vector machine classifier. This method gives a remarkable AUC score of 0.870
and rank the first positive prediction (RFPP) value on the 176 complexes in protein–protein docking
benchmark version 4.0 (DBD 4.0) [52] with its structure kernel.

In this study, we propose a novel statistics-based method for judging the binding propensity of
amino acids and apply it to the partitioning of samples. We extracted the sequence and structure
features of each sample and input them into the convolutional neural network for training. Compared
to previous methods, our approach has made significant improvement in the AUC score (0.912) and
some of the RFPP values (RFPP (100) = 580) on the 116 dimers in DBD 4.0 [52].

2. Results

2.1. Distribution Tendency of Residues in Proteins

In order to demonstrate the distribution tendency of residues, we first compared the abundance
of residues (AR) between the protein surface (ARs) and whole protein (ARw) and used ARw/ARs as the
indicator of the tendency of a residue to be inside of proteins (Table 1, Section 4.3).

From Table 1, we find that most hydrophobic residues (alanine, leucine, isoleucine, valine, glycine,
cysteine, phenylalanine, proline) and amphipathic residues (tryptophan, tyrosine, and methionine)
tend to distribute inside proteins except proline which tends to be on the protein surface, and glycine
which shows a weak surface tendency. Charged (arginine, lysine, aspartic acid, and glutamic acid)
and hydrophilic residues tend to appear on the protein surface with the exception of histidine, which
shows no tendency towards protein inside or surface.
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Table 1. Number and abundance of whole protein and surface residues.

Residue Nw ARw Ns ARs ARw/ARs

A 9558 0.071 3599 0.058 1.22
L 11,587 0.087 2913 0.047 1.85
I 6700 0.050 1462 0.024 2.08
V 9407 0.070 2207 0.036 1.94
G 9930 0.074 4839 0.078 0.95
K 8155 0.061 5656 0.092 0.66
R 6093 0.046 3820 0.062 0.74
D 7561 0.057 4823 0.078 0.73
E 8667 0.065 5700 0.092 0.71
H 3128 0.023 1448 0.023 1.00
N 5812 0.043 3673 0.060 0.72
Q 5478 0.041 3396 0.055 0.75
S 9575 0.072 5498 0.089 0.81
T 8345 0.062 4069 0.066 0.94
C 2742 0.020 518 0.008 2.50
M 2785 0.021 791 0.013 1.62
Y 4811 0.036 1812 0.029 1.24
W 2035 0.015 552 0.009 1.67
F 5132 0.038 1101 0.018 2.11
P 6294 0.047 3845 0.062 0.76

Total 133,795 1 61,722 1

Nw: the number of specified amino acids in whole proteins; Ns: the number of specified amino acids in the protein
surface; ARw: abundance of residues of whole proteins; ARs: abundance of residues at the protein surface. ARw/ARs
≥ 1 (shaded) represent residues that tend to distribute inside protiens.

2.2. Residue Binding Propensity

Protein residues exhibit different binding propensity for different residues in protein–protein
interfaces. We used a statistical method (Section 4.4) to classify residues interacting with one certain
residue into high and low binding propensity residue groups and compared the binding propensity
with polarity, hydrophobicity, and distribution tendency of residues.

Table 2 shows the relative abundance of interacting residues (RAIR, Section 4.4) which indicates
the binding propensity of each residue with all 20 residues. Data of abundance of interacting residues
(AIR) and AR are available in Tables S1 and S2 in the Supplementary Material, respectively. Polarity,
hydrophobicity [45], and the ratio of ARw and ARs from Table 2 are also placed in the same table
for comparison.

From Table 2, we find that (1) Ten residues (leucine, isoleucine, valine, arginine, histidine, cysteine,
methionine, tyrosine, tryptophan, and phenylalanine) show a high propensity to bind to most residues
(RAIR scores ≥ 1, shaded), while the other ten residues show a low binding propensity. (2) Most of the
residues with high binding propensity overlap with the residues with polarity ≤ 7 (shaded polarity
scores) except arginine (polarity = 10.5) and histidine (polarity = 10.4). (3) Residues with positive
hydrophobicity (shaded hydrophobicity scores) also exhibit higher binding propensity but with more
exceptions. Alanine, glycine, and proline have positive hydrophobicity but low binding propensity.
On the contrary, arginine and histidine have negative hydrophobicity but high binding propensity.
(4) Interestingly, residues with ARw/ARs ≥ 1 (shaded ARw/ARs scores) show high coincidence with
those with high binding propensity, only with the exception of alanine (ARw/ARs = 1.22) and arginine
(ARw/ARs = 0.95).

Finally, a total of 221 pairs of residues with high binding propensity (shaded RAIR scores in row
2–21 in Table 2) were obtained and used for further screening of positive samples. Each residue-pair
contact propensities in a protein–protein interface are shown in Figure S1 in the Supplementary Material.
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Table 2. Relative abundance of interacting residues (RAIR) scores of residue pairs.

i\j A L I V G K R D E H N Q S T C M Y W F P

A 0.47 1.58 1.80 1.24 1.07 0.58 1.00 0.60 0.61 1.22 0.99 0.99 0.79 1.09 2.31 1.88 2.83 2.52 2.74 0.44
L 0.82 1.17 2.68 1.43 0.80 0.62 0.96 0.46 0.50 1.35 0.83 0.99 0.73 0.94 2.96 2.75 2.57 3.44 3.03 0.61
I 0.75 2.16 1.38 1.25 0.93 0.61 0.97 0.61 0.52 1.53 0.90 1.09 0.66 0.67 2.76 1.31 2.50 3.39 3.36 0.59
V 0.74 1.65 1.79 0.89 0.99 0.53 1.24 0.71 0.54 1.19 0.98 0.91 0.69 0.93 1.98 2.00 3.16 2.87 2.29 0.59
G 0.92 1.33 1.90 1.42 0.56 0.62 1.15 0.66 0.53 1.01 1.10 1.02 0.59 1.13 3.48 2.12 2.70 3.76 2.33 0.53
K 0.62 1.28 1.56 0.95 0.78 0.19 0.76 1.35 1.43 1.04 0.91 0.76 0.91 0.85 2.08 1.28 2.88 2.66 1.99 0.57
R 0.63 1.16 1.45 1.30 0.84 0.44 0.41 1.23 1.04 1.17 1.06 1.02 0.76 0.91 2.07 1.64 2.68 3.83 2.12 0.65
D 0.58 0.88 1.43 1.16 0.76 1.23 1.93 0.28 0.57 1.18 1.09 1.10 0.83 0.95 1.48 1.02 2.85 2.28 2.00 0.45
E 0.63 0.99 1.28 0.93 0.64 1.38 1.71 0.60 0.28 1.40 1.06 0.93 0.97 1.08 1.14 2.20 2.08 2.14 2.09 0.62
H 0.74 1.59 2.22 1.21 0.72 0.59 1.14 0.73 0.82 0.50 1.10 0.83 0.71 0.98 3.07 2.10 2.19 2.75 2.23 0.64
N 0.73 1.18 1.59 1.21 0.95 0.63 1.25 0.83 0.76 1.34 0.54 1.12 0.75 1.22 1.41 1.23 2.85 2.26 1.76 0.66
Q 0.75 1.46 1.99 1.16 0.90 0.54 1.25 0.86 0.69 1.04 1.16 0.42 0.75 1.07 1.35 1.62 2.37 2.46 2.43 0.80
S 0.77 1.37 1.54 1.12 0.67 0.82 1.19 0.82 0.91 1.14 0.99 0.95 0.37 1.05 3.53 2.00 2.12 2.92 2.16 0.68
T 0.82 1.36 1.19 1.16 0.98 0.59 1.08 0.73 0.78 1.20 1.23 1.04 0.81 0.51 1.10 1.68 2.85 3.61 2.21 0.66
C 0.76 1.88 2.17 1.09 1.34 0.64 1.09 0.50 0.37 1.67 0.63 0.58 1.20 0.48 0.63 2.49 2.36 2.78 3.09 0.63
M 0.74 2.08 1.23 1.32 0.97 0.47 1.03 0.41 0.84 1.36 0.65 0.83 0.81 0.88 2.97 1.19 2.54 1.86 3.80 0.73
Y 0.80 1.41 1.70 1.50 0.89 0.76 1.22 0.83 0.57 1.03 1.10 0.88 0.62 1.08 2.03 1.84 0.70 3.03 2.82 0.91
W 0.62 1.63 1.99 1.18 1.08 0.61 1.51 0.57 0.51 1.11 0.75 0.79 0.74 1.19 2.07 1.16 2.62 1.67 1.81 0.92
F 0.83 1.78 2.43 1.16 0.82 0.56 1.03 0.62 0.62 1.11 0.72 0.96 0.67 0.90 2.84 2.94 3.01 2.23 1.12 0.84
P 0.49 1.31 1.58 1.11 0.69 0.59 1.15 0.52 0.68 1.18 0.99 1.16 0.78 0.98 2.13 2.09 3.59 4.17 3.09 0.35

Polarity 1 8.1 4.9 5.2 5.9 9.0 11.3 10.5 13.0 12.3 10.4 11.6 10.5 9.2 8.6 5.5 5.7 6.2 5.4 5.2 8.0
Hydrophobicity 1 0.62 1.06 1.38 1.08 0.48 −1.5 −2.53 −0.9 −0.74 −0.4 −0.78 −0.85 −0.18 −0.05 0.29 0.64 0.26 0.81 1.19 0.12

ARw/ARs
2 1.22 1.85 2.08 1.94 0.95 0.66 0.74 0.73 0.71 1 0.72 0.75 0.81 0.94 2.5 1.62 1.24 1.67 2.11 0.76

1 Data quoted from [45]. Shaded cells represent polarity score ≤ 7 or hydrophobicity score ≥ 0; 2 ARw/ARs scores are from Table 1. ARw/ARs ≥1 (shaded, row 24) represent residues that
tend to distribute inside protiens; RAIR ≥ 1 (shaded, row 2–21) represent residue pairs that have high binding propensity.
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2.3. Positive Samples with High Binding Propensity

In order to verify the effectiveness of the improved positive samples, we used the same model
parameters (Section 4.6) to perform a leave-one-complex-out cross-validation verification for two
sample data sets, one with high binding propensity and another with no propensity.

According to the definition of interacting residue pairs (Section 4.2) from PAIRPred [24] and
PPiPP [48], a total of 12,138 positive and 5,534,983 negative samples from 138 dimers of the DBD 5.0
version [53] were obtained (Section 4.1). Among the positive samples, 6739 residue pairs with binding
propensity ≥ 1 were used as final positive samples in this study. There is an average of 49 pairs of
positive samples for each dimer.

Test data sets used in this study were extremely imbalanced, so we used AUC as the main measure
to evaluate the model performance on two data sets. The AUC for data set with no propensity is 0.824,
while the AUC for data set with high propensity reaches 0.912 (Figure 1). We also provided accuracy
and recall under different thresholds in Table S3 in the Supplementary Material.
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Figure 1. Receiver operating characteristic (ROC) curve and area under the curve (AUC) score of
samples with high binding propensity and samples with no binding propensity.

2.4. Comparison with Randomly Sampled Data Set

To further verify the rationality of the binding propensity, we conducted a five-fold cross-validation
to compare the performance of our model on data sets with high binding propensity and data sets
randomly sampled (also have 6739 residue pairs) from original positive samples by using 138 dimers
from DBD 5.0 [53].

There is a significant difference between the AUCs of these two data sets. The AUC for the data
set with high propensity is 0.889 ± 0.007 (Figure 2a), while the AUC for the randomly sampled data
set is 0.811 ± 0.006 (Figure 2b). It is notable that the result of five-fold cross-validation is close to that
of leave-one-complex-out cross-validation (0.912) on the data set with high propensity. This result
indicates that our model benefits from the data set screened using a propensity score and identifies PPI
sites with more accuracy.
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2.5. Comparison with Existing Methods

To further evaluate our model, we compared its performance with those of PSIVER [35], PPiPP [48],
SSWRF [54], DLPred [19], and PAIRPred [24] using AUC scores (Table 3). The first four methods used
sequence-based features, while PAIRPred and our method used both sequence- and structure-based
features. The AUC score of our method is noteworthily higher than that of the other methods. The results
also prove the importance of structural features in PPIs site prediction.

Table 3. Comparison with existing PPIs site predictors.

Methods AUC (%)

PSIVER [35] 62.8
PPiPP [48] 72.9

SSWRF [54] 72.9
DLPred [19] 81.1
PAIPred [24] 86.2

OURS 91.2

PAIRPred [24] is currently one of the best-performing methods for predicting protein interaction
sites based on sequence and structure features. It uses SVM with pairs of kernels to predict if two residues
interact with each other. We compared the performance of PAIRPred and our model on 116 dimers
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from DBD 4.0. The results are shown in Figure 3. We performed leave-one-complex-out cross-validation
on positive samples with high propensity and obtained an AUC of 0.912, which is higher than that of
PAIRPred (0.862).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 17 
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We also evaluate our model by using the first rank of the first positive prediction (RFPP, Section 4.7).
For RFPP, our method performs better on 90% (169) and 100% (580) than PAIRPred (194 and 2861,
respectively) for dimers in DBD 4.0, while PAIRPred has better RFPP results on 10%, 25%, 50%, and 75%
(Table 4). Our method has significantly improved on RFPP (100) of the complexes, which means that
our model has better generalization ability.

Table 4. Comparison of RFPP with PAIRPred.

Data Set Method
RFPP

10% 25% 50% 75% 90% 100%

DBD 4.0
(116 Dimers) PAIRPred 1 4 11 53 194 2861

DBD 4.0
(116 Dimers) OURS High propensity 2 8 26 69 169 580

DBD 5.0
(138 Dimers) OURS High propensity 2 8 30 82 224 582

3. Discussion

Protein–protein interactions play essential roles in many biological processes. Among different
methods proposed to predict PPIs, machine learning is the most promising and commonly used
algorithm. Deep learning is a popular machine learning branch and has been applied to many fields
in recent years. In this paper, we used a convolutional deep learning model and improved data
sets for the prediction of PPI sites and obtained a result of AUC 0.912, which is better than those of
published predictors.

The protein–protein docking benchmark data sets (DBD) have been widely used for evaluation of
PPIs prediction methods. Its latest version is 5.0 [53]. We emphasized comparison with PAIRpred [24]
since it is one of the best-performing PPI predictors. PAIRpred was tested on DBD 4.0 [52], but SPINE
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X [55], on which PAIRpred was dependent on, is obsolete now, so we cannot calculate the AUC and
RFPP of PAIRpred on DBD 5.0. As a result, we compared the results of PAIRpred and our method on
116 dimers in DBD 4.0, and used 138 dimers in DBD 5.0 (including 116 dimers in DBD 4.0) to further
evaluate our model.

Residue interface propensities were observed in different kinds of protein complexes [25] and
has been used to improve prediction accuracy of PPI sites in different studies [4,21,25,33,56,57]. It is
usually used as a parameter of predicting models. In this study, we used residue binding propensity to
screen positive samples and improved the performance of prediction remarkably. Our method may
be a little radical, but the result suggests that it makes sense to reduce the fraction of false positive
samples by introducing binding propensity.

It is found that polar residues are statistically disfavoured in interface sites, with the exception of
arginine [25,33,56]. In order to show the correlation between polarity, hydrophobicity, and binding
propensity in a more intuitive way, we compared polarity, hydrophobicity [45], and RAIR, and
found that besides arginine, another polar residue histidine also exhibited a high binding propensity.
This coincides with the result of another research [58] which found that histidine was favoured in all
types of interactions.

An interesting finding of this study is that residues which tend to be inside of proteins (ARw/ARs > 1)
have higher binding propensity. This seems strange but makes sense since most of these residues are
hydrophobic and if they appear at the surface of proteins they tend to interact with the hydrophobic
residues on the surface of other proteins. An exception is alanine whose side chain is just a methyl,
which disfavours interaction with other residues and has been utilized for alanine-scanning mutagenesis
analysis [9]. On the contrary, residues with large hydrophobic side chains, such as tryptophan, was found
to have a unique role in the folded structure and the binding sites of proteins [59]. Charged residues show
high binding propensity for oppositely charged residues. Arginine was found to be the most frequently
occurring residue in known protein interaction sites because of its wide radius of action [11]. We also found
that arginine exhibited a high binding propensity in our study, although it tended to appear at the protein
surface (ARw/ARs = 0.74).

In conclusion, our convolutional deep learning model performs well for prediction of protein
interaction sites, especially on the improved data set with high binding propensity. This suggests
that a nonnegligible portion of false positive interacting pairs exist in the original positive samples
obtained by 6Å definition, which may impede the efforts of improving the accuracy of prediction for
PPI sites. Reducing false positive interacting samples is likely to become a promising direction for PPI
site prediction studies.

4. Materials and Methods

4.1. Data Sets

The protein–protein docking benchmark data set (DBD, version 5.0) [53] and DBD 4.0 [52] were
used in this work. DBD 5.0 contains 139 non-redundant dimers with characterized bound and unbound
X-ray crystallography structures. DBD 4.0 [52] contains 174 complexes among which 116 are dimers
and form a subset of DBD 5.0. Two interaction protein chains of a dimer are from different families
defined by Structural Classification of Proteins (SCOP) with sequence identity less than 30% [53]. There
are a few deletions in the sequence of 1ZLI in unbound state so it is excluded from the data sets. Finally,
174 complexes from DBD 4.0 were used for computing of residue distribution tendency and statistics
of binding propensity, 116 dimers from DBD 4.0 were used for model comparison, and 138 dimers
from DBD 5.0 were used to further validate our model (Tables 5 and 6).
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Table 5. Numbers of complexes and dimers in DBD 4.0 and 5.0.

DBD Version
No. of Complexes (Dimers)

Total Used

4.0 175 (117) 174 1 (116 2)
5.0 230 (139) (138 3)

1 Used for statistics of binding propensity and distribution tendency of residues; 2 Used for model comparison;
3 Used for validation.

Table 6. 138 dimers used in this study.

Version PDB ID

DBD 4.0
And

DBD5.0

1ACB 1AK4 1ATN 1AVX 1AY7 1B6C 1BKD 1BUH 1BVN 1CGI 1CLV 1D6R 1DFJ 1E6E 1E96
1EAW 1EFN 1EWY 1F34 1F6M 1FC2 1FFW 1FLE 1FQ1 1FQJ 1GCQ 1GHQ 1GL1 1GLA 1GPW
1GRN 1GXD 1H1V 1H9D 1HE1 1HE8 1I2M 1IBR 1IRA 1J2J 1JIW 1JK9 1JTG 1KAC 1KTZ 1KXP
1KXQ 1LFD 1M10 1MAH 1MQ8 1NW9 1OC0 1OPH 1PPE 1PVH 1PXV 1QA9 1R0R 1R6Q 1R8S
1S1Q 1SBB 1SYX 1T6B 1TMQ 1UDI 1US7 1WQ1 1XD3 1XQS 1Y64 1YVB 1Z0K 1Z5Y 1ZHH
1ZHI 1ZM4 2A5T 2A9K 2ABZ 2AJF 2AYO 2B42 2BTF 2C0L 2CFH 2FJU 2G77 2H7V 2HLE

2HQS 2HRK 2I25 2I9B 2IDO 2J0T 2J7P 2NZ8 2O3B 2O8V 2OOB 2OT3 2OUL 2OZA 2PCC 2SIC
2SNI 2UUY 2VDB 2Z0E 3CPH 3D5S 3SGQ 4CPA 7CEI

DBD 5.0 1JTD 2A1A 2GAF 2YVJ 3A4S 3K75 3PC8 3VLB 4H03 2GTP 2X9A 3BIW 3H2V 4M76 4FZA 4IZ7
3BX7 3DAW 3S9D 3FN1 1RKE 3F1P

4.2. Definition of Interacting Residue Pairs

A pair of residues from two proteins are considered to have interaction if the Euclidean distance
between any two atoms from each of the two residues in the bound state is less than or equal to 6 Å [24,48].
According to this definition, 12,138 positive samples (interacting residue pairs) and 5,522,852 negative
samples (non-interacting residue pairs) were obtained, each dimer has an average of 88 positive samples
and 40,006 negative samples. Contacting residues within a protein chain were not included.

The number of negative samples in this study is much larger than that of positive samples.
This imbalanced data made it difficult to train the model and the under-sampling might lead to
information loss, so we used the EasyEnsemble algorithm [60] to build the training set with equal positive
and negative samples.

4.3. Distribution Tendency of Residues in Proteins

Residues show different preferences of locations in proteins. We calculated the abundance of
residues (AR) of the protein surface (ARs) and whole proteins (ARw) using 174 complexes from DBD
4.0 (Section 4.1) and used ARw/ARs as the indicator of a residue’s tendency to be inside or at the surface
of proteins. If ARw/ARs for a residue is larger than 1, it tends to be inside of proteins. Otherwise,
if ARw/ARs < 1, it appears more often at the suface of proteins.

DSSP [61] from xssp [62] was used to calculate the solvent-accessible surface area (ASA) of a residue.
If the ratio of ASA of a residue to its maximum ASA (Table 7) [63,64] is larger than or equal to 0.16 [28,63],
then it is defined as a surface residue.
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Table 7. Max accessible surface area (ASA) of 20 amino acids.

Residue Max ASA(A2) Residue Max ASA(A2)

A 106 E 194
L 164 H 184
I 169 N 157
V 142 Q 198
G 84 S 130
K 205 T 142
R 248 C 135
D 163 M 188
Y 222 F 197
W 227 P 136

4.4. Binding Propensity of Residue Pairs

The above definition of interacting residues is concise and easy to use. But binding propensity
between residues varies considerably. Residues with strong binding propensity may dominate the
interaction and lead their adjacent residues with weak binding propensity into the defined range
of interacting residues. In this situation, the dominant interacting residues (DIRs) are true positive
samples, while it is more reasonable to classify the passive interacting residues (PIRs) as false positive
samples (Figure 4).
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and A-N) caused by strong interaction (D-R). Due to the strong interaction of D and R, the Euclidean
distance between G and P or A and N is less than 6.0 Å, but the interaction is dominated by D and R.

The binding propensity between different residues can be computed based on interacting residue
frequencies [56]. In this study, a statistical method was used to classify residues interacting with
one certain residue into high and low binding propensity residue groups. Residues of 174 protein
complexes from DBD 4.0 were used to estimate the residue binding propensity.

Relative abundance of interacting residues (RAIR) was used to indicate the binding propensity of
each residue pair. Abundance of residues (AR) represents the frequency of each residue (20 in total)
in the total number of suface residues of 174 protein complexes from DBD 4.0. The abundance of
interacting residues (AIR) represents the frequency at which each residue interacts with 20 residues
(400 pairs in total). The RAIR between residue i and residue j is defined as follows:

ARi =
Ni
N

(1)

AIRij =
Mij
Mi

(2)
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RAIRij =
AIRij
ARj

(3)

where N is the total number of all surface residues of 174 protein complexes, Ni is the number of
residue i, Mij is the number of residue j interacting with residue i, and Mi is the total number of all
residues interacting with residue i.

RAIR is used for further classification of samples in this study. A pair of residues is considered to
have a high binding propensity when RAIR ≥ 1 otherwise the pair has a low binding propensity.

4.5. Features

4.5.1. Amino Acid Encoding

Twenty amino acids were coded as one-hot encoding [65] (Table S4 in the Supplementary Material).

4.5.2. Sequence Features

Profile Features

Position specific scoring matrix (PSSM) and position specific frequency matrix (PSFM) reflect the
conservation of residues at specific positions of protein chains based on evolutionary information [3,24].
Each row of the PSSM or PSFM is a 20-dimensional vector. PSSM and PSFM were computed by running
3 iterations of PSIBLAST [66] against the NCBI NR database for a given protein with E-value set to
0.001. PSSM and PSFM columns were taken within a length 3 window centered at a residue of the
protein to obtain a 3 × 40 matrix.

Amino Acid Physicochemical Properties

Twenty-four physicochemical properties of amino acids [67] are used in this study. Twenty amino
acids are divided into three groups according to these properties and each group is encoded using
one-hot encoding, thus each amino acid is represented as a 72-dimensional vector. e.g., alanine (A) is
encoded as

A = [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0]

(4)

4.5.3. Structure Features

Residues that play important roles in protein function generally appear at the surface of proteins.
The accessible surface area (ASA) and the relative accessible surface area (RASA) were used to identify
whether a residue is at the surface of a protein. The geometric properties of the protein surface can affect
the interaction between proteins [38,68]. Protrusion index (CX) and depth index (DPX) were used to
describe these properties. We also used hydrophobicity, which plays an important role in PPIs, protein
folding and unfolding [69,70]. These five structure-based features were computed using PSAIA [71],
which was developed for calculation of the geometric parameters of large protein structures and the
prediction of protein interaction sites.

4.6. Deep Learning Model

The structure of the deep learning model used in this paper is shown in Figure 5. The source code
of this study is available at https://github.com/Xiaoya-Deng/PPI-sites-prediction.

https://github.com/Xiaoya-Deng/PPI-sites-prediction
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Figure 5. The process of prediction of PPI sites. (a) The overall flow chart for predicting pairs of
interacting residues in this paper; (b) the structure of the convolutional neural network.

4.6.1. Input

Whether two residues interact is a binary classification problem. In our model, each sample is
represented by ((ri, li), yi), where (ri, li) represents a pair of residues and yi is corresponding label. yi = 1
if two residues interact, otherwise yi = 0.

Each residue pair is encoded as a 2 × 217 × 1-dimensional vector for the input of the network.

4.6.2. Convolutional Layers

Three convolutional layers are used in this paper. The filters of the first and the second convolutional
layers have the size of 3 × 3 with depth of 32 and 64, respectively. The third convolutional layer filter has
a size of 1 × 3 and a depth of 128. All three layers use stride 2 and no zero padding.

4.6.3. Pooling Layers

There is a pooling layer after each convolutional layer. All the pooling layers use max pooling
with filter size of 2 × 2. The strides for both directions are set to 2.

4.6.4. Fully Connected Layer

The output of the last pooling layer is expanded into a 1-dimensional vector and used as the
input of a fully connected neural network with 1024 neurons. Finally, a Softmax function is used as
the classifier.

4.6.5. Activation Function and Loss Function

Softplus and Softmax are used as the activation and loss functions, respectively, in our model.

f (x) = ln(1 + ex) (5)
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L(xi) = − log
exi∑

jex j
(6)

4.6.6. Model Optimization

The AdamOptimizer in TensorFlow was used for training optimization. The dropout method and
decay learning rate method were used to prevent over-fitting during training.

4.7. Performance Measure

A leave-one-complex-out cross-validation method [24] was used to evaluate our model. All positive
and negative samples of one protein complex were chosen as the imbalanced validation set while the
samples of the other complexes were used as the training set which consists of balanced positive and
negative samples.

A probability value between 0 and 1 is returned after the samples are trained, while the class label
is binary (1 for interaction and 0 for non-interaction). At a given probability threshold, any correctly
predicted pair of interacting residues is designated as true positive (NTP), and any correctly predicted
pair of non-interacting residues is designated as true negative (NTN). While false positive (NFP) and false
negative (NFN) are pairs of residues that are incorrectly predicted to be positive or negative, respectively.

Accuracy, recall, and precision can be used for evaluation of machine learning models. But the
balance between these parameters varies with thresholds. The other two evaluation methods are more
commonly used: (1) the area under the ROC curve (AUC), where ROC is for a (1-specific) recall map
that takes into account the entire threshold range; and (2) a set of optimal performance thresholds
accuracy, recall and F1. In this study, we use AUC as the main performance metric.

For imbalanced data, AUC may give a false impression of accuracy [24]. So we employed another
measure of accuracy proposed in PAIRpred [24], the first rank of the first positive prediction (RFPP).
RFPP is defined as follows:

RFPP(p) = q (7)

RFPP indicates p% of the dimers tested have at least one true positive interacting residue pair
among the top q predictions [24].

4.8. Validation on Randomly Sampled Data

In order to further validate the rationality of a propensity score, we compared the result with
propensity to that using randomly sampled interacting pairs from original positive samples. The same
number of positive and negative samples (6739) were randomly selected from 12,138 original positive and
5,522,852 negative samples, respectively, using EasyEnsemble [60]. We used five-fold cross-validation to
compare the AUCs of this random sample to those of the data set with high propensity to see if there is
difference between them.
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