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INTRODUCTION

Common Variable Immunodeficiency Disorders (CVID) are a rare group of primary
immunodeficiency disorders (PIDs) where late onset antibody failure leads to immune system
failure (1). Onset of symptoms can occur from early childhood to the eighth decade or later (2).
Current estimates suggest a prevalence between 1: 25 000 to 1: 100 000 in Caucasians (3, 4). For
reasons that are unclear, CVID appears to be less frequent in Asian and African populations,
although there may be ascertainment bias.

The majority of patients with CVID present with recurrent and severe infections. Untreated,
patients are predisposed to chronic suppuration of the respiratory tract, often resulting in chronic
sinus disease and bronchiectasis. Approximately 25% of CVID patients suffer autoimmune or
inflammatory sequelae, consequent to immune dysregulation (5). There is also an increased risk
of malignancy (6).

There is no single clinical feature or laboratory test, which is pathognomonic for CVID. The
identification of CVID therefore relies on diagnostic criteria. There are currently three new sets of
diagnostic criteria for CVID (7–9). The Ameratunga et al. (7) criteria require symptomatic primary
hypogammaglobulinemia with relevant laboratory tests to establish the diagnosis. The threshold
for IgG was set at 5 g/l for adults. The revised European Society for immunodeficiencies (8) are
similar to the Ameratunga et al. criteria.

The most recent International Consensus Document (9) CVID criteria claim to be able to make
a definite diagnosis on the basis of a single abnormal vaccine challenge result in a patient with
primary hypogammaglobulinemia (9). The latter two criteria have set the threshold for IgG at 2
sd below the mean. Although immunoglobulin levels do not follow a Gaussian distribution (10),
this is generally accepted as an IgG below 7 g/l. These criteria also exclude late onset combined
immunodeficiency (LOCID) from the diagnosis. The immunoglobulin levels are also required to
be repeated in these latter criteria.

There is ongoing debate about the utility these diagnostic criteria, the variability of IgG levels
over time, the unreliability of vaccine challenge responses and flow cytometry in the diagnosis of
CVID. As discussed below, this variability in protein-based assays is a strong argument for genetic
testing of all patients with a CVID phenotype.
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GENETICS OF CVID AND CVID-LIKE
DISORDERS

By definition the causes of CVID are unknown. In 2003, the
first genetic defect was identified in Germany (11). Mutations of
the Inducible T cell co-stimulator (ICOS), which plays a critical
role in T and B cell communication, were discovered in patients
with a CVID phenotype (11). There was a founder effect as all
affected individuals in the Black Forest area shared the identical
mutation. Different mutations of ICOS were subsequently
identified in other parts of the world, confirming allelic
heterogeneity (12).

Two years later, mutations of the T cell activator, calcium
modulator and cyclophilin ligand interactor (TNFRSF13B/
TACI) were discovered (13). This molecule plays an important
role in B cell signaling and immunoglobulin isotype switching.
Mutations of TNFRSF13B/TACI were initially thought to
cause CVID but subsequently it became apparent that
identical mutations were also found in the general population
at a frequency far greater than the incidence of CVID.
It is now thought that mutations of TNFRSF13B/TACI
predispose to CVID or have a disease modifying effect on the
disorder (14).

We and others have suggested mutations associated with
CVID should be categorized according to whether they cause the
disorder or whether they modify or predispose to the condition
(7, 15). Apart from TNFRSF13B/TACI, mutations of other genes
including BAFFR (TNFRSF13C), TWEAK (TNFSF12), MSH5,
and TRAIL (TNFSF10) are also thought to predispose to, or
modify the disease severity of patients with CVID.

In contrast, mutations of genes such as NFKB1, NFKB2,
CTLA-4, TCF3 etc. are more likely to cause the condition (16, 17).
Such patients are removed from the broad category of CVID and
are deemed to have a PID caused by a specific mutation. We have
suggested conditions with causative mutations should be termed
“CVID-like” disorders, given the close phenotypic overlap with
CVID (18). None of the current diagnostic criteria for CVID
allow the diagnosis if a known disorder is identified (7–9, 18).
This is the basis for excluding patients with a causative mutation
from the umbrella diagnosis of CVID. Since the discovery of
ICOSmutations,∼30 genetic defects have been shown to modify
disease severity, predispose to CVID or alternatively cause CVID-
like disorders (19–21).

CVID is genetically complex. Locus heterogeneity (genocopy)
is a major feature of CVID-like disorders, making it difficult to
identify the affected gene purely on clinical grounds. Mutations
of several genes can result in the classical phenotype of late onset
antibody failure leading to recurrent and severe infections as well
as autoimmunity (19).

Although clinical identification of individual CVID-like
disorders is difficult, there may be subtle clues such as the
presence of alopecia in combination with pituitary dysfunction,
which are indicative of NFKB2 defects (19). In other cases,
a careful history may reveal severe autoimmunity, which may
suggest PIK3CD mutations, causing activated protein kinase
3D syndrome (APDS) or CTLA-4/LRBA mutations (22). The
presence of vasculitis in the context of hypogammaglobulinemia

might indicate ADA2 deficiency (19). In most cases however,
such clues are absent.

Similarly, phenotypic heterogeneity makes diagnosis difficult
as the clinical manifestations can vary widely, even within the
same family carrying the identical mutation. We have recently
described the pleomorphic clinical presentation of a family
with NFKB1 deficiency (23). One heterozygous brother carrying
the mutation was asymptomatic with normal immunoglobulins,
while his heterozygous sister had severe disease with features
of late onset combined immunodeficiency (LOCID) (23). We
have used our CVID disease severity score (CDSS) to quantify
the phenotypic severity of individual family members (24).
The phenotypic heterogeneity may be the result of variable
penetrance and expressivity, epigenetic influences or epistasis
caused by gene-gene interactions.

As noted in the case of ICOS deficiency, CVID-like disorders
also manifest allelic heterogeneity where different mutations
of the same gene can result in a similar phenotype. Because
of genetic and phenotypic heterogeneity, there has been
understandable reluctance to routinely sequence CVID patients
because of the low yield (25). Serial Sanger sequencing of an
ever-increasing list of individual genes was not an efficient use
of valuable resources (25).

Given the rapid progress in the understanding of these
conditions in recent years, we believe there is now a strong case
for routine diagnostic genetic testing of patients with a CVID
phenotype (Table 1). This change in approach is both the result
of identifying increasing numbers of genetic defects as well as
advances in technology, particularly NGS. We have previously
discussed diagnosing CVID in the era of genome sequencing
(19). In this current viewpoint article, we have incorporated new
information, mostly from our recent studies, to strengthen the
arguments for routine diagnostic sequencing of patients with a
CVID phenotype (26, 27). This article will serve as the evidence
base for what is becoming routine practice in the care of CVID
patients. It will assist clinical services in implementing such
a strategy.

NGS ALLOWS EFFICIENT SEQUENCING
OF GENES FROM DISORDERS WITH
LOCUS HETEROGENEITY

Over the last decade, NGS has revolutionized the approach
to molecular diagnosis. Multiple genes can now be sequenced
simultaneously, with either gene panels or by Whole Exome
Sequencing (WES) and targeted analysis (19). In non-
consanguineous populations, the causative mutation may
be identified in ∼25% of CVID patients (28). The diagnostic
yield is much higher in kindreds with more than one affected
individual, founder populations or those with high rates of
consanguinity (29–31). In some cohorts, the presence of parental
consanguinity was associated with more severe disease (32).

The advent of NGS is the principal reason for the feasibility of
routine genetic sequencing of patients with CVID-like disorders,
who have locus heterogeneity (33). A similar approach is now
being undertaken for other disorders with locus heterogeneity
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such at atypical hemolytic uremic syndrome (aHUS) and
hemophagocytic lymphohistiocytosis (HLH) (34).

Although there was initial concern about copy number
variants contributing to CVID (35) a more recent paper did
not support these initial observations (36). Therefore WES is a
reasonable option for investigating these patients.

We next discuss specific advantages as well as potential
disadvantages undertaking routine diagnostic sequencing of
patients with a CVID phenotype.

SPECIFIC ADVANTAGES OF IDENTIFYING
THE CAUSATIVE MUTATION IN PATIENTS
WITH CVID-LIKE DISORDERS (TABLE 1)

Identifying the causative genetic defect is now the standard
of care of PID patients (25). We have outlined the many
overlapping advantages (and some disadvantages) in identifying
the underlying genetic defect in PIDs (37–39). We have listed in
detail the specific advantages of genetic diagnosis in CVID-like
disorders in Table 1.

Identification of a causative mutation will confirm the
presence of a CVID-like disorder and will enable diagnosis
of patients with atypical presentations. This is particularly
important given the genetic and phenotypic heterogeneity in
CVID-like disorders, outlined above.

Some patients with well-characterized PIDs such as X-linked
lymphoproliferative (XLP) disorder or STAT3 mutations can
present rarely with predominant hypogammaglobulinemia. If
other characteristic features of these disorders are not obvious,
such atypical presentations may cause confusion with CVID.
Given there may be specific treatments for these conditions,
early identification is of paramount importance. Pre-emptive
bone marrow transplantation prior to EBV infection in pre-
symptomatic male relatives, carrying the mutation, can be life-
saving in XLP (40). NGS will rapidly identify the majority of
“non-CVID” patients presenting with hypogammaglobulinemia.
We distinguish PIDs such as XLP and STAT3 mutations, which
do not typically present with antibody deficiency (41–43) from
disorders such as NFKB1 mutations which, most often present
with hypogammaglobulinemia, that are more appropriately
termed CVID-like disorders (19).

Identification of the mutation will offer prognostic
information. We have recently shown that many children
with transient hypogammaglobulinemia of infancy (THI) do not
recover until early adulthood (27). CVID/CVID-like disorders
are thus the principal differential diagnosis until patients with
THI recover. Identification of a causativemutation in a child with
persistent hypogammaglobulinemia will exclude THI and will
indicate the patient is likely to require long-term subcutaneous
or intravenous immunoglobulin (SCIG/IVIG) therapy. As noted
above, genetic sequencing of children with severe symptomatic
immunodeficiencies is now the standard of care.

Hypogammaglobulinemia can be caused by a wide range
of non-immunological disorders and it can sometimes be
difficult to exclude these secondary causes. If a causative
genetic defect is identified, this will exclude secondary causes,

TABLE 1 | The utility of genetic testing for patients with a CVID phenotype.

Establishing the diagnosis

Confirming the clinical diagnosis of a CVID-like disorder

Identifying novel presentations of other CVID-like disorders eg as LOCID

Identifying atypical presentations of other PIDs with hypogammaglobulinemia

eg XLP

Distinguishing genetic from acquired disorders eg drug-induced

hypogammaglobulinemia

Identifying digenic disorders

THA-Variability of IgG levels over time: some of these patients may have CVID-like

disorders

Differences in diagnostic criteria for CVID: the presence of a CVID-like disorder will

obviate the need to apply CVID diagnostic criteria.

Identifying CVID-like disorders in patients who have already developed malignancy

Identifying CVID-like disorders in patients on SCIG/IVIG or immunosuppression

Treatment

Offering early SCIG/IVIG treatment for individuals carrying causative mutations

Identifying specific treatment options eg abatacept for CTLA-4/LRBA deficiency

Identifying patients who may benefit from gene based therapy in the future

Prognosis

Asymptomatic patients with monogenic defects have a high probability of

symptomatic disease, leading to long-term SCIG/IVIG treatment

May distinguish patients with THI, who may not recover till adulthood where some

have impaired vaccine responses

Pre-symptomatic testing

Where presymptomatic diagnosis (at any age) is not possible with protein based

tests eg patients with CVID-like disorders who are asymptomatic with normal

immunoglobulins

Diagnosis in infancy where conventional diagnostic tests are unreliable eg because

of transplacentally acquired IgG levels

Screening

Cascade screening of at-risk relatives with or without symptoms after genetic

counseling

Identifying mutations from tissue samples from deceased relatives

Identifying mutations from Guthrie cards from deceased relatives

PID prevention

Prenatal diagnosis with chorionic villus sampling (CVS)

Pre-implantation genetic diagnosis (PGD)

Research

Characterizing the role of molecules in cellular function

Assisting with the classification of primary immunodeficiency disorders

Identification of new genetic defects with trio analysis

Investigating animal models of CVID-like disorders

Identifying epistasis caused by digenic (or oligogenic) disorders

Most of the clinical scenarios are described in the text. LOCID - late onset

combined immunodeficiency, SCIG/IVIG - subcutaneous of intravenous immunoglobulin

treatment, THA - transient hypogammaglobulinemia of adulthood, THI - transient

hypogammaglobulinemia of infancy, XLP - X-linked lymphoproliferative disorder.

such as anticonvulsant drugs, gut disease or other rare
conditions (44–48).

As with other genetic disorders, identification of a mutation
has profound implications for family members. The presence
of a genetic defect may allow early diagnosis and prompt
commencement of SCIG/IVIG treatment of affected family
members, when they develop symptoms. We suggest patients
with CVID-like disorders are offered SCIG/IVIG on the basis
of clinical symptoms and vaccine challenge responses may
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not be necessary. Such pre-symptomatic individuals, carrying
the family mutation, could be made aware of potential
risks and complications. This may either prevent catastrophic
infections and mitigate ongoing target organ damage leading to
bronchiectasis and other disabling complications (24).

Detection of a causative mutation may allow a future
reduction in the numbers of PIDs by preimplantation genetic
diagnosis (PGD). The specific mutation allows prenatal
diagnosis with chorionic villus sampling (CVS) and/or
PGD. An individualized approach is required. As we have
previously stated, it is not appropriate to consider CVS or
PGD for families carrying only mutations predisposing to
CVID such as TNFRSF13B/TACI (49). Even within mutations
causing CVID-like disorders, penetrance and expressivity
vary widely. Some variants such as the TCF3 mutation
we have described appear to be fully penetrant, while one
member of our family with NFKB1 haploinsufficiency is
phenotypically normal. There will need to be careful counseling
of such families.

While current technologies will not prevent disease caused by
new mutations, PGD could lead to a substantial decrease in the
prevalence of disease within a generation. This will result in a
major reduction in the burden of suffering as well as healthcare
costs. The NZ government offers free in vitro fertilization and
PGD for families carrying severe genetic defects. Delay in access
to this innovative but under-resourced program inNZ is however
a significant barrier.

Identification of the specific mutation may lead to new
therapeutic options. Patients with mutations of CTLA-4 or LRBA
may be candidates for abatacept. Those with gain of function
mutations of GOF-PIK3CD or loss of function LOF-PIK3R1
(APDS 1 and 2) may improve with mTOR inhibitors such as
rapamycin or newer agents such as Idelalisib. Patients with a
severe CVID-like disorder caused by mutations of ADA2 may
benefit from early bone marrow transplantation.

Discovery of the mutation may in the future lead to gene-
based therapies including retroviral gene transfer or gene editing
with CRISPR-Cas9. CRISPR-Cas9 has been used to repair CYBB
gene mutations in X-linked chronic granulomatous disease cells
(50). As discussed previously, off-target effects of the CRISPR-
Cas9 system may limit its in vivo use (51), although there has
been progress to mitigate these risks (52). We are unaware of
any current in vivo trials of retroviral gene therapy or CRISPR-
Cas9 gene editing studies in patients with CVID-like disorders.
Given the variable penetrance an expressivity, such gene-based
therapies should only be considered for severely symptomatic
individuals in the future.

The use of NGS has resulted in new discoveries including
novel mechanisms of disease (32). We have recently shown
the existence of quantitative epistasis in a patient with digenic
inheritance leading to a CVID-like disorder (49, 53). Epistasis
is the synergistic, non-linear interaction of two or more
genetic loci leading either to a much more severe disorder
or to a completely different phenotype. We have suggested
the synergistic interaction of genes is termed quantitative
epistasis, while those leading to a different phenotype are termed
qualitative epistasis (49).

The proband had mutations of both TCF3 and TNFRSF13B/
TACI genes, which caused a severe defect in antibody production
leading to a CVID-like disorder. These two genetic loci
lie in tandem, along the immunoglobulin production and
isotype switching pathways. The synergistic interaction of
these two mutations caused quantitative epistasis, leading
to a severe CVID-like disorder. Our study confirms genes
such as TNFRSF13B/TACI have disease modifying effects
on the severity of CVID-like disorders and supports the
separation these two groups of mutations. Such digenic
patients can only be identified by NGS (16, 54) and are
a strong argument for sequencing both groups of genes,
either causing CVID-like disorders (NFKB1, NFKB2, etc.) or
those modifying the severity of CVID, such as TNFRSF13B/
TACI (19, 55).

DIAGNOSTIC UNCERTAINTY CAUSED BY
VARIABILITY OF PROTEIN BASED
LABORATORY TESTS

As discussed above, the diagnosis of CVID relies on
diagnostic criteria. In our long-term prospective NZ
hypogammaglobulinemia study (NZHS), we have shown
marked fluctuations in IgG levels in patients with
hypogammaglobulinemia. Of concern was that 41.6% (20/48)
of symptomatic patients were able to normalize their IgG on at
least one occasion, when measured over time. Seven of twelve
hypogammaglobulinemic patients with bronchiectasis were also
able to normalize their IgG on at least one occasion. We have
termed this phenomenon transient hypogammaglobulinemia of
adulthood (THA) (26).

Some of these patients with hypogammaglobulinemia
may have a CVID-like disorder and in time will experience
progressive clinical deterioration (23). Identifying a causative
genetic defect will establish the diagnosis and assist with
monitoring and therapeutic decisions. Patients with profound
hypogammaglobulinemia (<3 g/l) and those who are
symptomatic with persistent hypogammaglobulinemia should
be considered for genetic testing. Patients with asymptomatic
THA with subsequent sustained normal IgG levels do not
need testing, with the possible exception of those with a
family history of an immunological disorder. We have shown
that some family members carrying mutations of CVID-
like disorders can be asymptomatic with normal IgG levels
(23). We acknowledge patients with THA will need to be
carefully assessed.

Most patients with CVID have reduced memory B cells
and these constitute a diagnostic criterion in Category C of
our criteria (56). It is however important for memory B cell
subsets to be measured on at least two occasions, as we have
shown the numbers can vary on repeat testing (57). We assessed
memory B cell subsets on a monthly basis in a cohort of CVID
patients being treated with IVIG. Our results showed there
was considerable variability leading to changes in diagnostic
categories on a monthly basis, particularly for the Freiburg and
Paris criteria. The variability was less marked for the EUROclass
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trial guideline. This again illustrates the variability of protein
based assays for CVID assessment and is an argument for
genetic testing.

UNRELIABILITY OF VACCINE RESPONSES
IN CURRENT DIAGNOSTIC CRITERIA
FOR CVID

We have discussed the difficulties with the previous ESID/PAGID
(1999) criteria for CVID (58). They lacked precision and
asymptomatic patients with trivial hypogammaglobulinemia of
IgG and IgA, with mildly impaired responses to the diphtheria
vaccine could be designated as having CVID and offered life-
long SCIG/IVIG.

We have recently reviewed diagnostic criteria for CVID in
the NZHS (26). We showed while there was general congruence
of diagnostic criteria, there were important differences.
In our study, many asymptomatic individuals with mild
hypogammaglobulinemia qualified as having definite CVID by
ICON (2016) criteria, because of impaired vaccine responses
to Pneumovax 23 R© or the diphtheria vaccine (26). Given their
excellent health over a mean follow-up of 106 months (to date),
it is unlikely these asymptomatic patients have definite CVID or
any other immunological disorder.

In our study, both symptomatic and asymptomatic patients
with hypogammaglobulinemia had excellent responses to
H. influenzae type B (HIB) and tetanus vaccines (59).
Vaccine responses were thus non-discriminatory in the
NZHS. Similarly, we also recently showed some patients
with THI, who subsequently recovered, had impaired vaccine
responses, which could potentially lead to misdiagnosis of
definite CVID if ICON (2016) criteria are applied (27). IgM
and IgA levels in particular, can be difficult to interpret in
young children.

Identifying the causative mutation would obviate the need
to apply CVID diagnostic criteria, as the patient would then
be reclassified as having a CVID-like disorder (60). Thus, the
primary aim of genetic sequencing is to remove these patients
from the umbrella diagnosis of CVID so they can be more
accurately classified as having a specific PID.

CAVEATS

While we advocate routine diagnostic WES or WGS for all
patients with a CVID phenotype, there are important caveats.
We have discussed the technical limitations of NGS including
lack of uniform coverage with WES leading to errors (19,
61). These errors are less likely with WGS but currently
this technology is more expensive than WES. NGS is not
available in all parts of the world. However, several commercial
companies are now offering these tests, some using gene
panels, while others offer WES with targeted analysis. One
company offering WES with targeted analysis releases raw
data for an additional fee, which allows future analysis of
gene mutations, which have yet to be discovered. With the
appropriate consents and ethics approvals, this data can also

be converted to parents:child trio analysis for gene-discovery
research studies.

It is important to counsel patients before offering these
studies as there is a risk of identifying variants of unknown
significance (VUS) (19). This can be frustrating for both
patient and physician (62). In some cases the pathogenicity
of a VUS can be resolved by collateral techniques such as
functional studies (63). Another important caveat is the risk of
assigning disease causality to ethnic specific variants. What may
fit all decision criteria for a mutation causing a rare disease
may simply be a common benign variant (polymorphism) in
an under-surveyed ethnic group. Current databases comprise
predominantly Caucasian individuals, while other ethnicities
such as Maori are poorly represented.

There is also the problem of de novo pathogenic mutations
in databases, where the disease is yet to manifest. These will
need careful analysis. In silico analysis and the frequency of such
alleles may indicate their true significance. If the frequency of
homozygous healthy individuals is lower than expected (given
the variant allele frequency), it may suggest that the homozygous
state is disease causing.

In some cases, WES and WGS may identify potentially
important mutations in unrelated genes such as those associated
with cancer, cardiovascular disease, severe neurological disorders
etc. The American College of Medical Genetics (ACMG) has
published guidelines for the analysis and disclosure of these
“medically actionable” incidental findings in patients undergoing
NGS (64). We have discussed the difficulties with these ACMG
guidelines (19). Studies have shown low yield from these
guidelines (65, 66).

There is also a possibility of identifying VUS in these genes.
A single expert may not be able to resolve the significance of
all of these variants in different organ systems. This is likely to
cause great anxiety and expense in societies without a socialized
health system, if there is no insurance coverage. At the time of
consent, we encourage our patients to opt out of disclosing these
incidental findings in unrelated organ systems.

We have also discussed other social and financial
disadvantages of identifying the mutation, such as genetic
discrimination in the domains of insurance or employment
(39). The Americans with Disabilities Act 1990 (ADA) and
the Genetic Information Non-discrimination Act of 2008
(GINA) protects Americans from such discrimination. Such
enabling legislation is however not universally enacted in
all jurisdictions. In spite of robust legislation protecting
individual rights, NZ does not currently have laws forbidding
genetic discrimination.

Securing funding for these tests is a common problem.
Clinical services and insurance providers have been slow to
recognize the value of such technology and the far-reaching
benefits of testing (25). Prevention of a single case could
lead to lifetime savings of over $2M, which would fund
NGS for a large cohort of CVID patients. If funding is not
immediately available from clinical services, in many cases
NGS can be undertaken as part of research studies, with the
appropriate consents. In many cases, our patients have self-
funded these tests.
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In spite of these limitations, we believe all patients with a
CVID phenotype should now be routinely offered diagnostic
NGS sequencing if resources permit. If a causal mutation is
not found, such patients can be enrolled in gene discovery
research studies with the appropriate consents and ethics
approvals (19).
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