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Abstract

Magnetic resonance imaging (MRI) has been one of the primary instruments to mea-

sure the properties of the human brain non-invasively in vivo. MRI data generally

needs to go through a series of processing steps (i.e., a pipeline) before statistical

analysis. Currently, the processing pipelines for multi-modal MRI data are still rare, in

contrast to single-modal pipelines. Furthermore, the reliability and validity of the out-

put of the pipelines are critical for the MRI studies. However, the reliability and valid-

ity measures are not available or adequate for almost all pipelines. Here, we present

PhiPipe, a multi-modal MRI processing pipeline. PhiPipe could process T1-weighted,

resting-state BOLD, and diffusion-weighted MRI data and generate commonly used

brain features in neuroimaging. We evaluated the test–retest reliability of PhiPipe's

brain features by computing intra-class correlations (ICC) in four public datasets with

repeated scans. We further evaluated the predictive validity by computing the corre-

lation of brain features with chronological age in three public adult lifespan datasets.

The multivariate reliability and predictive validity of the PhiPipe results were also

evaluated. The results of PhiPipe were consistent with previous studies, showing

comparable or better reliability and validity when compared with two popular single-

modality pipelines, namely DPARSF and PANDA. The publicly available PhiPipe pro-

vides a simple-to-use solution to multi-modal MRI data processing. The accompanied

reliability and validity assessments could help researchers make informed choices in

experimental design and statistical analysis. Furthermore, this study provides a

framework for evaluating the reliability and validity of image processing pipelines.
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) has been the standard measure-

ment tool in the current field of human brain research. The popularity

of MRI comes from its non-invasiveness, flexible image contrasts and

whole brain coverage, compared with other brain imaging tools. The

MRI has been expected to play an important role in elucidating the

brain-behavior relationship and aiding diagnosis and treatment of

mental disorders in the years to come.

The MRI data normally requires a series of processing steps

before statistical modelling and hypothesis testing, compared with

other types of data (such as neuropsychological tests). This is because

MRI data is an indirect measure of brain properties and algorithms

must be applied to extract features of interest from MRI images. In

addition, the MRI data is corrupted by noises and artefacts from vari-

ous sources such as head motion and field inhomogeneity, which

should be mitigated during the data processing. The processing steps

taken from the raw MRI data to the final MRI-based brain features

before statistical analysis are usually called a processing pipeline. From

a conceptual level, we define the software (i.e., algorithm implementa-

tion) for individual processing step as the atomic software. Thus,

image processing pipelines are made of a combination of atomic soft-

wares. FreeSurfer (Dale et al., 1999; Fischl et al., 1999), AFNI

(Cox, 1996; Taylor & Saad, 2013), FSL (Smith et al., 2004) and SPM

(Ashburner, 2012) contain a lot of atomic softwares for MRI data pro-

cessing, on which most existing pipelines would depend. These core

softwares also have developed their own pipelines to facilitate batch

processing, for instance, FreeSurfer's recon-all, AFNI's afni_proc.py,

FSL's Feat and SPM's batch system. The publicly available pipelines,

such as DPARSF (Yan & Zang, 2010), CONN (Whitfield-Gabrieli &

Nieto-Castanon, 2012), HCP-Pipelines (Glasser et al., 2013), PANDA

(Cui et al., 2013), C-PAC (Craddock et al., 2013), GRETNA (Wang

et al., 2015), CCS (Xu et al., 2015), fMRIPrep (Esteban et al., 2019),

and CAT12 (Gaser et al., 2022), have remarkably simplified the data

processing procedures and contributed to the standardization of

image processing steps, making the results from multiple studies more

comparable and making multi-center studies possible (see Table S1

for a longer list of pipelines we investigated).

However, while collecting multi-modal imaging data in one scan

session is a common practice, the processing pipelines for multi-modal

MRI data are still rare, in comparison with single-modal pipelines. In

other words, multi-modal data are collected but processed separately.

The downside of using multiple single-modal pipelines is to make

multi-modal data fusion difficult. This is because single-modal pipe-

lines usually use different templates and atlases due to their devel-

opers' preferences. Moreover, using multiple single-modal pipelines

usually results in redundant calculations.

The major challenge in designing a (multi-modal) pipeline is how

to combine different atomic softwares to achieve optimal perfor-

mance. However, currently there is no consensus on the criterion of

optimum. A variety of metrics were used in previous pipeline valida-

tions, to just name a few, spatial smoothness (Esteban et al., 2019),

consistency within and between datasets (Cruces et al., 2022),

between-group difference detection (Cui et al., 2013; Xu et al., 2018),

discriminability (Lawrence et al., 2021), inter-pipeline agreement (Li

et al., 2021), and age predication/correlation (Alfaro-Almagro

et al., 2018; Tustison et al., 2014; Yan et al., 2016). However, these

previous validations were usually not systematic by considering only

one brain feature in one dataset or the metrics used were not infor-

mative for end-users in experiment design and statistical analysis.

Here we propose that, for the brain features generated by the

pipeline, the test–retest reliability measured by intra-class correlation

(ICC) and predicative validity measured by correlation with chronolog-

ical age should be taken as the two of the standard metrics in pipeline

validation. The brain features instead of the intermediate results are

of most interest and, therefore, their reliability and validity are most

informative and directly related to the experimental design and statis-

tical analysis. The test–retest reliability of various brain features has

been examined extensively (Buimer et al., 2020; Chen et al., 2015).

However, the reliability analysis is dependent on the specific pipeline

used. Previous studies of test–retest reliability in almost all cases con-

sidered one pipeline only, the results of which could not be general-

ized to all pipelines. In addition, there were other types of reliability

measures besides ICC, for instance, Pearson correlation coefficient

(Iscan et al., 2015), percent difference (Iscan et al., 2015), coefficient

of variation (Owen et al., 2013), Kendall coefficient of concordance

(Patriat et al., 2013), and discriminability (Bridgeford et al., 2021) used

in previous studies and we choose to use ICC by taking three aspects

into consideration: (1) the ICC approaches reliability from the perspec-

tive of inter-subject variability, which is often of great interest in this

field (Chen et al., 2018); (2) the ICC has a direct relationship with the

predictive validity to be examined (Elliott et al., 2020); (3) the ICC is

the most widely used measure in previous studies, which could be

used to validate the results in the current study.

Predictive validity is much more difficult to test, as there is no

ground truth. We suggest that the relationship between age and brain

features during the adult lifespan could represent the predictive valid-

ity of the brain features. The reasons are three folds: (1) it is obvious

that our brain changes with age from the early to the late adulthood

and it is safe to assume that there is some relationship between any

brain feature and age during the adult lifespan. (2) The age effect is

large, wide-spread and reproducible, as demonstrated by previous

studies based on more than thousands of subjects (Frangou

et al., 2022; Masouleh et al., 2019). In other words, there is a proxy of

ground truth. In contrast, the associations between brain features and

cognitive functions or personalities are much smaller and hardly repli-

cated (Marek et al., 2022; Masouleh et al., 2019). (3) The age informa-

tion is most easily accessible in any public datasets and thus the cost

of validation and replication is relatively small.

In this study, we first present a multi-modal pipeline, PhiPipe. Phi-

Pipe can process T1-weighted, resting-state BOLD, and diffusion-

weighted (DWI) MRI images and generate 13 commonly used brain

features characterizing the structural and functional properties of

brain. We then evaluated the test–retest reliability in four public data-

sets and the predicative validity in three public datasets for the brain

features. We finally compared the reliability and validity results of
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PhiPipe with those of two other single-modal pipelines, namely,

DPARSF (Yan & Zang, 2010) and PANDA (Cui et al., 2013), using the

same datasets.

2 | METHODS

2.1 | The design and implementation of PhiPipe

The PhiPipe (v1.2.0) mainly relies on FreeSurfer (v6.0.0) for T1 proces-

sing, AFNI (v20.0.19) for resting-state BOLD fMRI processing, and

FSL (v6.0.2) for DWI processing. Different from some pipelines, the

PhiPipe is intentionally designed to use one of the three softwares for

a single modality to reduce the risks of incompatibility and make the

maintenance easier when the dependent softwares are updated. The

PhiPipe mainly consists of a set of Bash scripts, which is the same

way we usually interact with FreeSurfer, AFNI, and FSL. Therefore,

anyone who has some experience with FreeSurfer, AFNI or FSL could

use PhiPipe easily. Furthermore, the PhiPipe is designed to generate

atlas-based (instead of voxel-based or vertex-based) brain features so

that downstream statistical analysis could be easier. The PhiPipe is

publicly available at https://github.com/phi-group/PhiPipe-release.

Figure 1 shows the flowchart of PhiPipe. The processing steps of

T1-weighted images include:

1. Use FreeSurfer's recon-all to perform skull stripping, tissue seg-

mentation, surface reconstruction, anatomical parcellation, etc.

Optionally, the skull stripping could be done using CAT12

(Gaser et al., 2022) instead of FreeSurfer. The skull-stripping

step to some degree determines the reconstruction quality of

pial surface (the surface between gray matter and external CSF),

which further has an impact on the estimated brain features like

cortical thickness. The FreeSurfer's skull stripping sometimes

could not achieve satisfactory results, so we include the

CAT12's skull stripping as an alternative method. There are two

more reasons to introduce CAT12 into the T1 processing of Phi-

Pipe. CAT12 provides an image quality rating score, which could

be used to check the raw data quality quantitatively. The rating

score has been shown to be highly predicative of manual inspec-

tion results (Gilmore et al., 2021). In addition, CAT12 provides

an estimate of total intracranial volume (TIV) based on tissue

segmentation. TIV is an important confounding factor in struc-

tural analysis (Malone et al., 2015). The TIV estimation in Free-

Surfer is based on affine registration into a template and biased

(Klasson et al., 2018), the accuracy of which may be further

degraded when defacing was applied as indicated in FreeSurfer's

release notes (https://surfer.nmr.mgh.harvard.edu/fswiki/

ReleaseNotes). Normally, public datasets are defaced to protect

participants' privacy. Therefore, we would like to test whether

the TIV estimated by CAT12 could be better than the one by

FreeSurfer in real datasets.

2. Parcellate the cortical surface using Schaefer Atlas (Schaefer

et al., 2018). The Schaefer Atlas is a cortical parcellation atlas

based on resting-state functional connectivity. It divides the cere-

bral cortex into 100–1000 parcels and in PhiPipe we choose the

100-parcel version to increase the signal-to-noise ratio of each

parcel. One advantage of the Schaefer Atlas is that the 100 parcels

were assigned into the widely-used Yeo's seven networks (Yeo

et al., 2011), which could be convenient for network analysis.

Besides the Schaefer Atlas, the FreeSurfer's built-in Desikan-

Killiany (DK) Atlas (Desikan et al., 2006) and Aseg Atlas (Fischl

et al., 2002) are used in PhiPipe.

F IGURE 1 Flow chart of processing steps in PhiPipe. The ellipses represent raw MRI data and the processed brain features. The rectangles
represent individual processing steps. The circled numbers correspond to the order of processing steps for each modality. MRI, magnetic
resonance imaging
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3. Create masks for whole brain, gray matter, white matter, ventricle,

and cortical/subcortical parcellations based on the results above.

These masks are used for BOLD and DWI data processing.

4. Extract cortical thickness (CT), cortical area (CA), cortical volume

(CV) measures (Fischl & Dale, 2000; Winkler et al., 2018) for the

DK Atlas and Schaefer Atlas, and subcortical volume (SV) measures

for the Aseg Atlas. Only the seven commonly used bilateral sub-

cortical structures (i.e., thalamus, caudate, putamen, pallidum, hip-

pocampus, amygdala, and accumbens) of the Aseg Atlas are

included.

5. Nonlinear registration between T1 brain image and MNI152 T1

brain template (also known as the 6th generation non-linear asym-

metric version) is conducted using ANTs (v2.2.0, Tustison

et al., 2014). The MNI152 T1 brain template is supplied by FSL.

The registration results are used in the BOLD processing.

6. Quality control pictures for brain extraction, tissue segmentation,

parcellation and registration are created to visually check the pro-

cessing results. An example of these quality control pictures could

be found in Figure S1.

The processing steps of resting-state BOLD images include:

1. Correct head motion using AFNI's 3dvolreg and create measures

to quantify head motion. Power's framewise displacement (FD) is

calculated to reflect volume-wise head movement (Power

et al., 2012). Motion outliers (volumes with large motion) are

detected at a threshold of FD = 0.5 mm. Mean FD and outlier

ratio (the ratio between motion outliers and total volumes) are

used as quantitative measures of overall head motion. By default,

the first five volumes are removed before motion correction to

allow for magnetization equilibrium.

2. Correct slice acquisition timing using AFNI's 3dTshift. Alterna-

tively, this step could be omitted as previous studies have shown

that the impact of slice timing correction is very small in resting-

state fMRI (Shirer et al., 2015; Wu et al., 2011).

3. Boundary-based registration between median volume and T1

image is conducted using FreeSurfer's bbregister (Greve &

Fischl, 2009).

4. Create masks for whole brain, gray matter, white matter, ventri-

cle, and parcellations based on T1 processing and BOLD-T1 regis-

tration results.

5. Interpolate the motion outliers by neighboring volumes

(i.e., motion censoring).

6. Regress out nuisance signals, in which mean white matter and

ventricle signals, and Friston's 24-parameter head motion model

are included. The linear and quadratic trends are also removed.

Alternatively, the global signal (mean signal of the whole brain)

could be added in the nuisance regression, as global signal regres-

sion is a controversial processing step (Murphy & Fox, 2017).

7. Bandpass filtering at 0.01–0.1 Hz. Alternatively, we could perform

high-pass filtering at 0.1 Hz, because previous studies have shown

that high-pass filtering instead of bandpass filtering lead to higher

reliability and better group discriminability (Shirer et al., 2015).

Furthermore, several studies have demonstrated that neural signals

existed at higher frequencies than 0.1 Hz (Chen & Glover, 2015;

Gohel & Biswal, 2015). Motion censoring, nuisance regression and

temporal filtering are performed using AFNI's 3dTproject in one

step. In addition, the grand mean is scaled to 10,000.

8. Calculate functional connectivity (FC) matrix for DK + Aseg/

Schaefer+Aseg Atlases. In PhiPipe, there are two versions of FC

matrix. The first one is by calculating the Pearson correlation

among the mean time series of the brain parcels. This type of FC

matrix is the most commonly used one. The second one is by cal-

culating the Pearson correlation among the voxel-wise time series

and averaging the Fisher's Z-transformed voxel-wise correlation

based on the brain parcels. To distinguish the two versions, we

call the latter one voxel-wise FC matrix (vwFC). The vwFC matrix

computation is more time-consuming but conceptually more rea-

sonable to represent the mean functional connectivity strength

between any two brain parcels if the functional homogeneity of

the brain parcels is uncertain. The FC/vwFC calculation are per-

formed in R (v3.6.1, R Core Team, 2019) and oro.nifti package

(v0.10.3, Whitcher et al., 2011) is used to read NIFTI file.

9. Calculate regional homogeneity (ReHo, Zang et al., 2004) at each

voxel using AFNI's 3dReHo. The whole-brain ReHo map is Z-

scored and the mean ReHo is extracted for DK + Aseg/Schaefer

+Aseg Atlases.

10. Calculate (fractional) amplitude of low frequency fluctuations

(ALFF/fALFF, Zang et al., 2007) at each voxel using AFNI's

3dRSFC. The whole-brain ALFF/fALFF maps are Z-scored and the

mean ALFF/fALFF are extracted for DK + Aseg/Schaefer+Aseg

Atlases. For ALFF/fALFF computation, the temporal filtering step

aforementioned is omitted. In the computation of parcel-wise

brain features, the spatial coverage of each brain parcel (ratio

between the voxels with non-zero time series and the total vox-

els) is also calculated. As there is normally signal loss in orbito-

frontal or medial temporal regions for BOLD images due to

susceptibility effects, the spatial coverage measure could be used

to exclude some brain regions from further analysis.

11. The BOLD images, voxel-wise ReHo and ALFF/fALFF maps are

transformed into MNI152 standard space by combining

T1-MNI152 and BOLD-T1 registration results to facilitate voxel-

wise statistical analysis. The BOLD-T1 registration file is con-

verted into ANTs-compatible format using Convert3D's c3d_affi-

ne_tool (v1.0.0, Yushkevich et al., 2006).

12. Quality control pictures of brain extraction, tissue segmentation,

parcellation and registration are created for visual check (see

Figure S2).

The processing steps of DWI images include:

1. Boundary-based registration between b0 image (the first volume

without diffusion weighting) and T1 image is performed using

FreeSurfer's bbregister.

2. Create masks for whole brain and parcellations based on T1 pro-

cessing and b0–T1 registration results.
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3. Eddy correction, motion correction and outlier replacement are

performed using FSL's eddy_openmp (Andersson &

Sotiropoulos, 2016). The mean contrast-to-noise ratio after correc-

tion (Bastiani et al., 2019) is calculated for quality check.

4. Diffusion tensor model is fitted at each voxel using FSL's dtifit. The

fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity

(AD) and radial diffusivity (RD) measures are calculated based on

the eigenvalues of diffusion tensor. The FA map is registered into

the FA58_FMRIB template supplied by FSL using flirt (Jenkinson

et al., 2002) and fnirt (Andersson et al., 2010) to transform the

FA/MD/AD/RD maps into the MNI152 space. For multi-shell DWI

data, the volumes with lowest non-zero b-value are selected for

diffusion tensor calculation.

5. Extract mean FA/MD/AD/RD for JHU Label/Tract Atlases. The

JHU Label Atlas consists of 48 white matter regions (Mori

et al., 2008), while the JHU Tract Atlas consists of 20 white matter

structures (Hua et al., 2008). The JHU Label/Tract Atlases are sup-

plied by FSL.

6. Fiber orientation distribution is estimated at each voxel using FSL's

bedpostx (Behrens et al., 2003; Behrens et al., 2007; Jbabdi

et al., 2012) and probabilistic tractography is performed for DK

+ Aseg/Schaefer + Aseg Atlases using FSL's probtrackx2. Struc-

tural connectivity (SC) probability between two brain parcels is cal-

culated as the ratio of the number of streamlines reaching the

target parcel and the total number of streamlines seeding from the

source parcel. The structural connectivity probability matrix is

averaged with its transpose to make the matrix symmetric. The

element of the matrix represents the likelihood that two brain par-

cels are connected anatomically.

7. Quality control pictures of brain extraction, parcellation and regis-

tration are created for visually check (see Figure S3).

2.2 | Datasets

The demographic characteristics and key acquisition parameters of

public datasets used in this study (after quality control) are shown in

Table 1. Four datasets with repeated scans, namely, BNU1 (Lin

et al., 2015), IPCAS1 (Zhao et al., 2013), IPCAS2, and HNU1 (Chen

et al., 2015) for test–retest reliability analysis were chosen from the

Consortium for Reliability and Reproducibility (Zuo et al., 2014). The

inclusion criteria were: (1) the dataset must have T1, resting-state

BOLD and DWI data; (2) the average interval between the first scan

and the last scan of each subject should be no longer than 2 months.

And we assumed that there would be no systematic changes taken

during this time interval. For BNU1, IPCAS1 and IPCAS2 datasets,

each subject had 2 scans, while for HNU1 dataset, each subject had

10 scans. (3) The MRI data should have a whole-brain coverage. Par-

tial coverage of cerebellum was allowed for BOLD and DWI data. The

HNU1 dataset had no usable DWI data due to partial brain coverage.

However, we still included the HNU1 dataset as it had a different

experimental design and we would like to see if the experimental

design has a significant impact on the reliability. Three datasets,

namely, pNKI (pilot NKI), eNKI (enhanced NKI, Nooner et al., 2012),

and SALD (Wei et al., 2018), covering the adult lifespan were selected

from the International Neuroimaging Data-Sharing Initiative (Mennes

et al., 2013). The inclusion criteria were: (1) the subjects in the dataset

should range from early to late adulthood. (2) the dataset should have

at least two modalities of T1, resting-state BOLD and DWI data.

(3) The MRI data should have a whole-brain coverage. Partial cover-

age of cerebellum was allowed for BOLD and DWI data. All MRI data

were acquired in 3 T MRI scanners. More detailed descriptions about

these datasets and the IDs of all involved subjects could be found in

Section S1. A seemingly trivial yet important consideration in data

TABLE 1 The demographic characteristics and key acquisition parameters of MRI data used in the reliability and predicative validity analyses

Dataset Na Ageb Sexc

T1 BOLD DWI

Resd Res TRe Volf Res Vol b-value Dirg

Reliability

BNU1 45 19–27 24/21 1.3 � 1.0 � 1.0 3.1 � 3.1 � 4.2 2.0 200 2.2 � 2.2 � 2.2 31 1000h 30

IPCAS1 18 18-24 4/14 1.3 � 1.0 � 1.0 4.0 � 4.0 � 4.8 2.0 205 1.8 � 1.8 � 2.5 62 1000 60

IPCAS2 27 12–15 10/17 1.2 � 0.9 � 0.9 3.7 � 3.7 � 4.0 2.5 212 1.9 � 1.9 � 3.0 39 1000 36

HNU1 22 21–30 11/11 1.0 � 1.0 � 1.0 3.4 � 3.4 � 3.4 2.0 300 – – – –

Validity

pNKI 113 18–85 49/64 1.0 � 1.0 � 1.0 3.0 � 3.0 � 3.3 2.5 260 2.0 � 2.0 � 2.0 76 1000 64

eNKI 502 18–83 251/251 1.0 � 1.0 � 1.0 3.0 � 3.0 � 3.3 2.5 120 2.0 � 2.0 � 2.0 137 1500 128

SALD 414 19–80 154/260 1.0 � 1.0 � 1.0 3.4 � 3.4 � 4.0 2.0 242 – – – –

aSample size.
bAge range (in years).
csample sizes for male/female.
dSpatial resolution (i.e., voxel size, in mm).
eRepetition time (in s).
fThe number of volumes.
gThe number of diffusion gradient directions.
hThe unit is s/mm2.
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selection was that all these involved datasets were easily accessible

(without complicated application procedures) so that future studies

could also use these same datasets for replication and validation.

2.3 | Brain features, quality control and processing
variants

The seven datasets were first processed using PhiPipe with the

default steps and parameters. The brain features included CT, CA, CV,

and SV for T1 data and DK + Aseg/Schaefer + Aseg Atlases; ALFF,

fALFF, ReHo, FC, and vwFC for resting-state BOLD data and DK

+ Aseg/Schaefer + Aseg Atlases; FA, MD, AD, RD for JHU Label/

Tract Atlases and DWI data, and SC for DK + Aseg/Schaefer + Aseg

Atlases and DWI data. The FC matrix was Fisher-Z transformed

before reliability and validity analysis. Different from FC matrix, SC

matrix is inherently sparse (with many zero connections), so only the

non-zero edges (connectivity measure between two parcels) across

subjects in a dataset for SC measures were used for downstream anal-

ysis. In Section 3, we only presented the results for Schaefer + Aseg

Atlas and JHU Tract Atlas and the results for DK + Aseg Atlas and

JHU Label Atlas were reported in Appendix S1. The conclusions

drawn in this study were not dependent on the specific atlas used.

The codes to invoke PhiPipe could be found in Section S2. The run-

time and peak memory usage for processing each modality of a typical

subject could be found in Table S2.

The raw data, brain extraction, segmentation, parcellation and

registration results of all data modalities were visually checked. Of

note, the defacing operation for T1 data would sometimes remove

gray matter unintentionally. For resting-state BOLD or DWI data, the

number of volumes were sometimes smaller than the expected one

for unknown causes. Quantitively, for the T1 data, data were excluded

if the image quality rating score outputted by CAT12 was lower than

0.8 (B level). For the resting-state BOLD data, data were excluded if

the mean FD > 0.5 mm, or the motion outlier ratio > 0.2, or the mean

FD was larger than Q3 (the third quantile) + 1.5 � IQR (inter-quantile

range) in the dataset (see Table S3 for a summary of head motion met-

rics in all datasets). For the DWI data, data were excluded if the mean

contrast-to-noise ratio after eddy/motion correction were lower than

Q1 (the first quantile) � 1.5 � IQR in the dataset. In order to keep the

same samples in each modality, if the data of one modality was

excluded after quality control, the data of the other modalities were

also excluded.

Then the seven datasets were processed using the alternative

steps and parameters (see Table 2). The processing variants included:

(1) In the T1 processing, the skull stripping was performed using CAT12

instead of FreeSurfer's recon-all. As the BOLD/DWI processing was

based on T1 processing, we also examined whether the CAT12's skull

stripping would have an effect on the results of BOLD and DWI pro-

cessing. (2) In the T1 processing, the TIV was estimated using CAT12

instead of FreeSurfer's recon-all. (3) In the BOLD processing, the steps

of slice timing correction, temporal filtering, nuisance regression were

manipulated separately to see their independent influence on the reli-

ability and validity. In slice timing correction, we omitted this step

(NOSTC). (4) In temporal filtering, we did not use low-pass filtering at

0.1 Hz (NOLP). (5) In the nuisance regression, we included the global

signal regression (GSR). (6) In addition, we examined the effect of calcu-

lation in MNI152 space on the reliability and validity of brain features.

By default, all brain features were calculated in subject's native space in

PhiPipe. However, a common practice is transforming subject's data

into standard space and calculating brain features in the standard space.

Therefore, we also calculated the same brain features using the same

atlases in the MNI152 space. For ALFF/fALFF/ReHo, the voxel-wise

measures calculated in the native space were transformed into

MNI152 space. The mean values were extracted for each brain feature

based on the atlases in MNI152 space. For FC/vwFC, the time series

was transformed into MNI152 space for calculation.

Finally, in order to compare the results of PhiPipe with other

commonly used pipelines, we processed the same datasets using

DPARSF (v5.2) and PANDA (v1.3.1). DPARSF was used for BOLD

processing, and PANDA was used for DWI processing. In both

DPARSF and PANDA, the T1 data was also used for registration. We

used the default setting of all parameters for DPARSF and PANDA by

assuming that the default parameters were the recommended param-

eters by the developers and also the most commonly used parameters

by the end users. A detailed list of these parameters and more

detailed descriptions about the DPARSF/PANDA processing and qual-

ity check could be found in Sections S3 and S4. For DPARSF and

PANDA, only the Schaefer + Aseg Atlas and JHU Tract Atlas

were used.

2.4 | Reliability analysis

ICC was the most commonly used measure in assessing the test–

retest reliability in this field. Conceptually, the ICC could age be

TABLE 2 Alternative processing
options compared with default settings in
reliability and validity assessment

Index Modality Processing step Default Alternative

1 T1 Skull stripping FreeSurfer CAT12

2 TIV estimation FreeSurfer CAT12

3 BOLD Slice timing correction Corrected Omitted

4 Temporal filtering Bandpass at 0.01–0.1 Hz Highpass at 0.01 Hz

5 Nuisance regression Without GSR GSR

6 Calculation space Native space MNI152 space
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formulated as the ratio between the variance of subjects and the

observed total variance (Liljequist et al., 2019). The observed total var-

iance consists of the variance due to subjects, the variance due to sys-

tematic bias between scans, and the variance due to unaccounted

random errors.

ICC¼ Vsub

VsubþVscanþVerror

The ICC was estimated by a two-way random-effect ANOVA model

using irr package (v0.84.1) of R. Theoretically, the ICC ranges from

0 to 1. However, the ICC estimates could be negative. As a common

practice, these negative ICC estimations were set to 0 (i.e., totally

unreliable). The ICC used in this study was known as ICC(2,1) or ICC

(A,1), as there were other forms of ICC (McGraw & Wong, 1996;

Shrout & Fleiss, 1979). In order to summarize results, we classified

ICC into three levels: Poor (ICC < 0.5), Moderate (0.5 ≤ ICC ≤ 0.75),

and Good (ICC > 0.75). An ICC of 0.5 means that the true variance of

subjects is as large as other sources of variance and an ICC of 0.75

means that the true variance of subjects is three times as large as

other sources of variance. Of note, this classification is for simplifying

results and whether the ICC is good enough depends on the specific

application.

The ICC was calculated for each parcel or edge for all brain fea-

tures. The mean ICC of all parcels or edges for a brain feature was

used to reflect the overall reliability. A bootstrap method was used to

compare the overall reliability between default setting and processing

variants using PhiPipe, or between PhiPipe and other pipelines

(i.e., DPARSF and PANDA). For instance, if we want to assess the

influence of CAT12's skull stripping on the mean ICC of cortical thick-

ness, the subjects were resampled with replacement for 2000 times.

In each resample, the mean ICC were calculated for the results with or

without CAT12's skull stripping separately. The difference between

the mean ICC with and without CAT12 was further calculated in this

resample. The 95% Bias-corrected and accelerated (Bca) confidence

interval (CI) was calculated based on the 2000 resamples to infer the

statistical significance of ICC difference (Diciccio & Efron, 1996). If

the CI does not include the zero, the ICC difference is significant. The

codes for ICC, bootstrap and CI calculation were included in Section-

S5. In the current study, all the p values or confidence intervals were

not corrected for multiple comparisons, as it was difficult to define

the sets of comparisons should be corrected. Thus, the uncorrected

results could be easier interpreted.

To quantify the reproducibility of the ICC results across different

datasets, we used two reproducibility measures: (1) the Spearman

(rank) correlation of parcel-wise or edge-wise ICC between two data-

sets for a brain feature was calculated and this procedure was

repeated for all dataset pairs. The mean correlation of all dataset pairs

was used to represent the relative consistency of ICC across different

datasets. A high correlation means that the parcel or edge had higher

ICC in one dataset would also have higher ICC in another dataset.

(2) the mean absolute difference (MAD) of parcel-wise or edge-wise

ICC between two datasets for a brain feature was calculated and this

procedure was repeated for all dataset pairs. The mean MAD of all

dataset pairs was used to represent the absolute agreement of ICC

across different datasets. A low MAD means that the parcel or edge

had an ICC of, for instance, 0.1 in one dataset would also have an ICC

of about 0.1 in another dataset. To make the results comparable

across MRI modalities, only the datasets with three modalities were

included.

2.5 | Predicative validity analysis

Pearson correlation coefficient between each brain feature and age

was calculated for each parcel or edge to assess the predicative valid-

ity. Previous studies have shown that there were a linear or monoto-

nous relationship between age and brain features in general during

the adult lifespan, especially after the mid-life (for instance, Beck

et al., 2021; Betzel et al., 2014; Dima et al., 2022; Frangou

et al., 2022; Lebel et al., 2012; Onoda et al., 2012). To distinguish the

correlation between brain feature and age with other correlation ana-

lyses in the current study, Age-R was used to denote specifically the

correlation between a brain feature and age. We should note that

there is a direct relationship between observed Age-R and ICC (Elliott

et al., 2020), as shown in the formula below. As we could assume the

ICC of age is one (perfect reliable), the square root of ICC for a brain

feature sets the upper bound of the observed Age-R.

R Brainobs, Ageobsð Þ¼R Braintrue, Agetrueð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ICC Brainobsð Þ� ICC Ageobsð Þ
p

In order to summarize the results, we classified the Age-R into three

levels: Low (jAge-Rj < 0.1), Moderate (0.1 ≤ jAge-Rj ≤ 0.3), High (jAge-
Rj > 0.3). The classification criterion was based on the normal range

of correlation observed in previous studies (Elliott et al., 2020; Marek

et al., 2022). As in the case of ICC, whether the Age-R is high enough

depends on the specific application. It should also be noted that a

brain feature with high Age-R just means that this feature has high

validity in predicting age but does not mean this feature is better than

the features with low Age-R. The comparison of brain features is valid

only when they measure the same brain properties.

The Age-R was calculated for each parcel or edge for all brain fea-

tures. As the Age-R could be positive or negative, in order to summa-

rize results, we squared the Age-R (Age-R-Squared) to reflect the

amount of variance explained by the brain features. The mean Age-R-

Squared of all parcels or edges for a brain feature was used to reflect

the overall validity. To compare the mean Age-R-Squared between

default setting and processing variants using PhiPipe, or between Phi-

Pipe and other pipelines, the same bootstrap method was used as in

the case of ICC.

To exclude the confounding effects of sex and TIV, we repeated

the analysis using partial correlation with sex and TIV as covariates.

To exclude the influence of potential outliers and non-Gaussian distri-

bution, we repeated the Age-R analysis using Spearman correlation.

To examine whether there is a non-linear relationship between age

and brain features, we repeated the analysis using a multiple
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regression model with both the linear and quadratic terms of age. If

the coefficient of quadratic term was significant, it means that the

brain-age relationship is significantly non-linear. Furthermore, we

assessed whether the quadratic model is better than the linear regres-

sion model based on the Akaike's Information Criterion (AIC). More

complex non-linear brain-age relationships were not examined as the

current sample size was still limited.

To quantify the reproducibility of the Age-R results across dif-

ferent datasets, we used two reproducibility measures: (1) the

Spearman correlation of Age-R between two datasets for a brain

feature was calculated and this procedure was repeated for all

dataset pairs. The mean correlation of all dataset pairs was used to

represent the relative consistency of Age-R across different data-

sets. A high correlation means that the parcel or edge had higher

Age-R in one dataset would also have higher Age-R in another

dataset. (2) the mean absolute difference (MAD) of Age-R between

two datasets for a brain feature was calculated and this procedure

was repeated for all dataset pairs. The mean MAD of all dataset

pairs was used to represent the absolute agreement of Age-R

across different datasets. A low MAD means that the parcel or edge

had an Age-R of �0.1 in one dataset would also have an Age-R of

about �0.1 in another dataset. To make the results comparable

across MRI modalities, only the datasets with three modalities were

included.

F IGURE 2 The mean and standard deviation of ICC and Age-R-Squared (the squared correlation between age and a brain feature) for all
brain features across all datasets. The dashed horizontal lines indicated different levels of reliability and validity. For instance, ICCs above the line
of ICC = 0.75 means good reliability based on the criteria in the current study. ICC, intra-class correlation

HU ET AL. 2069



In addition, since group difference detection was widely used in

previous pipeline validations, and group comparisons are common in

study designs, we further examined the validity of the brain features

in terms of effect size of age group differences. Specifically, we split

the subjects into younger and older groups at a cutoff age of 40 years

and compared the means between the two groups using Welch's two

sample t-test for all brain features, atlases and datasets. The mean of

absolute Cohen's d of all parcels or edges for a brain feature was used

as a measure of overall group difference. To summarize results, the

Cohen's d was classified into three levels: Small (jdj < 0.2), Moderate

(0.2 ≤ jdj < 0.6), and Large (jdj ≥ 0.6). Cohen's d was calculated using

the effsize (v0.8.1, Torchiano, 2020) package of R. More details about

the demographics of the younger and older groups were presented in

Table S4.

2.6 | Multivariate reliability and predicative validity
analysis

As multivariate models are becoming more and more popular in this

field, we also assessed multivariate reliability and predicative validity

of the brain features. For multivariate reliability, we used a recently

proposed distance-based ICC (dbICC) statistic (Xu et al., 2021). Boot-

strap with 2000 resamplings was used to estimate the 95% confi-

dence interval. For multivariate validity, a linear-kernel support vector

regression (SVR) model with nested 10-fold cross-validation (CV) was

used for age predication. Specifically, the data was randomly divided

into 10 folds, of which 9 folds were used for model training and the

remaining fold was used for model testing. The training/testing

processes were repeated 10 times so that each fold would be used

for model testing once. Within the model training process, a 10-fold

CV was used again to find the optimal hyperparameters via grid

search. The correlation between the real and predicated age (denoted

as CV-R) was used as the measure of multivariate predicative validity.

Besides SVR, Connectome-based Predicative Modeling (CPM, Shen

et al., 2017) was used for age predication. The same nested 10-fold

cross validation was applied as in SVR. The multivariate analyses were

only conducted on the brain features generated by the default set-

tings of PhiPipe. The dbicc (v0.13) package of R was used for dbICC

calculation. The e1071 (v1.7–8, Meyer et al., 2021) package of R was

used for SVR modeling. The codes to perform dbICC calculation and

SVR-/CPM-based age predication were presented in Section S6.

The visualization of results in the current study was performed

using ggplot2 (v3.3.2, Wickham, 2016), corrplot (v0.92, Wei &

Simko, 2021), and ggseg (v1.6.4, Mowinckel & Vidal-Piñeiro, 2020)

packages of R.

3 | RESULTS

3.1 | The reliability and validity of brain features
using the default settings of PhiPipe

Figure 2a presented the mean and standard deviation of ICC results

for all brain features and datasets. In addition, Table 3 showed the

percentage of significant ICCs and reliability levels for all brain fea-

tures in the BNU1 dataset. In Figure 3, the parcel-wise or edge-wise

ICCs were shown for all brain features in the BNU1 dataset. In

TABLE 3 The summary of reliability for all brain features in the BNU1 dataset

Modality Feature Atlas Na ICCb Sigc Poord Moderated Goodd

T1 CT Schaefer 100 0.84 (0.065) 100 0 12 88

CA Schaefer 100 0.98 (0.010) 100 0 0 100

CV Schaefer 100 0.96 (0.019) 100 0 0 100

SV Aseg 14 0.93 (0.050) 100 0 0 100

BOLD ALFF Schaefer + Aseg 114 0.53 (0.13) 99 38 59 3

fALFF Schaefer + Aseg 114 0.42 (0.14) 88 68 32 0

ReHo Schaefer + Aseg 114 0.46 (0.14) 90 52 48 0

FC Schaefer + Aseg 6441 0.27 (0.15) 56 94 6 0

vwFC Schaefer + Aseg 6441 0.28 (0.16) 58 92 8 0

DWI FA JHU-Tract 20 0.92 (0.028) 100 0 0 100

MD JHU-Tract 20 0.81 (0.11) 100 0 35 65

AD JHU-Tract 20 0.82 (0.087) 100 0 20 80

RD JHU-Tract 20 0.87 (0.061) 100 0 5 95

SC Schaefer + Aseg 854 0.65 (0.19) 97 21 46 33

aThe number of parcels or edges for a brain feature.
bThe mean (standard deviation) of ICC.
cThe percentage of significant ICCs. The significance level was p <.05 (uncorrected for multiple comparisons).
dthe percentage of ICCs belonging to different levels of reliability (Poor/Moderate/Good).
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F IGURE 3 The parcel-wise and edge-wise ICC for all features in the BNU1 dataset. Blue means ICC < 0.5, and red means ICC > 0.5. For the
connectivity matrices, the elements are ordered based on Yeo's 7-network parcellation and subcortical regions (indicated by yellow lines). ICC,
intra-class correlation
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consistent with previous studies (for instance, Buimer et al., 2020;

Chen et al., 2015; Drobinin et al., 2020; Noble et al., 2019; Zuo &

Xing, 2014), both T1 and DWI brain features showed moderate or

good overall reliability, while the resting-state BOLD brain features

showed poor or moderate reliability. For T1 data, the CA showed the

highest and almost perfect reliability, while the CT showed the lowest

reliability. For resting-state BOLD data, the ALFF showed the highest

reliability while the FC/vwFC showed the lowest reliability. For DWI

data, the FA showed the highest reliability while the SC showed the

lowest reliability. The results for other atlases and datasets could be

found in Tables S5–S8 and Figures S4–S6.

Figure 2b presented the mean and standard deviation of Age-R-

Squared results for all brain features and datasets. In addition, Table 4

showed the percentage of significant, positive and negative Age-Rs

and validity levels for all brain features in the pNKI dataset. In

Figure 4, the parcel-wise or edge-wise Age-Rs were shown for all

brain features in the pNKI dataset. Both T1 and DWI brain features

showed moderate or high overall validity, while the resting-state

BOLD brain features showed low or moderate validity. The lower

validity of BOLD brain features was probably due to the lower reliabil-

ity. For T1 data, the CT/CV/SV showed much higher validity than the

CA. A possible reason is that the cortical area calculated in FreeSurfer

by default is the area of white surface (i.e., the surface between gray

matter and white matter) and this brain feature may be less sensitive

to age. Almost all T1 brain features showed negative Age-R, in consis-

tent with previous findings (Dima et al., 2022; Frangou et al., 2022).

For resting-state BOLD data, the ALFF/fALFF/ReHo showed similar

validity while the FC/vwFC showed the lowest validity. In most cases,

the ALFF/fALFF/ReHo showed negative Age-R in cortical regions and

positive Age-R in subcortical regions, which was consistent with a

study using brain features characterizing local FC (Wen et al., 2020).

For FC/vwFC, negative Age-Rs were more likely to be observed in

within-network edges while positive Age-Rs were more likely to be

observed in between-network edegs, in agreement with previous

findings (Betzel et al., 2014; Damoiseaux, 2017). There were also sig-

nificant difference between the FC and vwFC features, which may

indicate that the low Age-R for a specific edge was unstable. For DWI

data, we found that the validity had a big difference in two datasets,

which probably reflects the influence of different scanning parame-

ters. For instance, the b-value was 1000 s/mm2 for pNKI dataset

while 1500 s/mm2 for eNKI dataset. In most cases, FA/SC showed

negative Age-R while MD/RD showed positive Age-R. The Age-R pat-

tern of AD is more variable. These results conformed to previous find-

ings well (Beck et al., 2021; Gong et al., 2009; Lebel et al., 2012;

Westlye et al., 2010). The results for other atlases and datasets could

be found in Tables S9–S11 and Figures S7 and S8. As shown in

Tables S12–S17 and Figure S9, using sex and TIV covariates or Spear-

man correlation did not change the general pattern of results. In most

cases, the quadratic term of age was not significant for T1 and BOLD

brain features. The quadratic trends were significant for most

FA/MD/AD/RD measures and the inclusion of quadratic term could

explain about 5% more variances in the current datasets (for more

details, see Tables S18–S20). The quadratic trends of diffusion tensor

brain features observed in the current study were also reported in

previous findings (Beck et al., 2021; Lebel et al., 2012; Westlye

et al., 2010).

The group difference results showed that T1 and DWI features

had moderate or large overall group difference, while the resting-

TABLE 4 The summary of predicative validity for all brain features in the pNKI dataset

Modality Feature Atlas Na Age-R-Squaredb Negc Sigd Lowe Moderatee Highe

T1 CT Schaefer 100 0.17 (0.11) 97 88 3 27 70

CA Schaefer 100 0.041 (0.033) 95 59 25 66 9

CV Schaefer 100 0.11 (0.068) 100 83 1 44 55

SV Aseg 14 0.17 (0.095) 100 100 0 21 79

BOLD ALFF Schaefer + Aseg 114 0.072 (0.089) 82 50 35 39 26

fALFF Schaefer + Aseg 114 0.053 (0.053) 76 55 25 55 20

ReHo Schaefer + Aseg 114 0.062 (0.063) 82 53 27 45 28

FC Schaefer + Aseg 6441 0.024 (0.028) 23 27 43 53 4

vwFC Schaefer + Aseg 6441 0.015 (0.020) 53 14 57 42 1

DWI FA JHU-Tract 20 0.22 (0.11) 100 95 0 15 85

MD JHU-Tract 20 0.20 (0.14) 0 90 0 20 80

AD JHU-Tract 20 0.11 (0.13) 30 55 25 45 30

RD JHU-Tract 20 0.27 (0.12) 0 100 0 0 100

SC Schaefer + Aseg 830 0.032 (0.047) 73 30 43 48 9

aThe number of parcels or edges for a brain feature.
bThe mean (standard deviation) of Age-R-Squared.
cThe percentage of negative Age-Rs.
dThe percentage of significant Age-Rs. The significance level was p < .05 (uncorrected for multiple comparisons).
eThe percentage of Age-Rs belonging to different levels of validity (Low/Moderate/High).
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F IGURE 4 The parcel-wise and edge-wise Age-R (the correlation between age and a brain feature) for all brain features in the pNKI dataset.
Blue indicates negative Age-R, and red indicates positive Age-R. For the connectivity matrices, the elements are ordered based on Yeo's
7-network parcellation and subcortical regions (indicated by green lines). pNKI, pilot NKI
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state BOLD features had small or moderate group difference. The

younger group had higher CT/CA/CV/SV/FA, and lower MD/RD

than the older group in almost all brain regions. More details about

the group difference results were presented in Tables S22–S24 and

Figure S10.

As shown in Figure 5a, the between-dataset correlation of ICCs

in most cases were lower than 0.5 for brain features of T1 and DWI

data and lower than 0.25 for brain features of resting-state BOLD

data, which means the rank of parcel-wise or edge-wise ICC was not

preserved across datasets. As shown in Figure 5b, the MAD of ICC

results in most cases were lower than 0.1 for brain features of T1 and

DWI data and higher than 0.15 for brain features of resting-state

BOLD data.

The between-dataset correlation of Age-R results in most cases

were about 0.75 for all brain features (Figure 5c), which means the

rank of parcel-wise or edge-wise Age-R was preserved across data-

sets. The MAD of Age-R results were about 0.1 for brain features of

T1 and resting-state BOLD fMRI data and higher than 0.25 for diffu-

sion tensor features of DWI data (Figure 5d). These results provided a

reference about the reliability and validity changes we could expect

from using a new dataset. More details about the reproducibility of

ICC and Age-R results could be found in Table S21.

F IGURE 5 The reproducibility of ICC and Age-R for all brain features across all datasets. The data was presented as mean and standard
deviation of reproducibility among dataset pairs. For Age-R analysis, only two datasets (pNKI and eNKI) were involved so that there was no
standard deviation. ICC, intra-class correlation; eNKI, enhanced NKI; pNKI, pilot NKI
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3.2 | The influence of processing variants on
reliability and validity

As shown in Figure 6a, in most cases, using CAT12 instead of FreeSurfer

for skull stripping had little impact on the ICC results of all brain features.

As shown in Figure 6b, using CAT12's skull stripping in some cases led

to decreased Age-R-Squared for CT and CV but had little impact on

other brain features. As shown in Table 5, using CAT12 instead of Free-

Surfer for TIV estimation in general led to higher reliability, although the

improvement was not statistically significant. As the ICC of TIV was

almost perfect (>0.98), we used the coefficient of variation to assess the

reliability of TIV estimation. Using CAT12's TIV estimation in general led

to significantly lower Age-R. As in the ideal case, the correlation between

TIV and age should be zero, the lower Age-R using CAT12's TIV estima-

tion means higher validity. We should also note that there were signifi-

cant Age-R in the SALD dataset, which may indicate that there was a

generation bias in this sample. The statistical inference of Age-R differ-

ence between CAT12 and FreeSurfer for TIV estimation was performed

using cocor package (v1.1-3, Diedenhofen & Musch, 2015) of R. More

numerical details could be found in Tables S25 and S26.

F IGURE 6 The effect of CAT12's skull-stripping on the ICC and Age-R-Squared for all brain features across all datasets. The Y axis means the
difference of mean ICC or Age-R-Squared between the results using default and alternative parameters and settings. The data are presented as
(alternative � default), so a positive value means increased reliability and validity using alternative options compared with the default settings.
The error bars represent 95% CIs. If the CI does not contain zero, the difference is statistically significant. The red/blue asterisks indicate
significant increase or decrease. ICC, intra-class correlation
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As shown in Figure 7a, NOSTC had little and inconsistent impact on

the reliability of BOLD brain features; NOLP consistently improved the

reliability of ReHo, FC and vwFC; GSR had inconsistent effects on reli-

ability across brain features and datasets; calculation in MNI space

increased the reliability of ALFF and FC. As shown in Figure 7b, NOSTC

improved the validity of ALFF with a very small effect size; NOLP consis-

tently increased the validity of ReHo; GSR consistently increased the

validity of fALFF; calculation in MNI space led to decreased validity of

fALFF and ReHo. In summary, the effects of processing variants in gen-

eral were dependent on the brain features and datasets, and NOLP

showed the most consistent and largest impact on reliability and validity.

These results were consistent with previous findings (Murphy &

Fox, 2017; Shirer et al., 2015; Wu et al., 2011). More numerical details

could be found in Tables S27 and S28.

3.3 | Comparisons with DPARSF and PANDA

The comparisons of reliability and validity between PhiPipe and

DPARSF/PANDA were presented in Figure 8. In order to summarize

results, we defined that if the significant differences were detected in

all datasets between PhiPipe and DPARSF/PANDA, we could say that

the PhiPipe had better or worse reliability and validity. Otherwise, the

results of different pipelines were treated as comparable. In most

cases, PhiPipe showed comparable results with DPARSF/PANDA. Phi-

Pipe showed better validity for ALFF than DPARSF, and better

reliability and validity for SC than PANDA. More numerical details

could be found in Tables S29 and S30. However, we should be careful

about the comparison results among different pipelines, as there were

also processing variants in DPARSF and PANDA, which would influ-

ence the reliability and validity results. Also we only compared the

overall reliability and validity between pipelines, and the parcel-wise

or edge-wise differences were unpredictable.

3.4 | The multivariate reliability and validity of
brain features

Figure 9a presents the dbICC results for all brain features and data-

sets. Similar to the univariate reliability, T1 and DWI brain features

showed higher reliability than the resting-state BOLD brain features.

Figure 9b presents the CV-R results for all brain features and datasets.

Different from the univariate validity results, all brain features except

CA showed comparable multivariate predicative validity. More numer-

ical details were presented in Tables S31 and S32.

4 | DISCUSSION

We introduced PhiPipe for multi-modal MRI data processing. PhiPipe

could generate common brain features for T1-weighted, resting-state

BOLD, and DWI data. We validated the PhiPipe with multiple public

TABLE 5 The reliability and validity
of TIV estimated by FreeSurfer and
CAT12

Dataset Method TIVa CoV/Age-Rb T/Zc Correlationd

Reliability

BNU1 FreeSurfer 1546.64 (174.80) 1.03 (2.38) �2.01 (0.05) 0.87

CAT12 1468.89 (140.97) 0.29 (0.28)

IPCAS1 FreeSurfer 1471.03 (117.77) 0.56 (0.62) �1.62 (0.12) 0.93

CAT12 1405.88 (106.98) 0.32 (0.16)

IPCAS2 FreeSurfer 1490.33 (114.06) 0.58 (0.52) �1.98 (0.059) 0.84

CAT12 1423.79 (101.13) 0.34 (0.33)

HNU1 FreeSurfer 1501.57 (141.96) 0.81 (0.71) 0.34 (0.74) 0.89

CAT12 1521.77 (146.75) 0.88 (0.63)

Validity

pNKI FreeSurfer 1517.47 (208.50) 0.11 1.37 (0.17) 0.82

CAT12 1450.09 (149.36) 0.034

eNKI FreeSurfer 1499.62 (158.02) �0.099 �3.20 (0.0014) 0.94

CAT12 1438.33 (145.05) �0.049

SALD FreeSurfer 1474.70 (139.20) �0.36 �5.28 (<0.001) 0.94

CAT12 1408.03 (129.32) �0.28

aThe mean (standard deviation) of TIV in mm3.
bThe mean (standard deviation) of coefficient of variation (CoV) for TIV, and the correlation between TIV

and age (Age-R).
cThe T/Z value (p value) in comparing the CoV and Age-R between two methods. For CoV, the paired t-

test was used. For Age-R, the Pearson-Filon's z test was used.
dThe correlation of estimated TIVs between the two methods. For each subject in the test–retest
datasets, the estimated TIVs of repeated scans were averaged.
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datasets from the perspectives of test–retest reliability and predica-

tive validity. Compared with other pipelines, PhiPipe showed compa-

rable or better reliability and validity.

The reliability and validity assessment of brain features could help

researchers estimate sample size in experimental design or choose the

appropriate brain features in statistical analysis. As an example,

Figure 10 shows the effects of reliability and validity on the sample

size needed to achieve an alpha level of 0.05 and a statistical power

of 0.8. In Figure 10a, when we assumed the true correlation between

a brain property and another variable of interest (for instance,

memory function), the sample size needed was moderated by the reli-

ability of the specific feature representing the brain property. We

should note that the Figure 10a does not mean which brain feature is

the best for a certain study, because different brain features represent

different properties of human brain. In Figure 10b, we presented the

relationship between sample size needed and observed Age-R. When

we make an experiment design, we usually refer to previous studies

to estimate the effect size. We could use the observed Age-R as an

effect size estimate for future studies and consider whether the effect

size of interest should be larger or smaller than the age effect. Again,

F IGURE 7 The effects of NOSTC, NOLP, GSR, and MNI on the ICC and Age-R-Squared for resting-state BOLD brain features across all
datasets. The Y axis means the difference of mean ICC or Age-R-Squared between the results using default and alternative parameters and
settings. The data are presented as (alternative � default), so a positive value means increased reliability and validity using alternative options
compared with the default settings. The error bars represent 95% CIs. If the CI does not contain zero, the difference is statistically significant. The
red/blue asterisks are used to indicate significant increase or decrease. ICC, intra-class correlation
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Figure 10b does not mean which brain feature is the best for a certain

study. The sample size estimation was performed using pwr package

(v1.3-0) of R. To make the access to the reliability and validity mea-

sures easier, an online database (https://yangzhi-psy.shinyapps.io/

NeuroImageFeatureQualityViewer/) was provided so that researchers

could query the reliability and validity measures for specific brain

regions and image features.

PhiPipe provided an easy-to-use solution for multi-modal MRI data

processing. Besides the three core MRI data processing softwares

(i.e., FreeSurfer, AFNI, and FSL) and Bash shell, other dependencies are

minimum or optional, which makes the installation and usage simple

and robust in most computation environments. Qualitative and quanti-

tative quality control pictures and measures were created to ensure the

accuracy of processing results. The PhiPipe generates parcel-wise or

edge-wise brain features characterizing the regional or inter-regional

properties of human brain, which could be directly used for down-

stream statistical analysis. Future versions of PhiPipe would include

more types of brain features after careful selection and testing.

PhiPipe is designed to be a simple-to-use image processing

pipeline with validated results. This nature trades off the flexibility

F IGURE 8 The comparison between PhiPipe and DPARSF/PANDA on the ICC and Age-R-Squared for resting-state BOLD and DWI brain
features across all datasets. The Y axis means the difference of mean ICC or Age-R-Squared between the results using PhiPipe and DPARSF/
PANDA. The data are presented as (DPARSF/PANDA � PhiPipe), so a positive value means increased reliability and validity using DPARSF/
PANDA compared with PhiPipe. The error bars represent 95% CIs. If the CI does not contain zero, the difference is statistically significant. The
red/blue asterisks are used to indicate significant increase or decrease. ICC, intra-class correlation
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of processing steps and parameters for easy usage and confidence

in the reliability and validity of the results. Compared with PhiPipe,

there are many image processing pipelines featuring high flexibility.

For instance, AFNI's afni_proc.py allows users to combine proces-

sing blocks to arrange desired order of the processing steps. C-PAC

provides a lot of options to implement parallel processing flows for

fMRI data with little effort. These pipelines are suitable for users

who need a high degree of freedom for processing steps and

parameters. In contrast, PhiPipe is more suitable for researchers

who need an imaging processing tool that is simple to use and

extracts multimodal brain features with expectable reliability and

validity.

In PhiPipe, we introduced CAT12 for skull-stripping and TIV esti-

mation. For skull-stripping, CAT12 led to worse validity than FreeSur-

fer in the current datasets. For TIV estimation, CAT12 showed higher

reliability and validity. For BOLD brain features, only the temporal fil-

tering had the consistent and biggest influences on the reliability and

validity. For the disputed global signal regression, the effect was not

consistent. We should note that the results of processing variants do

not mean which processing variant is the best, but should be used as

estimates of potential reliability and validity changes when we choose

to use a different processing step. We observed apparent dataset-

dependent variability in most results, which indicate that we must

carefully choose the datasets in any comparisons and validations.

F IGURE 9 The dbICC and CV-R (the correlation between real age and predicated age) for all brain features across all datasets. dbICC,
distance-based intra-class correlation
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This work also presents a general framework for evaluating reliabil-

ity and validity of image processing pipelines. In recent years, there has

been many concerns about the reproducibility of neuroimaging studies

(Botvinik-Nezer et al., 2020; Elliott et al., 2020; Marek et al., 2022;

Masouleh et al., 2019; Noble et al., 2019). Some researchers proposed

that the standardization of pipelines could improve the reproducibility

across studies, because using different pipelines would lead to different

results and conclusions. In reality, almost all labs have their own custom

pipelines, whether the pipelines are private or publicly available. We

believe that the existing variability of processing pipelines was due to

the fact that the brain features commonly used were not reliable or

valid. For instance, the brain features of resting-state BOLD data had

poor reliability and consequently low validity. As a result, various

processing steps were adopted in different studies. Even for the cortical

thickness measure, its reliability was far from perfect and the validity

has not been fully established (Cardinale et al., 2014). Therefore, we

propose that, instead of standardization of pipelines, improving the reli-

ability and validity of brain features is the more urgent problem to solve

in this field. Along the same line, we found the brain features from Phi-

Pipe and two other pipelines showed similar reliability and validity. In

other words, the low reliability and validity of MRI brain features is

probably common to all pipelines, as all pipelines almost relies on the

same sets of atomic softwares. We also share the core code and

detailed information about the public datasets to evaluate the reliability

and validity of pipelines, and hopefully more evaluations of commonly

used image processing pipelines will emerge.

F IGURE 10 The relationship between ICC/Age-R and sample size needed to achieve an alpha level of 0.05 and a statistical power of 0.8.

(a) For a specified true correlation between two given measures (e.g., brain feature and memory function), the sample size needed to detect this
effect was moderated by the reliability of brain feature (here we simply assume the other measure is of perfect reliability). (b) The sample size
needed to detect a specified observed Age-R. The brain features at the top of the panel were ordered by the average of ICC or Age-R across all
datasets weighted by the sample size and scans. ICC, intra-class correlation

2080 HU ET AL.



Most quality control procedures for key processing results relied

on visual check in PhiPipe, which were the same in other pipelines.

Visual check is time-consuming and subjective-biased, and how to

perform quantitative quality control is the future direction of PhiPipe.

The current version of PhiPipe was T1-centered and the results of T1

were used for BOLD/DWI processing. However, this common prac-

tice does not exploit the full possibilities of multi-modal MRI data.

How to use BOLD/DWI data to optimize the accuracy of T1 proces-

sing results is another goal in future development of PhiPipe.

5 | CONCLUSION

We presented the PhiPipe to facilitate multi-modal MRI data proces-

sing. The accompanying test–retest reliability and predicative validity

assessment could help researchers make informed decisions in con-

ducting experimental design and statistical analysis.
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