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Abstract 

Background:  For the growing patient population with congenital heart disease (CHD), improving clinical workflow, 
accuracy of diagnosis, and efficiency of analyses are considered unmet clinical needs. Cardiovascular magnetic reso‑
nance (CMR) imaging offers non-invasive and non-ionizing assessment of CHD patients. However, although CMR data 
facilitates reliable analysis of cardiac function and anatomy, clinical workflow mostly relies on manual analysis of CMR 
images, which is time consuming. Thus, an automated and accurate segmentation platform exclusively dedicated to 
pediatric CMR images can significantly improve the clinical workflow, as the present work aims to establish.

Methods:  Training artificial intelligence (AI) algorithms for CMR analysis requires large annotated datasets, which are 
not readily available for pediatric subjects and particularly in CHD patients. To mitigate this issue, we devised a novel 
method that uses a generative adversarial network (GAN) to synthetically augment the training dataset via generating 
synthetic CMR images and their corresponding chamber segmentations. In addition, we trained and validated a deep 
fully convolutional network (FCN) on a dataset, consisting of 64 pediatric subjects with complex CHD, which we made 
publicly available. Dice metric, Jaccard index and Hausdorff distance as well as clinically-relevant volumetric indices 
are reported to assess and compare our platform with other algorithms including U-Net and cvi42, which is used in 
clinics.

Results:  For congenital CMR dataset, our FCN model yields an average Dice metric of 91.0% and 86.8% for LV at end-
diastole and end-systole, respectively, and 84.7% and 80.6% for RV at end-diastole and end-systole, respectively. Using 
the same dataset, the cvi42, resulted in 73.2% , 71.0% , 54.3% and 53.7% for LV and RV at end-diastole and end-systole, 
and the U-Net architecture resulted in 87.4% , 83.9% , 81.8% and 74.8% for LV and RV at end-diastole and end-systole, 
respectively.

Conclusions:  The chambers’ segmentation results from our fully-automated method showed strong agreement 
with manual segmentation and no significant statistical difference was found by two independent statistical analyses. 
Whereas cvi42 and U-Net segmentation results failed to pass the t-test. Relying on these outcomes, it can be inferred 
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Background
Congenital heart diseases (CHDs) are the most common 
among the birth defects [1]. It is currently estimated that 
83% of newborns with CHD in the U.S. survive infancy 
[2]. These patients require routine imaging follow ups. 
Cardiovascular magnetic resonance (CMR) imaging is 
the imaging modality of choice for assessment of cardiac 
function and anatomy in children with CHD. Not only 
does CMR deliver images with high spatial and accept-
able temporal resolution, but also it is non-invasive and 
non-ionizing [3, 4]. On the other hand, CMR analysis in 
pediatric CHD patients is among the most challenging, 
time-consuming, and operator-intensive clinical tasks.

Presently, artificial intelligence (AI) and particularly 
deep-learning show strong promise for automatic seg-
mentation of CMR images [5–8]. While the current 
AI-based methods have been successfully used for delin-
eating the adult heart disease, they are not yet reliable 
for segmenting the CMR images of CHD patients, and 
particularly in children [8, 9]. The foremost basis for this 
shortcoming is the anatomical heterogeneity and lack 
of large CMR databases that include data from a diverse 
group of CHD subjects acquired by diverse scanners and 
pulse sequences. As indicated by Bai et  al. [7], a major 
limitation of the existing learning methods is the use of 
homogeneous datasets where the majority of the CMR 
data are from adult subjects with healthy or closely mim-
icking healthy hearts, e.g., the Second Annual Data Sci-
ence Bowl [10] and UK CMR Biobank [11], among others 
[12, 13].

Training neural networks requires a large set of data 
that does not currently exist for complex CHD subjects. 
Another limitation is overfitting, especially over train-
ing, to image patterns in a specific dataset that includes 
images from the same scanner model/vendor, as also 
reported by Bai et al. [7]. Dealing with limited data is a 
major challenge in designing effective neural networks 
for pediatric CMR, particularly for CHD subjects, and 
necessitates innovative approaches [9].

Among the learning-based algorithms, supervised 
deep-learning is currently considered the state-of-the-
art for CMR segmentation [14]. Nevertheless, major 
limitations of deep-learning methods are their depend-
ency on the number of manually-annotated training data 
[15]. Small datasets can incur a large bias, which makes 
these methods ineffective and unreliable when the heart 

shape is outside the learning set, as frequently observed 
in CHD subjects.

To mitigate the need for large datasets of manu-
ally-annotated CHD data, in this study, we employ a 
Deep Convolutional Generative Adversarial Network 
(DCGAN) [16] that generates synthetically segmented 
CMR images and further enriches the training data 
beyond the classical affine transformations. DCGAN has 
enabled our deep-learning algorithms to successfully and 
accurately segment CMR images of complex CHD sub-
jects beyond the existing AI methods.

Methods
Dataset
Our dataset includes 64 CMR studies from pediatric 
patients with an age range of 2 to 18 scanned at the Chil-
dren’s Hospital Los Angeles (CHLA). The CMR data-
set includes scans from patients with Tetralogy of Fallot 
(TOF; n = 20 ), Double Outlet Right Ventricle (DORV; 
n = 9 ), Transposition of the Great Arteries (TGA; n = 9 ), 
Cardiomyopathy ( n = 8 ), Coronary Artery Anomaly 
(CAA; n = 9 ), Pulmonary Stenosis or Atresia ( n = 4 ), 
Truncus Arteriosus ( n = 3 ), and Aortic Arch Anom-
aly ( n = 2 ). All TGA cases were D-type but had been 
repaired with an arterial switch operation. The study was 
reviewed by the Children’s Hospital Los Angeles Institu-
tional Review Board and was granted an exemption per 
45 CFR 46.104[d] [4][iii] and a waiver of HIPAA authori-
zation per the Privacy Rule (45 CFR Part 160 and Sub-
parts A and E of Part 164).

CMR studies
Imaging studies were performed on either a 1.5  T 
(Achieva, Philips Healthcare, Best, the Netherlands) or 
at 3  T (Ingenia, Philips Healthcare). CMR images for 
ventricular volume and function analysis were obtained 
using a standard balanced steady state free precession 
(bSSFP) sequence without any contrast. Each dataset 
includes 12− 15 short-axis slices encompassing both 
right ventricle (RV) and left ventricle (LV) from base 
to apex with 20− 30 frames per cardiac cycle. Typical 
scan parameters were slice thickness of 6− 10mm , in-
plane spatial resolution of 1.5− 2mm2 , repetition time 
of 3− 4ms , echo time of 1.5− 2ms , and flip angle of 60 
degrees. Images were obtained with the patients free 
breathing; 3 signal averages were obtained to compen-
sate for respiratory motion. Manual image segmentation 

that by taking advantage of GANs, our method is clinically relevant and can be used for pediatric and congenital CMR 
segmentation and analysis.
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was performed by a board-certified pediatric cardiologist 
sub-specialized in CMR with experience consistent with 
Society for Cardiovascular Magnetic Resonance (SCMR) 
Level 3 certification. Endocardial contours were drawn 
on end-diastolic and end-systolic images. Ventricular 
volumes and ejection fraction were then computed from 
these contours. Manual annotations were performed 
according to SCMR guidelines with cvi42 software (Cir-
cle Cardiovascular Imaging, Calgary, Alberta, Canada) 
without the use of automated segmentation tools. The 
ventricular cavity in the basal slice was identified by eval-
uating wall thickening and cavity shrinking in systole.

Post‑processing of CMR data
The original image size was 512× 512 pixels. The original 
dataset was first preprocessed by center-cropping each 
image to the size of 445× 445 to remove patients’ identi-
fiers. Subsequently, all images were examined to ensure 
that both the heart and segmentation mask are present. 
To reduce the dimensionality, each cropped image was 
subsequently resized to 128× 128 using the imresize 
function in the open-source Python library SciPy. The 
entire process was performed using two different down-
sampling methods: (1) nearest-neighbor down-sampling 
and (2) bi-cubical down-sampling. For training data, 
twenty-six patients ( 10 TOFs, 4 DORVs, 4 TGAs, 4 CAAs 
and 4 cardiomyopathy patients) were randomly selected 
whereas the remaining 38 patients were used as test data.

Image segmentation using fully convolutional networks
A fully convolutional network (FCN), in comparison with 
a U-net [17] and cvi42, was used for automated pixelwise 
image segmentation. Convolutional networks are a fam-
ily of artificial neural networks that are comprised of a 
series of convolutional and pooling layers in which the 
data features are learned in various levels of abstraction. 
These networks are mostly useful when the data is either 
an image or a map such that the proximity among pixels 
represents how associated they are. Examples of FCNs 
used for segmenting healthy adult CMR images include 
[7, 18]. While these FCNs yield good segmentation accu-
racy for healthy adult CMR images, they show poor per-
formance on CHD subjects [7]. Inspired by the “skip” 
architecture used by Long et al. [19] and the FCN model 
introduced by Tran [18], we designed a novel 19− layer 
FCN for an automated pixelwise image segmentation in 
CHD subjects.

FCN architecture
The design architecture of our 19− layer FCN model 
and the number of filters for each convolution layer 

are specified in Fig.  1; four max-pooling layers with 
pooling size of 3 are employed to reduce the dimen-
sion of the previous layer’s output. Fine and elemen-
tary visual features of an image, e.g., the edges and 
corners, are learned in the network’s shallow layers 
whereas the coarse semantic information is generated 
over the deeper layers. These coarse and fine features 
are combined to learn the filters of the up-sampling lay-
ers, which are transposed convolution layers with the 
kernel size of 4 . The FCN’s input is a 128× 128 image 
and the network’s output is a 128× 128 dense heatmap, 
predicting class membership for each pixel of the input 
image. The technical details of the FCN architecture are 
fully described in the Appendix.

Despite incorporating l2− regularization and dropout 
in the FCN architecture, as explained in the Appendix, 
overfitting was still present due to the lack of a large set 
of annotated training data. A standard solution to this 
problem is to artificially augment the training dataset 
using various known image transformations [20]. Clas-
sic data augmentation techniques include affine trans-
formations such as rotation, flipping, and shearing [21]. 
To conserve the characteristics of the heart chambers, 
only rotation and flipping were used and the transfor-
mations such as shearing that instigate shape deforma-
tion were avoided. Each image was first rotated 10 times 
at the angles θ =

[

0
◦

, 20
◦

, 40
◦

, ..., 180
◦
]

 . Subsequently, 
each rotated image either remained the same or flipped 
horizontally, vertically, or both. As a result of this aug-
mentation, the number of training data was multiplied 
by a factor of 10× 4 = 40.

FCN training procedure
The dataset was randomly split into training/validation 
with the ratio of 0.8/0.2 . The validation set was used to 
provide an unbiased performance estimate of the final 
tuned model when evaluated over unseen data. Each 
image was then normalized to zero-mean and unit-var-
iance. Network parameters were initialized according 
to the Glorot’s uniform scheme [22].

To learn the model parameters, stochastic gradient 
descent (SGD) with learning rate of 0.002 and moment 
of 0.9 was used to accelerate SGD in the relevant direc-
tion and dampen oscillations. To improve the optimi-
zation process, Nesterov moment updates [23] were 
used for assessing the gradient at the “look-ahead” 
position instead of the current position. The network 
was trained using a batch size of 5 for 450 epochs, i.e., 
passes over the training dataset, to minimize the nega-
tive dice coefficient between the predicted and manual 
ground-truth segmentation.
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Deep convolutional generative adversarial networks 
to synthesize CMR images
While classic data augmentation techniques increased 
the number of training data by a factor of 40 , it did not 
solve the overfitting issue. To mitigate that, generative 
adversarial networks (GANs) were used to artificially 
synthesize CMR images and their corresponding cham-
bers’ segmentation. GANs are a specific family of gen-
erative models used to learn a mapping from a known 
distribution, e.g., random noise, to the data distribution.

A DCGAN was designed to synthesize CMR images to 
augment the training data. The architecture of both gen-
erator and discriminator networks along with their train-
ing procedures are described next.

DCGAN architecture
The generator’s architecture is shown in Fig. 2. The input 
to the generator network is a random noise z ∈ R

100 
drawn from a standard normal distribution N (0, I) . The 
input is passed through six 2D transposed convolution, 
also known as fractionally-strided convolution, layers 
with kernel size of 4 × 4 to up-sample the input into a 

128× 128 image. In the first transposed convolution 
layer, a stride of 1 pixel is used while a stride of 2 pixels is 
applied to the cross-correlation in the remaining layers. 
The number of channels for each layer is shown in Fig. 2. 
All 2D transposed convolution layers except the last one 
are followed by a rectified linear unit (ReLU) layer. The 
last layer is accompanied by a Tanh activation function. 
The generator network’s output includes two channels 
where the first is used for the synthetic CMR image and 
the second contains the corresponding chamber’s seg-
mentation mask.

The discriminator network’s architecture is a deep con-
volutional neural network (CNN) as shown in Fig. 2. The 
discriminator network’s input is a 2× 128× 128 image 
whose output is a scalar representing the probability that 
the input is a real pair of image with its corresponding 
segmentation mask. The model includes six 2D convolu-
tion layers with kernel size of 4 × 4 and stride of 2 pix-
els except for the last layer for which a 1− pixel stride 
value is used. The number of channels for each convolu-
tion layer is shown in Fig. 2. All layers except the last one 

Fig. 1  Fully convolutional network (FCN) architecture
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are followed by a Leaky ReLU layer with negative slope 
value of 0.2 . The last layer is accompanied by a sigmoid 
function.

DCGAN training procedure
The training data was normalized to zero-mean and unit-
variance to stabilize the DCGAN learning process. Each 
training sample was then rotated 19 times at angles 
θ =

[

0
◦

, 10
◦

, 20
◦

, ..., 180
◦
]

 while each rotated image either 
remained the same or flipped horizontally, vertically or 
both. As a result of this augmentation process, the num-
ber of training data was multiplied by a factor of 
19× 4 = 76.

The DCGAN’s two known issues are mode collapse 
and gradient vanishing [24]. Mode collapse attributes to 
the case in which too many values of the input noise are 
mapped to the same value in the data space. This happens 
when the generator is over-trained with respect to the 
discriminator. Alternatively, gradient vanishing refers to 
the situation in which the discriminator becomes too suc-
cessful in distinguishing the real from synthetic images 
with no gradient is backpropagated to the generator. In 
this case, the generator network cannot learn to gener-
ate synthetic images that are similar to the real images. 
To address these concerns, first, the network parameters 
were initialized according to a Gaussian distribution with 
zero-mean and variance of 0.02 . To learn the network 
parameters, Adam optimizer [25] was used for both gen-
erator and discriminator networks. Additional informa-
tion is provided in the Appendix. Each iteration of the 
learning procedure included the following two steps:

First, a single optimization step was performed to 
update the discriminator: A batch of 5 real image samples 
and their corresponding segmentation masks from the 

training data was randomly selected. Label 1 was assigned 
to them since they are real samples. These pairs of real 
images and their masks were then passed through the dis-
criminator network and the gradient of the loss, i.e., the 
binary cross entropy between predicted and true labels, 
was backpropagated to accordingly adjust the discrimi-
nator weights. Then, a batch of five noise samples was 
drawn from the standard normal distribution and passed 
through the generator network to create five pairs of 
images and their corresponding masks. These pairs were 
then labeled with 0 since they were synthetic samples. 
This batch of synthetic data was then passed through the 
discriminator and the gradient of the loss was backpropa-
gated to fine-tune the discriminator weights.

Second, an additional optimization step was performed 
to update the generator: Each pair of synthetic image and 
its corresponding segmentation mask from the previous 
step was labeled 1 to mislead the discriminator and create 
the perception that the pair is real. These samples were 
then passed through the discriminator and the gradient 
of the loss was backpropagated to adjust the generator 
weights.

In summary, in the first step, the discriminator was 
fine-tuned while the generator was unchanged, and in the 
second step, the generator was trained while the discrim-
inator remained unchanged. The training process contin-
ued for 40, 000 iterations, or until the model converged 
and an equilibrium between the generator and discrimi-
nator networks was established.

DCGAN post‑processing
The pixel value in each real mask is either 1 or 0 imply-
ing whether each pixel belongs to one of the ventricles 
or not. Therefore, the value of each pixel in a synthesized 

Fig. 2  Deep convolutional generative adversarial network (DCGAN) architecture
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chamber mask was quantized to 0 when it was less than 
0.5 and rounded up to 1 otherwise. To avoid very small 
or large mask areas, only the synthetic samples for which 
the ratio of the mask area to the total area was within 
a certain range were retained. For nearest-neighbor 
down-sampling, the range was between 0.005 and 0.025 
while for the bi-cubical down-sampling, the range was 
between 0.02 and 0.05 . Finally, the connected compo-
nents in each binary mask were located using the MAT-
LAB (Mathworks, Natick, Massachusetts, USA) function 
bwconncomp. If there were more than one connected 
component and the ratio of the area of the largest com-
ponent to the second largest component was less than 20 , 
that pair of image and mask would be removed from the 
set of synthetically-generated data.

Network training and testing
Fully convolutional networks using real dataset
For each chamber, one FCN was trained on the CMR 
images of 26 patients and their augmentation via geomet-
ric transformations. Each model was jointly trained on 
both end-diastolic (ED) and end-systolic (ES) images for 
each heart chamber. These networks are called LV-FCN 
and RV-FCN in the results section.

Fully convolutional networks using synthetically augmented 
dataset
Two separate DCGAN models were designed for LV and 
RV to further augment the training data. The designed 
DCGAN was used to generate 6, 000 pairs of synthetic 
images and their corresponding segmentation masks. 
Applying the DCGAN post-processing step, a set of 
2, 500 synthetic images, out of the 6, 000 generated pairs, 
was used for each chamber. Each of the 2, 500 selected 
images was then either remained the same, or flipped 
horizontally, vertically, or rotated 4 times at angles 
θ =

[

45
◦

, 90
◦

, 135
◦

, 180
◦
]

 . Thus, 2, 500× 7 = 17, 500 syn-
thetic CMR images and their corresponding segmenta-
tion masks were generated for each ventricle. Finally, our 
synthetically augmented repertoire included the CMR 
images of 26 patients and their augmentation via geomet-
ric transformations plus the generated 17, 500 synthetic 
CMR images. Using this synthetically augmented dataset, 
another FCN was trained for each chamber. Each model 
was jointly trained on both ED and ES images. The net-
works designed using the synthetically augmented data-
set (SAD) are called LV-FCN-SAD and RV-FCN-SAD in 
the results section.

U‑Net architecture
In addition to our network architecture described above, 
a traditional U-Net model was designed to compare its 
results with those of our designed FCN. For this purpose, 

a customized U-Net architecture with the input size of 
128× 128 was used. The architecture of the U-Net model 
is shown in Fig. 3 and its code is available at https​://githu​
b.com/karol​zak/keras​-unet. Similar to the case of our 
FCN, for each chamber, a network was trained on the 
training set of 26 patients and its augmentation via geo-
metric transformations. In the results section, these net-
works are referred to as LV-UNet and RV-UNet. For each 
chamber, another network was trained on the syntheti-
cally segmented CMR images, as was used for designing 
FCN-SAD. These networks are referred to as LV-UNet-
SAD and RV-UNet-SAD. Each network was jointly 
trained on both ED and ES images for each chamber.

Commercially available segmentation software
The results generated by our models were compared with 
the results from cvi42 (Circle Cardiovascular Imaging 
Inc) on our test set that included CMR images from 38 
patients. All volumetric measures were calculated using 
OsiriX Lite software (Pixmeo, Bernex, Switzerland). To 
calculate the volume, small modifications were applied 
to the open source plugin available at https​://githu​b.com/
chris​chute​/numpy​2roi to make the format consistent 
with our dataset. The segmented CMR images were con-
verted into OsiriX’s .roi files using the modified plugin. 
The resulted .roi files were imported to the OsiriX Lite 
software for volume calculation through its built-in 3D 
construction algorithm.

Our method was developed using the Python 2.7.12 
and performed on a workstation with Intel(R) Core (TM) 
i7 − 5930  K CPU 3.50  GHz with four NVIDIA GeForce 
GTX 980 Ti GPUs, on a 64 − bit Ubuntu platform.

Metrics for performance verification
Our results were compared head-to-head with U-Net 
and cvi42. Two different classes of metrics are used to 
compare the performance of cardiac chamber segmenta-
tion methods.

One class uses the clinical indices, such as volumetric 
data that are crucial for clinical decision making. These 
indices may not identify the geometric point-by-point 
differences between automated and manually delineated 
segmentations.

Another class of indices uses geometric metrics that 
indicate how mathematically close the automatic seg-
mentation is to that of the ground-truth. These include 
the average Dice metric, Jaccard index, Hausdorff dis-
tance (HD) and mean contour distance (MCD).

Generalizability to additional training and test subjects
To evaluate the generalizability of our framework on sub-
jects not included in our dataset, our method was tested 
on the 2017 MICCAI’s Automated Cardiac Diagnosis 

https://github.com/karolzak/keras-unet
https://github.com/karolzak/keras-unet
https://github.com/chrischute/numpy2roi
https://github.com/chrischute/numpy2roi
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Challenge (ACDC). The ACDC dataset includes 100 sub-
jects: (i) healthy ( n = 20 ); (ii) previous myocardial infarc-
tion ( n = 20 ); (iii) dilated cardiomyopathy ( n = 20 ); (iv) 
hypertrophic cardiomyopathy ( n = 20 ); and (v) abnor-
mal RV ( n = 20 ). For a consistent image size, five sub-
jects were removed and the remaining 95 subjects were 
zero-padded to 256× 256 , and then down-sampled 
to 128× 128 using nearest-neighbor down-sampling 
method. Three subjects from each group were randomly 
selected as training data and the remaining 80 subjects 
were left as the test data.

For each chamber, one FCN was trained on the com-
bined CMR images of both training sets, i.e. 26 patients 
from our dataset and 15 from the ACDC dataset, and 
their augmentation via geometric transformations. For 
each heart chamber, another FCN is trained on the data-
set that is further augmented via previously generated set 
of synthetically segmented CMR images. Each model was 
jointly trained on both ED and ES images for each heart 
chamber. The first and second segmentation networks 
are referred to as FCN-2.0 and FCN-SAD-2.0, respec-
tively. FCN-2.0 and FCN-SAD-2.0 were evaluated on the 

combined set of test subjects, i.e. 38 patients from our 
dataset and 80 patients from the ACDC dataset.

Statistical methods
Paired student t-test and intraclass correlation coefficient 
(ICC) were used for statistical analysis of predicted vol-
umes. The p-value for the paired student t-test can be 
interpreted as the evidence against the null hypothesis 
that predicted and ground-truth volumes have the same 
mean values. A p-value greater than 0.05 is considered 
as passing the statistical hypothesis testing. The intra-
class correlation coefficient describes how strongly the 
measurements within the same group are similar to each 
other. The intraclass correlation first proposed by Fisher 
et al. [26] was used. It focuses on the paired predicted and 
ground-truth measurements. The guidelines proposed by 
Koo and Li [27] were used to interpret the ICC values, 
as defined below: (a) less than 0.5 : poor; (b) between 0.50 
and 0.75 : moderate; (c) between 0.75 and 0.90 : good; and 
(d) more than 0.90 : excellent.

Fig. 3  U-Net architecture
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Results
Characteristics of the cohort are reported first. Then, 
our synthetically generated CMR images and the corre-
sponding automatically generated segmentation masks 
are presented. Different performance metrics and clini-
cal indices for our fully automatic method compared 
to those of manual segmentation (ground-truth) are 
reported. In addition, the same indices calculated by 
cvi42 software and U-Net are presented for head-to-
head performance comparison.

Characteristics of the Cohort
Characteristics of the cohort are reported in Tables  1 
and 2. All chamber volumes in these tables are calcu-
lated based on the manual delineation.

Real and synthetically generated CMR images
A sample batch of real CMR images, including their 
manually segmented LV masks is compared with a sam-
ple batch of synthetically generated CMR images with 
their corresponding automatically-generated LV masks 
in Fig. 4. Similar comparison is made for RV in Fig. 5.

Segmentation performance
As mentioned in the method section, two separate 
down-sampling methods–nearest-neighbor and bi-
cubical–were practiced and their training/testing were 
independently performed. The results for both methods 
are reported here:

Segmentation performance for nearest‑neighbor 
down‑sampling
The average Dice metric, Jaccard index, Hausdorff dis-
tance (HD), mean contour distance (MCD) and coef-
ficient of determination R2

vol for FCN and FCN-SAD 
computed based on the ground-truth are reported in 
Table 3.

The Dice metrics for FCN method were 86.5% , 83.2% , 
80.3% and 74.7% for LVED, LVES, RVED and RVES, 
respectively. The corresponding Dice metrics for FCN-
SAD method were 90.6% , 85.0% , 84.4% and 79.2% , 
respectively.

Sensitivity, specificity, positive predictive value (PPV) 
and negative predictive value (NPV) are summarized in 
Table 4.

For both methods, average absolute and average rela-
tive deviation of the automatically segmented volumes 
from manually-segmented volumes, stroke volumes 
and ejection fractions are reported in Table 5. A smaller 
deviation indicates better conformity between auto-
matically- and manually derived contours.

The ranges of LV end-diastolic volume (LVEDV), LV 
end-systolic volume (LVESV), LV stroke volume (LVSV) 
and LV ejection fraction (LVEF) for the 38 test sub-
jects were ( 10mL to 202 mL ), ( 4 mL to 91 mL ), ( 6 mL 
to 128 mL ) and ( 30% to 75% ), respectively. The ranges 
of RV end-diastolic volume (RVEDV), end-systolic 

Table 1  Characteristics of the cohort (Volumes)

DORV double outlet right ventricle, TGA​ transposition of the great arteries; TOF 
tetralogy of Fallot

n Min Max Mean Median

LVEDV (mL)

 Aortic Arch Anomaly 2 87.39 196.09 141.74 141.74

 Cardiomyopathy 8 82.55 179.02 114.37 93.66

 Coronary Artery Disease 9 21.43 123.24 79.72 89.55

 DORV 9 10.23 126.6 44.8 40.05

 Pulmonary Stenosis/Atresia 4 88.74 130.22 101.83 94.18

 TGA​ 9 39.18 167.03 113.35 133.77

 TOF 20 18.32 153.68 87.55 92.19

 Truncus arteriosus 3 70.23 201.44 124.13 100.73

 All 64 10.23 201.44 91.72 89.41

LVESV (mL)

 Aortic Arch Anomaly 2 22.06 68.3 45.18 45.18

 Cardiomyopathy 8 15.07 80.2 41.1 32.5

 Coronary Artery Disease 9 8.28 58.6 28.99 29.76

 DORV 9 4.18 43.33 17.4 17.7

 Pulmonary Stenosis/Atresia 4 31.56 53.28 38.25 34.09

 TGA​ 9 15.94 68.86 45.62 46.71

 TOF 20 5.95 69.01 34.21 33.22

 Truncus arteriosus 3 27.88 90.48 55.28 47.47

 All 64 4.18 90.48 35.16 31.66

RVEDV (mL)

 Aortic Arch Anomaly 2 100.34 215.08 157.71 157.71

 Cardiomyopathy 8 78.94 180.94 121.31 114.3

 Coronary Artery Disease 9 20.13 171.28 92.35 106.01

 DORV 9 25.31 236.22 80.0 69.72

 Pulmonary Stenosis/Atresia 4 126.2 264.54 176.92 158.48

 TGA​ 9 42.58 179.98 121.33 138.93

 TOF 20 28.63 265.7 137.12 129.67

 Truncus arteriosus 3 99.15 201.42 147.0 140.43

 All 64 20.13 265.7 122.19 115.43

RVESV (mL)

 Aortic Arch Anomaly 2 38.43 101.04 69.73 69.73

 Cardiomyopathy 8 13.27 86.81 45.25 36.43

 Coronary Artery Disease 9 8.49 70.26 34.04 33.57

 DORV 9 6.37 112.31 35.91 34.51

 Pulmonary Stenosis/Atresia 4 49.04 129.65 80.72 72.09

 TGA​ 9 15.93 84.68 50.08 41.52

 TOF 20 13.56 136.99 63.74 59.21

 Truncus arteriosus 3 43.3 73.47 56.37 52.34

 All 64 6.37 136.99 52.32 46.07
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volume (RVESV), stroke volume (RVSV) and ejection 
fraction (RVEF) for the 38 test subjects were ( 20 mL to 
265 mL ), ( 6 mL to 130 mL ), ( 12 mL to 138 mL ) and ( 32% 
to 84% ), respectively.

The p-values for the paired sample t-test of LVEDV, 
LVESV, RVEDV and RVESV to test the null hypothesis 
that predicted and ground-truth volumes have identi-
cal expected values are tabulated in Table  6. A p-value 
greater than 0.05 is considered as passing the t-test and 
is boldfaced in Table  6. The ICC values for the paired 
predicted and ground-truth values of LVEDV, LVESV, 
RVEDV and RVESV are listed in Table 6. An ICC value 
greater than 0.90 is considered as an excellent agreement 
and is boldfaced in Table 6.

Exemplary LV and RV segmentations at ES and ED are 
shown in Fig. 6. Red contours correspond to the ground-
truth (i.e., manual annotation) whereas green and yellow 

contours correspond to the predicted delineations by 
FCN and FCN-SAD methods, respectively.

The correlation and Bland–Altman plots are shown in 
Figs. 7, 8, 9 and 10. The FCN-SAD results are depicted by 
blue dots. As shown in Figs. 7 and 8, the points deviated 
from the line y = x are due to the mismatch between pre-
diction and ground-truth. The Bland–Altman diagrams 
are commonly used to evaluate the agreement among 
clinical measures and identifying any systematic dif-
ference (i.e., fixed bias, outliers etc.). The bias values of 
the FCN for LVEDV, LVESV, RVEDV and RVESV were 
3.9mL , 3.0mL , 8.9mL and 3.3mL , respectively, whereas 
the bias values of the FCN-SAD for LVEDV, LVESV, 
RVEDV and RVESV were 1.9mL , 0.5mL , 3.1mL and 
−0.8mL , respectively. The 95% confidence interval of dif-
ference between automatic segmentation and ground-
truth is shown as dashed lines representing ±1.96 
standard deviation.

Segmentation performance for bi‑cubical down‑sampling
The results for the bi-cubical down-sampling method are 
reported in Table 7. FCN-SAD method’s Dice metrics for 
LVED, LVES, RVED and RVES were 91.0% , 86.8% , 84.7% 
and 80.6% , respectively. The FCN-SAD’s t-test p-values 
for LVED, LVES, RVED and RVES are 0.27 , 0.09 , 0.08 , 
and 0.66 , respectively. FCN-SAD method unequivocally 
passes the paired sample t-test for LV and RV at both ED 
and ES phases.

The correlation and Bland–Altman plots for ES and 
ED ventricular volumes, ejection fractions and stroke 
volumes for the bi-cubical down-sampling method are 
depicted in Figs. 11, 12, 13 and 14.

Segmentation performance for cvi42
The cvi42-associated Dice metrics were 73.2% , 71.0% , 
54.3% and 53.7% for LVED, LVES, RVED and RVES, 
respectively. The corresponding sensitivity, specificity, 
PPV and NPV are summarized in Table 4. The absolute 
and relative deviations of automatically- from manually-
segmented results for LV and RV volumes at ED and ES 
as well as SV and EF are summarized in the third column 
of Table 5.

The correlation and Bland–Altman plots for cvi42 are 
shown by green dots in Figs. 7, 8, 9 and 10. The bias val-
ues of the cvi42 for LVEDV, LVESV, RVEDV and RVESV 
were −3.9mL , −3.7mL , 30.2mL and 8.1mL , respectively.

Segmentation performance for U‑Net with nearest‑neighbor 
down‑sampling
Simulations were carried out on the images that were 
down-sampled using nearest-neighbor method. The aver-
age Dice metric, Jaccard index, Hausdorff distance, mean 
contour distance, and R2

vol for U-Net and U-Net-SAD 

Table 2  Clinical characteristics of the cohort (Age, Weight, 
Height)

n Min Max Mean Median

Age (years)

 Aortic Arch Anomaly 2 17.9 18.3 18.1 18.1

 Cardiomyopathy 8 9.4 17.1 13.6 13.9

 Coronary Artery Disease 9 1.1 19.8 9.8 11.5

 DORV 9 0.5 13 6.9 7.5

 Pulmonary Stenosis/Atresia 4 8.6 16.5 12.9 13.2

 TGA​ 9 2.7 18.9 11.2 11.7

 TOF 20 0.4 20.2 10.9 11.9

 Truncus arteriosus 3 10.3 23.3 15 11.3

 All 64 0.4 23.3 11.1 12

Weight (kg)

 Aortic Arch Anomaly 2 49.0 62.6 55.8 55.8

 Cardiomyopathy 8 43.8 114.5 71.3 62.6

 Coronary Artery Disease 9 12 79.3 36.9 43.3

 DORV 9 7.1 63.0 23.3 23.0

 Pulmonary Stenosis/Atresia 4 35.5 54.5 47.1 49.1

 TGA​ 9 13 63 41.3 49.1

 TOF 20 3.5 124.3 42.8 38.4

 Truncus arteriosus 3 25.0 70.5 41.5 29.0

 All 64 3.5 124.3 43.2 43.6

Height (cm)

 Aortic Arch Anomaly 2 142.0 179.0 160.5 160.5

 Cardiomyopathy 8 137.0 181.0 160.0 160.0

 Coronary Artery Disease 9 97.0 169.4 144.5 155.0

 DORV 9 64.5 153.0 109.4 121.0

 Pulmonary Stenosis/Atresia 4 136.0 162.0 152.3 155.5

 TGA​ 9 88.0 172.0 138.1 148.0

 TOF 20 57.5 174.0 133.8 142.0

 Truncus arteriosus 3 133.0 173.0 153.0 153.0

 All 64 57.5 181.0 138.4 145.0
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computed based on the ground-truth are reported in 
Table 3.

The Dice metrics for U-Net method were 84.5% , 
79.4% , 77.7% and 71.3% for LVED, LVES, RVED and 
RVES, respectively. The corresponding Dice metrics for 
U-Net-SAD method were 87.1% , 82.3% , 81.8% and 74.8% , 
respectively.

Sensitivity, specificity, PPV and NPV for U-Net and 
U-Net-SAD are summarized in Table 4.

The absolute and relative difference between predicted 
and ground-truth volumes for LV and RV chambers at 
ED and ES as well as SV and EF are summarized in the 
last two columns of the Table 5.

The correlation and Bland–Altman plots for U-Net-
SAD are shown by red dots in Figs.  7, 8, 9 and 10. The 
bias values of the U-Net for LVEDV, LVESV, RVEDV and 
RVESV were 7.2mL , 4.2mL , 8.4mL and 5.4mL , respec-
tively. The corresponding bias values of U-Net-SAD for 
LVEDV, LVESV, RVEDV and RVESV were 3.6mL , 2.8mL , 
7.0 mL , and 4.5mL , respectively.

Segmentation performance for U‑Net with bi‑cubical 
down‑sampling
Using the images that were down-sampled according to 
the bi-cubical method, the average Dice metric, Jaccard 
index, relative volume difference and R2

vol for U-Net and 

Fig. 4  Sample segmented images for left ventricle (LV)
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U-Net-SAD calculated based on the ground-truth are 
reported in Table 7.

The Dice metrics for U-Net method were 85.5% , 
81.6% , 76.5% and 70.2% for LVED, LVES, RVED and 
RVES, respectively. The corresponding Dice metrics for 
U-Net-SAD method were 87.4% , 83.9% , 81.8% , and 74.8% , 
respectively.

Segmentation performance for FCN‑2.0 and FCN‑SAD‑2.0
To avoid conflict with the definition of HD, MCD, etc., 
CMR images with no ground-truth segmentation con-
tours are removed from the test set. The average Dice 
metric, Jaccard index, Hausdorff and mean contour 

distance for FCN-2.0 and FCN-SAD-2.0 are reported in 
Table 8. The Dice metrics for FCN-2.0 were 86.7% , 82.8% , 
80.8% and 72.4% for LVED, LVES, RVED and RVES, 
respectively. The corresponding Dice metrics for FCN-
SAD-2.0 were 91.3% , 86.7% , 84.5% and 77.0% for LVED, 
LVES, RVED and RVES, respectively.

Discussion
Many challenges currently exist for segmenting cardiac 
chambers from CMR images, notably in pediatric and 
CHD patients [12, 28–30]. In the past few years, a great 
deal of activities involved CMR segmentation using the 
learning-based approaches [5–8]. Despite their relative 

Fig. 5  Sample segmented images for right ventricle (RV)
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successes, they still have certain limitations. Small data-
sets incur a large bias to the segmentation, which makes 
these methods unreliable when the heart shape is outside 
the learning set (e.g., CHDs and post-surgically remod-
eled hearts). In brief, in pediatric cardiac imaging, learn-
ing-based methods remain computationally difficult and 
their predictive performance are less than optimal, due to 
the complexity of estimating parameters, as their conver-
gence is not guaranteed [31].

While traditional deep-learning methods achieve good 
results for subjects with relatively normal structure, 

Table 3  Mean (SD) of  different quantitative metrics 
for nearest-neighbor down-sampling

Dice (%) Jaccard (%) HD (mm) MCD (mm) R
2

vol
(%)

LVED

 FCN 86.5 (22.2) 80.7 (23.5) 6.9 (12.1) 2.3 (6.4) 98.5

 FCN-SAD 90.6 (13.8) 84.9 (16.5) 5.0 (7.4) 1.7 (3.8) 99.3

 cvi42 73.2 (34.3) 66.5 (33.0) 7.5 (13.6) 3.4 (10.8) 78.6

 U-Net 84.5 (24.4) 78.4 (25.4) 7.2 (10.2) 3.3 (8.5) 93.4

 U-Net-SAD 87.1 (21.9) 81.4 (22.6) 6.7 (10.8) 2.3 (7.1) 97.9

LVES

 FCN 83.2 (20.9) 75.1 (22.5) 6.9 (12.0) 2.7 (7.4) 93.0

 FCN-SAD 85.0 (18.8) 77.3 (21.2) 6.3 (9.4) 2.5 (5.6) 96.6

 cvi42 71.0 (32.2) 62.6 (30.5) 7.9 (15.3) 4.0 (13.3) 76.6

 U-Net 79.4 (25.2) 71.2 (26.1) 7.1 (10.1) 2.7 (6.8) 82.2

 U-Net-SAD 82.3 (20.9) 73.8 (22.5) 7.6 (11.9) 2.5 (6.7) 92.3

RVED

 FCN 80.3 (24.0) 71.9 (24.9) 14.2 (15.7) 6.6 (13.6) 87.0

 FCN-SAD 84.4 (20.2) 76.7 (21.5) 10.7 (11.5) 3.8 (6.5) 95.9

 cvi42 54.3 (40.9) 47.8 (37.8) 15.8 (17.8) 5.6 (9.0) 31.9

 U-Net 77.7 (27.1) 69.6 (27.9) 15.1 (19.3) 5.7 (14.2) 84.2

 U-Net-SAD 81.8 (22.5) 73.7 (23.7) 12.3 (14.1) 4.1 (7.1) 93.4

RVES

 FCN 74.7 (24.5) 64.4 (24.9) 13.6 (19.9) 6.1 (16.3) 87.6

 FCN-SAD 79.2 (20.1) 69.1 (21.6) 11.2 (12.5) 4.1 (7.6) 93.3

 cvi42 53.7 (38.0) 45.5 (34.0) 12.9 (12.5) 4.7 (5.8) 64.3

 U-Net 71.3 (28.1) 61.4 (27.7) 14.6 (19.0) 6.1 (16.0) 88.4

 U-Net-SAD 74.8 (24.8) 64.6 (24.9) 12.1 (13.0) 4.2 (6.6) 88.7

Table 4  Mean (SD) of  different statistical metrics 
for nearest-neighbor down-sampling

Sensitivity (%) Specificity (%) PPV (%) NPV (%)

LVED

 FCN 85.7 (22.7) 99.9 (0.4) 89.5 (21.9) 99.8 (0.3)

 FCN-SAD 91.7 (13.4) 99.9 (0.2) 90.9 (15.5) 99.9 (0.2)

 cvi42 79.5 (35.7) 99.6 (0.7) 69.8 (34.2) 99.7 (0.6)

 U-Net 83.0 (25.9) 99.9 (0.1) 89.7 (21.9) 99.8 (0.3)

 U-Net-SAD 86.8 (22.2) 99.9 (0.2) 89.2 (22.0) 99.8 (0.2)

LVES

 FCN 82.9 (22.7) 99.9 (0.2) 86.4 (22.4) 99.8 (0.2)

 FCN-SAD 88.5 (19.0) 99.9 (0.3) 84.7 (20.8) 99.9 (0.1)

 cvi42 79.6 (33.8) 99.7 (0.6) 67.0 (32.5) 99.8 (0.3)

 U-Net 79.0 (27.5) 99.9 (0.2) 84.1 (26.0) 99.8 (0.2)

 U-Net-SAD 82.1 (23.4) 99.9 (0.2) 87.1 (20.6) 99.8 (0.2)

RVED

 FCN 79.6 (25.4) 99.7 (0.3) 84.4 (22.6) 99.6 (0.6)

 FCN-SAD 84.9 (21.5) 99.7 (0.4) 86.2 (20.3) 99.7 (0.4)

 cvi42 53.1 (41.3) 99.7 (0.5) 60.2 (42.4) 99.0 (1.1)

 U-Net 77.0 (29.4) 99.7 (0.4) 84.1 (23.5) 99.6 (0.6)

 U-Net-SAD 81.0 (24.6) 99.8 (0.3) 86.3 (20.6) 99.6 (0.5)

RVES

 FCN 75.0 (26.6) 99.7 (0.4) 79.5 (25.1) 99.7 (0.3)

 FCN-SAD 83.5 (20.0) 99.6 (0.6) 79.0 (23.0) 99.8 (0.2)

 cvi42 54.3 (39.5) 99.7 (0.5) 57.3 (39.0) 99.4 (0.7)

 U-Net 70.8 (30.3) 99.8 (0.4) 77.7 (27.8) 99.7 (0.4)

 U-Net-SAD 74.2 (27.1) 99.8 (0.3) 80.3 (24.3) 99.7 (0.3)

Table 5  Mean (SD) of  the  volume/stroke volume (SV)/
ejection fraction (EF) differences between  predicted 
and  manual segmentations for  nearest-neighbor down-
sampling

FCN FCN-SAD cvi42 U-Net U-Net-SAD

Absolute difference

 LVEDV (mL) 4.6 (4.0) 2.9 (3.1) 12.8 (18.8) 8.3 (9.3) 5.3 (4.7)

 LVESV (mL) 3.6 (3.9) 2.7 (2.5) 6.3 (7.3) 5.3 (6.5) 3.9 (3.9)

 RVEDV (mL) 12.0 (18.7) 7.7 (9.8) 30.3 (40.6) 12.6 (20.7) 9.4 (12.6)

 RVESV (mL) 6.7 (8.3) 5.4 (5.6) 9.8 (15.1) 6.7 (7.7) 5.7 (8.3)

 LVSV (mL) 3.7 (3.6) 2.2 (1.8) 10.5 (17.7) 4.1 (4.7) 3.0 (2.8)

 RVSV (mL) 9.6 (13.1) 6.0 (6.8) 22.4 (28.3) 10.6 (15.8) 6.9 (7.6)

 LVEF (%) 4.1 (4.9) 2.8 (1.9) 107.8 (613.3) 4.8 (6.5) 5.4 (14.1)

 RVEF (%) 4.1 (3.0) 3.7 (3.0) 48.5 (193.0) 4.5 (4.8) 3.5 (3.3)

Relative difference

 LVEDV (%) 7.1 (11.4) 4.0 (5.7) 21.1 (32.5) 10.7 (16.4) 8.1 (15.6)

 LVESV (%) 12.8 (14.1) 9.5 (7.6) 28.9 (56.9) 17.1 (19.5) 13.5 (16.9)

 RVEDV (%) 10.4 (14.1) 7.4 (8.7) 27.0 (28.5) 12.1 (18.2) 8.8 (10.7)

 RVESV (%) 13.9 (15.6) 12.5 (12.4) 24.9 (28.4) 14.7 (16.3) 11.2 (11.6)

 LVSV (%) 8.8 (13.4) 5.1 (6.8) 26.7 (35.2) 9.9 (16.6) 8.3 (16.1)

 RVSV (%) 13.5 (14.3) 9.4 (9.0) 32.6 (32.5) 15.8 (20.0) 11.1 (12.1)

 LVEF (%) 6.9 (8.1) 4.6 (2.9) 182.2 
(1036.0)

7.8 (10.8) 9.2 (23.8)

 RVEF (%) 7.1 (5.3) 6.4 (5.2) 89.3 (366.3) 7.4 (7.5) 5.7 (5.0)

Table 6  ICC and  P-values of  the  paired sample t-test 
for  models trained on  nearest-neighbor down-sampled 
data

FCN FCN-SAD cvi42 U-Net U-Net-SAD

P-value

 LVEDV 7.428e−6 4.438e−3 0.289 1.278e−4 9.886e−4

 LVESV 1.440e−4 0.397 0.015 1.284e−3 8.218e−4

 RVEDV 0.01 0.123 5.181e−5 3.026e−2 4.666e−3

 RVESV 0.054 0.548 3.912e−3 5.535e−4 4.136e−3

ICC

 LVEDV 0.992 0.996 0.893 0.964 0.989
 LVESV 0.962 0.982 0.893 0.896 0.957
 RVEDV 0.931 0.979 0.643 0.921 0.964
 RVESV 0.936 0.967 0.819 0.937 0.936
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Fig. 6  Sample segmentation. a LV end-diastole (LVED), b LV end-systole (LVES), c RV end-diastole (RVED), d RV end-systole (RVES)

Fig. 7  Correlation plots for nearest-neighbor down-sampling. a LV end-diastolic volume (LVEDV) , b LV end-systolic volume (LVESV) , c RV 
end-diastolic volume (RVEDV) , d RV end-systolic volume (RVESV)
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they are not as reliable for segmenting the CMR images 
of CHD patients [7, 8]. It is believed that the absence of 
large databases that include CMR studies from hetero-
geneous CHD subjects significantly limits the perfor-
mance of these traditional models [32]. To address this 
shortcoming, our new method simultaneously gener-
ates synthetic CMR and their corresponding segmented 
images. Our DCGAN-based FCN model was tested on a 
heterogeneous dataset of pediatric patients with complex 
CHDs.

Current software platforms designed for adult patients, 
such as cvi42 by Circle Cardiovascular Imaging Inc, were 
previously reported to have many shortcomings when 
used for pediatric or CHD applications. Children are 
not scaled little adults; pediatric patient characteristics, 
such as cardiac anatomy, function, higher heart rates, 
degree of cooperativity, and smaller body size, all affect 

post-processing approaches to CMR, and there is cur-
rently no CMR segmentation tool dedicated to pediatric 
patients. Our major motivation for this study was the fact 
that current clinically available segmentation tools can-
not be reliably used for children.

The LV and RV volumes were computed using our 
automatic segmentation methods, U-Net model and the 
cvi42 (version 5.10.1.) were compared with the ground-
truth volumes. As reported in Table 5, cvi42′s rendered 
volumes led to a significant difference between the pre-
dicted and true values of volumetric measures although 
it uses the original high quality and high resolution CMR 
images coming from the scanner for its predictions. Syn-
thetic data augmentation also improved volume pre-
diction for the U-Net. In addition, as shown in Table 5, 
FCN-SAD method outperforms U-Net-SAD for both 
chambers at end-systole and end-diastole. As reported in 

Fig. 8  Correlation plots for nearest-neighbor down-sampling. a LV ejection fraction (LVEF), b RV ejection fraction (RVEF), c LV stroke volume (LVSV) , 
d RV stroke volume (RVSV)
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Table 7, our FCN-SAD passed the t-test’s null hypothesis 
that the predicted and ground-truth volumes have iden-
tical expected values for LVED, LVES, RVED and RVES. 
However, cvi42 only passed the t-test for LVED. Since 
the p-value is largely affected by the sample size etc., the 
ICC values are also reported for all models in Table  6. 
Our FCN and FCN-SAD models led to an excellent cor-
relation coefficient for both LV and RV at ED and ES. 
U-Net-SAD also resulted in ICC values greater than 0.90 ; 
however, U-Net failed to achieve the excellent threshold 
for LVES. All cvi42′s ICC values are below the excel-
lent threshold as well. Although the exact deep learning 
architecture of cvi42 is not known to us, in our opin-
ion, the main reason for the relatively poor performance 
of cvi42 on pediatric CHD patients is the training of its 
neural network on the UK Biobank (as declared on their 
website), which is limited to the adult CMR images. More 
precisely, UK Biobank dataset does not represent features 
that are inherent to the heart of children with CHD.

As indicated in Tables  3 and 4, our method outper-
forms cvi42 in Dice metric, Jaccard index, HD, MCD, 
volume correlation, sensitivity, specificity, PPV and NPV. 
For LV segmentation, FCN-SAD improved Dice metric 
from 73.2% to 90.6% and from 71.0% to 85.0% over cvi42 
at end-diastole and end-systole, respectively. Similar 
improvement was observed for RV segmentation where 
Dice metric was improved from 54.3% to 84.4% and from 
53.7% to 79.2% at end-diastole and end-systole, respec-
tively. FCN-SAD also reduced the average Hausdorff 
and mean contour distances compared to cvi42, which 
improved alignment between the contours as observed 
for both LV and RV at ED and ES. Similar improvement 
was observed for FCN-SAD over U-Net-SAD. For LV 
segmentation, FCN-SAD improved the Dice metric over 
U-Net-SAD from 87.1% to 90.6% for ED, and from 82.3% 
to 85.0% for ES. Similarly, FCN-SAD improved U-Net-
SAD for RV segmentation from 81.8% to 84.4% for ED, 
and from 74.8% to 79.2% for ES. FCN-SAD also led to 

Fig. 9  Bland–Altman plots for nearest-neighbor down-sampling. a LVEDV, b LVESV, c RVEDV, d RVESV
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lower HD and MCD values compared to the U-Net-SAD 
method.

The data augmentation using DCGAN improved the 
Dice metric values by about 3% in FCN-SAD compared 
to our FCN method. Improvement was observed for Jac-
card index, HD, MCD, volume correlation, sensitivity, 
specificity, PPV and NPV as well.

As shown in Table  3, synthetic data augmentation 
improved both Dice and Jaccard indices by about 3% for 
U-Net, which shows that synthetic data augmentation 
can improve the performance of FCN methods regard-
less of the type. Compared to the U-Net method, similar 
improvement was observed in U-Net-SAD for both HD 
and MCD as well. Table 3 reveals that our FCN method 
outperforms U-Net. Similarly, our FCN-SAD method 
outperforms U-Net-SAD in all metrics for LVED, LVES, 
RVED and RVES.

Synthetic data augmentation also improved both Dice 
and Jaccard indices by about 4% for FCN-2.0. Similar 
improvement was observed in FCN-SAD-2.0 for both 
HD and MCD, which indicates better alignment between 
predicted and manual segmentation contours.

As expected, for all methods, RV segmentation proved 
to be more challenging than LV segmentation due to the 
complex RV shape and anatomy. The sophisticated cres-
cent shape of RV as well as the considerable variations 
among the CHD subjects make it harder for the segmen-
tation models to learn the mapping from a CMR image 
to its corresponding mask. Another major limiting factor 
that affects the performance of RV segmentation is the 
similarity of the signal intensities for RV trabeculations 
and myocardium.

Our methodology has overcome some of these limiting 
issues by learning the generative process through which 
each RV chamber is segmented. This information is then 

Fig. 10  Bland–Altman plots for nearest-neighbor down-sampling. a LVEF, b RVEF, c LVSV, d RVSV
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passed to the segmentation model via synthetic samples 
obtained from that generative process.

Corroborating the fact suggested by Yu et  al., [33], 
larger contours can be more precisely delineated com-
pared to the smaller ones. Segmentation of the CMR 
slices near the apex, particularly at the end-systole, is 
more challenging due to their small and irregular shape. 
Table  3 shows that both Dice and Jaccard indices are 
higher at ED versus ES for both ventricles. Another pos-
sible reason for lower performance at ES could be attrib-
uted to their small mask area and the smaller values of 
denominator at Eq. (3), which can lead to a major effect 
on the final values of these metrics, in case of even a few 
misclassified pixels.

Figures 7a and b show that the results generated by our 
FCN-SAD model leads to high correlation for LVEDV 
and LVESV. This in turn leads to high correlation in EF 
and SV as shown in Figs. 8a and c in addition to R2

vol val-
ues in Table 3. Similarly, a high correlation was observed 

for RVEDV and RVESV in Figs. 7c and d, which subse-
quently leads to high correlation in EF and SV as shown 
in Figs.  8b and d as well as the R2

vol scores in Table  3. 
Bland–Altman analyses in Figs. 9 and 10 show negligible 
bias for the results due to FCN-SAD model trained on 
the synthetically augmented data. Bland–Altman plots 
show that applying the FCN-SAD method reduced the 
mean and standard deviation of error in predicted vol-
umes and tightened the confidence interval compared to 
other methods.

The average elapsed times to segment a typical image in 
our GPU-accelerated computing platform is 10ms . Over-
all, our model takes 0.1s to process each patient’s CMR 
data. Simulations show that even on a common CPU-
based computing platform, our method requires about 
1.3s to segment each patient’s CMR images, which indi-
cates the clinical applicability of our automated segmen-
tation model.

Similar quantitative and volumetric results were 
observed when the whole training and validation pro-
cedures were repeated with a different random split of 
training and test subjects. This indicates that no noticea-
ble bias has occurred by the way subjects are categorized 
into training and test set.

Finally, we would like to emphasize on the significance 
of the choice of down-sampling method over the seg-
mentation performance. The entire process of training 
and testing was repeated using both nearest-neighbor 
and bi-cubical down-sampling methods. Compared to 
the nearest-neighbor down-sampling method, the bi-
cubical down-sampling provides a better performance 
for almost all studied models, except for the segmenta-
tion of the RVED using U-Net and U-Net-SAD. For 
example, the bi-cubical FCN-SAD results unequivocally 
passed the t-test for all chambers denoting the predicted 
and ground-truth volumes have identical expected value 
for LVED while the nearest-neighbor FCN-SAD did not. 
In our opinion, the main reason behind the superior per-
formance of the bi-cubical down-sampling method is 
its larger mask area compared to the nearest-neighbor 
method.

Limitations
As a limitation, our method applied to the CMR datasets 
of patients with two ventricles, and was not yet trained to 
analyze patients with a systemic RV. Overall, to the com-
puter, CMR images of hypoplastic left heart syndrome 
hearts are considered totally different objects. Therefore, 
a new training algorithm is needed to analyze the sin-
gle ventricle hearts. We are currently designing a new 

Table 7  Different quantitative metrics for  models trained 
on bi-cubically down-sampled data

Dice (%) Jaccard 
(%)

Rel. 
volume 
difference 
(%)

R
2

vol
(%) t-test

p-value

LVED

 FCN 88.5 (18.4) 82.6 (20.3) 6.0 (10.3) 98.5 0.0147

 FCN-SAD 91.0 (14.9) 85.8 (17.0) 4.6 (6.1) 99.2 0.2739
 U-Net 85.5 (23.0) 79.5 (24.0) 10.7 (17.7) 89.8 4.755e−3

 U-Net-
SAD

87.4 (21.1) 81.7 (22.3) 8.3 (15.9) 97.7 0.443e−3

LVES

 FCN 83.1 (22.6) 75.6 (23.8) 10.1 (9.3) 95.7 0.0786
 FCN-SAD 86.8 (16.5) 79.4 (18.9) 7.9 (5.1) 97.8 0.0945
 U-Net 81.6 (22.6) 73.4 (23.8) 23.4 (39.9) 79.1 9.913e−4

 U-Net-
SAD

83.9 (20.7) 76.1 (22.0) 15.6 (27.0) 93.3 3.786e−4

RVED

 FCN 80.9 (22.9) 72.6 (24.3) 9.3 (14.2) 87.7 0.0159

 FCN-SAD 84.7 (18.8) 76.8 (20.8) 6.8 (8.6) 94.9 0.0858
 U-Net 76.5 (29.5) 69.0 (29.6) 12.4 (17.9) 81.8 0.0134

 U-Net-
SAD

81.8 (22.8) 73.8 (24.4) 9.7 (12.4) 91.8 0.0251

RVES

 FCN 77.2 (22.8) 67.2 (23.6) 13.6 (15.6) 90.6 0.0226

 FCN-SAD 80.6 (19.7) 70.9 (21.2) 11.0 (13.8) 92.9 0.6585
 U-Net 70.2 (30.4) 60.9 (29.4) 18.5 (19.9) 82.6 0.151e−3

 U-Net-
SAD

74.8 (25.5) 64.9 (25.6) 13.8 (15.4) 88.1 1.783e−3
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model for that, which is beyond the scope of the present 
work. A second limitation of our method is that it must 
be calibrated before it can be applied to CMR images 
acquired from another scanner and with different cohort 
characteristics.

It should also be mentioned that we have used Fré-
chet Inception Distance (FID) to discriminate between 
real and synthetic CMR images. While the FID is com-
monly used, human judgment is still the best measure, 
although it is subjective and depends upon the experi-
ence. To derive a statistically significant validation, a large 
cohort of imaging physicians are needed which we aim to 
accomplish in near future.

We used OsiriX Lite software to calculate the volumes; 
however, OsiriX Lite may underestimate the volume if 
one image slice has no predicted segmentation due to its 
small chamber size. This was the case for the outliers at 
the bottom of Figs.  7c and d. Since our dataset did not 
include epicardial ground-truth contours, the cardiac 
mass was not calculated. Another limitation of this work 
is the lack of intra- and inter-observer variability assess-
ments since only one set of manual segmentation was 
available. Finally, the loss of resolution, caused by the 
down-sampling, was an inevitable limitation, which led 
to a compromise among speed, accuracy of the model 
and the data dimension.

Fig. 11  Correlation plots for bi-cubical down-sampling. a LVEDV, b LVESV, c RVEDV, d RVESV
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Fig. 12  Correlation plots for bi-cubical down-sampling. a LVEF, b RVEF, c LVSV, d RVSV
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Fig. 13  Bland–Altman plots for bi-cubical down-sampling. a LVEDV, b LVESV, c RVEDV, d RVESV
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Conclusions
Manual segmentation is subjective, less reproducible, time 
consuming and requires dedicated experts. Therefore, fully 
automated and accurate segmentation methods are desira-
ble to provide precise and reproducible clinical indices such 
as ventricular ejection fraction, chamber volume, etc. in a 
clinically actionable time-frame. Our learning-based frame-
work provides an automated, fast, and accurate model for 
LV and RV segmentation, and its outstanding performance 
in children with complex CHDs implies its potential to be 
used in clinics across the pediatric age group.

Contrary to many existing automated approaches, 
our framework does not make any assumption about 
the image or the structure of the heart, and performs 
the segmentation by learning features of the image at 
different levels of abstraction in the hierarchy of net-
work layers. To improve the robustness and accuracy 
of our segmentation method, a novel generative adver-
sarial network is introduced to enlarge the training 

Fig. 14  Bland–Altman plots for bi-cubical down-sampling. a LVEF, b RVEF, c LVSV, d RVSV

Table 8  Mean (SD) of  different quantitative metrics 
for  nearest-neighbor down-sampling (CHD + ACDC 
datasets)

Dice (%) Jaccard (%) HD (mm) MCD (mm)

LVED

 FCN-2.0 86.7 (22.7) 81.1 (23.7) 7.1 (13.0) 3.1 (10.4)

 FCN-SAD-2.0 91.3 (15.1) 86.2 (16.6) 5.2 (9.1) 2.0 (7.8)
LVES

 FCN-2.0 82.8 (23.1) 75.3 (24.2) 8.3 (17.8) 3.6 (12.4)

 FCN-SAD-2.0 86.7 (17.6) 79.6 (19.6) 6.0 (10.9) 2.7 (10.0)
RVED

 FCN-2.0 80.8 (22.7) 72.3 (24.0) 14.3 (18.9) 5.8 (14.7)

 FCN-SAD-2.0 84.5 (18.8) 76.5 (20.6) 12.1 (16.0) 4.2 (9.1)
RVES

 FCN-2.0 72.4 (26.8) 62.2 (26.5) 15.8 (21.3) 7.4 (17.9)

 FCN-SAD-2.0 77.0 (22.8) 66.9 (23.7) 13.4 (16.4) 4.6 (8.6)
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data via synthetically generated and realistic looking 
samples. The new technique is also applicable on other 
FCN methods (e.g., U-net) and can improve the FCN 
performance independent of its specific type. The FCN 
trained on both real and synthetic data exhibits an 
improvement in various statistical and clinical meas-
ures such as Dice, HD and volume over the existing 
machine learning methods.
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Appendix: Technical details
Fully convolutional network architecture
All convolution layers shared the kernel size of 3 , stride of 
1 pixel with hyperbolic tangent function (Tanh) as their 
activation function. The input for each convolution layer 
was padded such that the output retains the same length 
as the original input. To avoid overfitting, l2− regulari-
zation was applied to control layer parameters during 
optimization. To circumvent underfitting, a small regu-
larization coefficient of 0.0005 was selected. These pen-
alties were applied on a per-layer basis and incorporated 
in the loss function that the network optimizes during 
training. Each convolution layer’s output was normalized 
to zero-mean and unit-variance that allows the model to 
focus on the structural similarities/dissimilarities rather 
than on the amplitude-driven ones.

The FCN model in Fig. 1 includes approximately 11 mil-
lion parameters. Considering our relatively small CMR 
image dataset of 527 ( 570 ) left (right) ventricle images, 
the network is prone to overfitting. Therefore, in addition 
to l2− regularization, three dropout layers that randomly 
set 50% of the input units to 0 at each update during 
training were applied after the last convolution layers 
including 128 , 256 and 512 filters.

Deep convolutional generative adversarial networks
The adversarial modeling framework is comprised of 
two components, commonly referred to as the genera-
tor and discriminator. The functionality of the generator 
is denoted by a differentiable function, G , which maps 
the input noise variable z ∼ pZ(z) to a point x = G(z) in 
the data space. The generator should compete against an 
adversary, i.e., the discriminator, that strives to distinguish 
between real samples drawn from the genuine CMR data 
and synthetic samples created by the generator. More pre-
cisely, if the functionality of the discriminator is denoted 
by a differentiable mapping D , then D(x) is a single scalar 
representing the probability that x comes from the data 
rather than the generator output. The discriminator is 
trained to maximize the probability of assigning the cor-
rect label to both real and synthetic samples while the 
generator is simultaneously trained to synthesize samples 
that the discriminator interprets with high probability as 
real. More precisely, the discriminator is trained to maxi-
mize D(x) when x is drawn from the data distribution 
pdata while the generator is trained to maximize D(G(z)) , 
or equivalently minimize 1− D(G(z)) . Hence, adversarial 

https://github.com/saeedkarimi/Cardiac_MRI_Segmentation
https://github.com/saeedkarimi/Cardiac_MRI_Segmentation
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networks are based on a zero-sum non-cooperative game, 
i.e., a two-player minimax game in which the generator 
and discriminator are trained by optimizing the following 
objective function [34]:

where E[.] represents expectation. The adversarial model 
converges when the generator and discriminator reach 
a Nash equilibrium, which is the optimal point for the 
objective function in Eq.  (1). Since both G and D strive 
to undermine each other, a Nash equilibrium is achieved 
when the generator recovers the underlying data distri-
bution and the output of D is ubiquitously 1

2
 , i.e., the dis-

criminator cannot distinguish between real and synthetic 
data anymore. The optimal generator and discriminator 
at Nash equilibrium are denoted by G∗ and D∗ , respec-
tively. New data samples are generated by feeding ran-
dom noise samples to the optimal generator G∗.

DCGAN optimization
The learning rate, parameter β1 , and parameter β2 in 
Adam optimizer were set to 0.0002 , 0.5 , and 0.999 , 
respectively. The binary cross entropy between the tar-
get and the output was minimized. Since Adam, like any 
other gradient-based optimizer, is a local optimization 
method, only a local Nash equilibrium can be established 
between the generator and discriminator. A common 
method to quantify the quality of the generated synthetic 
samples is the FID, originally proposed by Heusel et  al. 
[35]. In FID, features of both real and synthetic data are 
extracted via a specific layer of Inception v3 model [36]. 
These features are then modeled as multivariate Gauss-
ian, and the estimated mean and covariance parameters 
are used to calculate the distance as [35]:

where (µs,�s) and (µr ,�r) are the mean and covariance 
of the extracted feature from the synthetic and real data, 
respectively. Lower FID values indicate better image 
quality and diversity among the set of synthetic samples.

Once the locally optimal generator was obtained, vari-
ous randomly selected subsets of the generated synthetic 
images were considered and the one with the lowest FID 
distance to the set of real samples was chosen.

Metrics definition
The Dice and Jaccard, as defined in Eq.  (3), are two 
measures of contour overlap with a range from zero to 

(1)
min
G

max
D

Ex∼pdata [logD(x)]+ Ez∼pZ [log(1− D(G(z)))],

(2)
FID(s, r) = �µs − µr�

2
2 + Tr

(

�s +�r − 2(�s�r)
1
2

)

,

one where a higher index value indicates a better match 
between the predicted and true contours:

where A and B are true and predicted segmentation, 
respectively. Hausdorff and mean contour distances are 
two other standard measures that show how far away 
the predicted and ground-truth contours are from each 
other. These metrics are defined as:

where ∂A and ∂B denote the contours of the segmenta-
tion A and B , respectively, and d(a, ∂B) is the minimum 
Euclidean distance from point a to contour ∂B . The lower 
values for these metrics indicate better agreement 
between automated and manual segmentation. The ICC 
for paired data values 

(

xi, x
′

i

)

 , for i = 1, · · · ,N  , originally 
proposed in [26], is defined as:

where

ICC is a descriptive statistic that quantifies the similar-
ity of the samples in the same group.
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