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Abstract: Several new antifungals are currently in late-stage development, including those with
novel pharmacodynamics/mechanisms of action that represent new antifungal classes (manogepix,
olorofim, ATI-2307, GR-2397). Others include new agents within established classes or with mecha-
nisms of action similar to clinically available antifungals (ibrexafungerp, rezafungin, oteseconazole,
opelconazole, MAT2203) that have been modified in order to improve certain characteristics, includ-
ing enhanced pharmacokinetics and greater specificity for fungal targets. Many of the antifungals
under development also have activity against Candida and Aspergillus strains that have reduced
susceptibility or acquired resistance to azoles and echinocandins, whereas others demonstrate activity
against species that are intrinsically resistant to most clinically available antifungals. The tolerability
and drug–drug interaction profiles of these new agents also appear to be promising, although the
number of human subjects that have been exposed to many of these agents remains relatively small.
Overall, these agents have the potential for expanding our antifungal armamentarium and improving
clinical outcomes in patients with invasive mycoses.

Keywords: pharmacodynamics; antifungals; mechanism of action; resistance; olorofim; manogepix;
AT-2307; GR-2397; ibrexafungerp; rezafungin; oteseconazole; opelconazole; encochleate amphotericin B;
MAT2203

1. Introduction

For decades, clinically available antifungals used to treat invasive mycoses have
primarily targeted ergosterol, either by binding to it (i.e., polyenes) or through the inhibition
of its biosynthesis (i.e., azoles). During the last 20 years, new members of the azoles,
including the extended spectrum triazoles, voriconazole, posaconazole, and isavuconazole;
lipid formulations of amphotericin B; and the echinocandins, which lack major toxicities
and drug–drug interactions due to their fungal-specific mechanism of action, have become
available and have led to improvements in clinical outcomes against certain mycoses [1,2].
However, these antifungals are not without limitations, including adverse effects/toxicities
associated with amphotericin B and the azoles, and significant drug–drug interactions with
the azoles due to interactions with mammalian cytochrome P450 (CYP450) enzymes [1].
The spectrum of activity of the echinocandins is narrow compared to amphotericin B and
the azoles, and these antifungals must be administered intravenously, limiting their long-
term use. The development of resistance is also of growing concern for the azoles and the
echinocandins [3].

Currently, new antifungals with novel mechanisms of action are being developed, in-
cluding those in Phase II and III clinical trials. These include manogepix, olorofim, ATI-2307,
and GR-2397 [4,5]. In addition, other agents with mechanisms of action identical or similar
to clinically available antifungals, but with distinct advantages, are also in development,
including ibrexafungerp, rezafungin, oteseconazole, opelconazole, and the encochleate
amphotericin B formulation, MAT2203. This review discusses the pharmacodynamics (i.e.,
mechanisms of action), mechanisms of resistance, spectrum of activity, and the pharmacoki-
netic/pharmacodynamic (PK/PD) parameters of these agents. In addition, their tolerability
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and drug–drug interaction profiles, as they relate to the mechanisms of action, are also
reviewed. Those that are in late-stage clinical development or have recently been approved
by the U.S. Food and Drug Administration for limited indications are shown in Table 1,
and their structures/mechanisms of action and spectrums of activity are shown in Figure 1
and Table 2, respectively. The Clinical and Laboratory Standards Institute (CLSI) has also
established and published acceptable minimum inhibitory concentration/minimum effec-
tive concentration (MIC/MEC) ranges and modal values for several of these agents (i.e.,
ibrexafungerp, manogepix, olorofim, and rezafungin) against quality control and reference
strains that are available from the American Type Culture Collection (ATCC) [6,7].

Table 1. Antifungals in late-stage clinical development, routes of administration, pharmacoki-
netic/pharmacodynamic (PK/PD) parameters associated with efficacy, tolerability/adverse ef-
fects and drug interactions, and current clinical trials. Cmax = peak bloodstream concentration;
Cmin = trough bloodstream concentration; AUC = area under concentration curve; fAUC = free
drug area under concentration curve; MIC = minimum inhibitory concentration; MEC = minimum
effective concentration; CYP450 = cytochrome P450 enzyme; CYP3A4 = cytochrome P450 3A4 en-
zyme. Information regarding current clinical trial status was obtained from https://clinicaltrials.gov/
(accessed on 8 July 2022).

Agent and Company
Developing

Routes of
Administration

PK/PD Parameter
Associated with In Vivo

Efficacy

Tolerability/Adverse Effects
and Drug Interactions

Current Clinical Trials
(Number and Phase)

Manogepix
(APX001A)

Pfizer

Intravenous
and oral

AUC/MIC vs. yeasts
(fAUC/MIC 1.35–22.54)

Well-tolerated in Phase I and II
clinical studies

Candidemia/invasive
candidiasis (NCT05421858,

Phase III)AUC/MEC vs. molds
(fAUC/MEC 89.39)

Drug interaction profile not
yet known

Olorofim
(F901318)

F2G

Intravenous
and oral

Cmin/MIC
(Cmin/MIC 3–16.5 vs.

A. fumigatus)

Well-tolerated in Phase I
studies with no serious

adverse effects

Invasive aspergillois
(NCT05101187, Phase III)

Potential for drug interactions,
as it is metabolized by CYP450

enzymes and is a weak
inhibitor of CYP3A4

Aspergillosis,
lomentosporiosis,

scedosporiosis, and other
resistant fungi (NCT03583164,

Phase II)

Ibrexafungerp
(SCY-078)
Scynexis

Oral (Intravenous
formulation under

development)

AUC/MIC vs. Candida
(fAUC/MIC 0.1–1.7)

Well-tolerated in Phase I and II
clinical studies, and no QTc

prolongations reported

Complicated vulvovaginal
candidiasis (NCT05399641,

Phase III)
Invasive pulmonary

aspergillosis (NCT03672292,
Phase III)

AUC/MIC
Possibly AUC/MEC vs.

Aspergillus

Potential for drug interactions,
as it is metabolized by
CYP3A4 and is also an

inhibitor of CYP2C8 and 3A4

Candida auris candidiasis
(NCT03363841, Phase III)

Invasive mycoses in those who
are refractory to or intolerant

of other therapies
(NCT03059992, Phase III)

Rezafungin
(CD101)
Cidara

Intravenous

AUC/MIC vs. Candida
(fAUC/MIC 0.07–11.65)

Well-tolerated in Phase I and II
clinical studies; some

infusion-related reactions with
higher doses

Antifungal prophylaxis in
adults undergoing allogeneic

stem cell transplantation
(NCT04368559, Phase III)AUC/MEC and

Cmax/MEC vs.
Aspergillus

Low potential for drug
interactions

Oteseconazole
(VT-1161)
Mycovia

Oral Undefined, but most likely
AUC/MIC (similar to

triazoles)

Well-tolerated in Phase I and II
clinical studies with
mild-to-moderate

adverse effects

Recurrent vulvovaginal
candidiasis (NCT03562156 and

NCT033561701, Phase
III—Completed)Drug interactions not observed

with agents metabolized by
CYP3A4 or p-glycoprotein

https://clinicaltrials.gov/
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Figure 1. Chemical structures, antifungal classes, and mechanisms of action of antifungals currently
under late-stage clinical development, including manogepix, olorofim, ibrexafungerp, rezafungin,
and oteseconazole.
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Table 2. In vitro spectrum of activity of antifungals currently under late-stage clinical development,
including manogepix, olorofim, ibrexafungerp, rezafungin, and oteseconazole. + = in vitro antifungal
activity observed; − = no in vitro activitiy; blank cells = unknown.

Antifungal Manogepix Olorofim Ibrexafungerp Rezafungin Oteseconazole

Yeasts

C. albicans + − + + +

C. auris + − + + +

C. glabrata + − + + +

C. krusei − − + + +

C. parapsilosis + − + + +

C. tropicalis + − + + +

C. gattii + − − − +

C. neoformans + − − − +

Rhodotorula + − − −
Trichosporon +/− − − −

Aspergillus

A. flavus + + + + −
A. fumigatus + + + + −

A. niger + + + + −
A. terreus + + + + −

Fusarium

F. oxysporum + +/− −
F. solani + − −

Scedosporium

Scedosporium + + −
L. prolificans + + −

Mucorales

Mucor − − − −
Rhizopus +/− − − − +/−

Other Mucorales − − − −
Endemic Fungi

Blastomyces + + +

Coccidioides + + + +

Histoplasma + + +

Dermatophytes

Trichophyton + +

2. Antifungals with Novel Mechanisms of Action
2.1. Manogepix
2.1.1. Mechanism of Action—Pharmacodynamics

Manogepix (APX001A) acts against fungi by inhibiting the fungal acyltransferase
enzyme, Gwt1, which is an important component of the glycosylphosphatidylinositol (GPI)-
anchored protein maturation pathway, and is essential for trafficking mannoproteins to
the fungal cell membrane and wall [8,9]. GPI-anchored mannoproteins serve as adhesions,
enabling fungi to adhere to mucosal epithelial surfaces within the host prior to colonization,
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as well as infection [10]. Some fungal virulence factors are also derived from GPI-anchored
proteins [10–14]. Thus, the inhibition of their synthesis may have pleotropic effects aside
from growth inhibition. This agent was identified through a targeted search for agents that
specifically inhibit Gwt1 and the optimization of identified leads [15]. Clinically, manogepix
is administered as the N-phosphonooxymethyl prodrug, fosmanogepix (APX001), which is
rapidly converted to manogepix by host phosphatases [15–17].

2.1.2. Spectrum of Activity and Resistance

Manogepix has broad-spectrum in vitro activity against fungi. Against yeasts, this
includes activity against most Candida species, including C. albicans, C. auris, C. glabrata,
C. parapsilosis, and C. tropicalis, as well as azole- and echinocandin-resistant strains [16–20],
and Cryptococcus neoformans and C. gattii [21]. This in vitro activity has translated into
efficacy in experimental models of candidiasis and cryptococcosis, including against in-
fections caused by strains resistant to clinically available antifungals [20–23]. However,
manogepix lacks or has limited activity against Candida krusei, C. inconspicua, and C. kefyr
(Kluyveromyces marxianus). Activity has also been demonstrated against a limited number
of Rhodotorula isolates, whereas its activity against Trichosporon asahii was variable [17].

Manogepix is also active against pathogenic molds, including Aspergillus, Fusarium,
and Scedosporium species, as well as Lomentospora (Scedosporium) prolificans, a pathogen
that is intrinsically resistant to clinically available antifungals [8,24–29]. Potent activity is
also observed against strains of azole-resistant A. fumigatus. Similar to the echinocandins,
manogepix does not necessarily inhibit the growth of filamentous fungi, but rather causes
morphologic changes, which are observed in vitro as short, stubby, abnormally-branched
hyphae, and the lowest concentration at which these occur is referred to as the MEC [15,30].
Reports of activity against different members of the order Mucorales have been mixed,
with some studies showing no in vitro activity, but others reporting limited in vitro and
in vivo activity against Rhizopus arrhizus [8,19,31]. A recent study reported that combination
therapy with liposomal amphotericin B and fosmanogepix was superior to either agent
alone against invasive aspergillosis, fusariosis, and mucormycosis [32].

Resistance to manogepix can develop due to point mutations that lead to amino acid
substitutions within Gwt1 (i.e., V163A in C. glabrata and V162A in C. albicans) [33], and these
changes do not affect the activity of other antifungals, such as the azoles and echinocandins.
Interestingly, strains with elevated manogepix MICs that are wild-type for Gwt1 have also
been reported to be cross-resistant to fluconazole. Although such cross-resistance has been
attributed to efflux pumps due to marked increases in the transcription of efflux pump
genes, such as CDR11, SNQ2, and MDR1 in C. albicans and MDR1 in C. parapsilosis [34],
changes in manogepix and fluconazole MICs were minimal.

2.1.3. In Vivo Efficacy and Pharmacokinetics/Pharmacodynamics

The in vitro activity of manogepix has translated into in vivo efficacy in animal models
of aspergillosis, fusariosis, scedoporiosis, coccidioidomycosis, and mucormycosis caused
by Rhizopus arrhizus [24,27,31,35,36]. Interestingly, a recent study reported that combination
therapy with liposomal amphotericin B and fosmanogepix was superior to either agent
alone against invasive aspergillosis, fusariosis, and mucormycosis [32].

In experimental models of invasive candidiasis caused by C. albicans, C. glabrata,
and C. auris, as well as invasive aspergillosis due to both wild-type and azole-resistant
A. fumigatus, the pharmacokinetic/pharmacodynamic (PK/PD) parameters associated
with manogepix efficacy were the AUC/MIC and AUC/MEC, respectively [20,23,35,37].
Against invasive candidiasis, the total free drug AUC/MIC (fAUC/MIC) ratios associated
with stasis ranged from 1.35 to 22.54 [23]. Similarly, against invasive aspergillosis, the
median fAUC/MEC associated with a 1-log reduction in fungal burden was 89.39 [35].
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2.1.4. Tolerability and Drug Interactions

Manogepix appears to have fungal-specific activity, as it does not inhibit the human in-
ositol acyltransferase, Pigw, at clinically relevant concentrations [38]. Administration of fos-
manogepix has been safe and well-tolerated in Phase I and II clinicals trials, with only mild
adverse effects reported [39–42]. Clinically significant adverse effects and dose-limiting
toxicities have not been observed. A Phase I drug–drug interaction study evaluating the
effects of CYP3A4 and pan-CYP450 inhibition on fosmanogepix has been completed, but
the results are not yet available [15]. However, the inhibition of CYP3A4 may potentially be
of concern, as the non-selective CYP450 inhibitor, 1-aminobenzotriazole, has been utilized
to improve the overall exposure profile of manogepix in mice due to rapid metabolism of
this agent in this animal species [24,37,43].

2.2. Olorofim
2.2.1. Mechanism of Action—Pharmacodynamics

Olorofim (F901318, orotomide class) reversibly inhibits the dihydroorotate dehydroge-
nase (DHODH) enzyme, which is involved in the biosynthesis of pyrimidine [44]. This dis-
ruption leads to the loss of uridine-5′-monophosphate (UMP) and uridine-5′-triphosphate
(UTP), which are important for the production of various cell wall components, as well as
cytosine, thymine, and uracil, and also in cell cycle regulation [45]. Exposure of fungi to
olorofim results in cell cycle arrest, as well as cell lysis [46,47]. Other effects have also been
observed in Aspergillus following exposure to this agent, including inhibition of conidial
germination; slowing of germ tube and hyphal growth; hyphal lysis; and, finally, cell
death with prolonged exposure (120 h), suggesting that the effects of olorofim change from
fungistatic to fungicidal with longer exposures [46]. Other effects of olorofim exposure
include increases in hyphal septation, reductions in hyphal compartment sizes, and in-
creased vacuolar volume, with the latter possibly indicating cell cycle arrest and a sign of
autophagy [47,48]. This agent was identified through a screen of a library containing over
340,000 small molecules for in vitro activity specifically against Aspergillus fumigatus [44].

2.2.2. Spectrum of Activity and Mechanisms of Resistance

The spectrum of activity of olorofim is unique. It demonstrates potent activity against
several pathogenic molds and dimorphic fungi, including Blastomyces, Coccidioides, and
Histoplasma species, but it is devoid of activity against the Mucorales and yeasts, including
Candida and Cryptococcus species [44,49–53]. In addition, the activity of olorofim is not
uniform against all molds. For example, species-specific activity has been observed against
Fusarium species, with the least activity observed against members of the Fusarium solani
species complex [44,52]. This unique spectrum of activity of olorofim has been attributed
to differences in the DHODH enzymes among various groups of fungi [44].

Despite the lack of activity against several important pathogen groups, olorofim
has demonstrated promising activity against several fungi that either have reduced sus-
ceptibility or resistance to the extended spectrum azoles and amphotericin B. This in-
cludes azole-resistant Aspergillus fumigatus strains with CYP51A gene mutations, and
cryptic Aspergillus species (e.g., A. calidoustus, A. lentulus, A. tanneri, A. thermomutatus,
and A. udagawae) with reduced azole susceptibility [44,53–55]. Olorofim is also active
against several other molds that have reduced susceptibility or resistance to azoles and
amphotericin B, including Scedosporium species, Lomentospora prolificans, and Microas-
cus/Scopulariopsis species [44,49,51,52]. Other fungi that are inhibited by this agent in-
clude the hyaline molds, Paecilomyces variotii and Talaromyces marneffei, among others, and
Madurella mycetomatis, the most common cause of eumycotic mycetoma [44,50,56].

Olorofim resistance can develop secondary to mutations within the gene encoding
for DHODH. In a screen of 975 A. fumigatus isolates, no intrinsic resistance to this agent
was found [57]. However, isolates with olorofim MICs of >8 mg/L could be selected in the
laboratory with higher inocula and longer exposures to this agent. This was attributed to
mutations within the PYRE gene leading to amino acid substitutions at locus G119 (i.e.,
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G119C and G119V) within DHODH, and a reduced affinity of olorofim for the mutated
protein. Although fungi are capable of scavenging pyrimidine from the environment, the
concentrations needed to reverse the in vitro effects of olorofim (≥5 mM) are markedly
higher than what is found in human serum (~15 µM) [44]. Thus, the use of exogenous
pyrimidine does not appear to be a mechanism by which fungi may become resistant
to olorofim.

2.2.3. In Vivo Efficacy and Pharmacokinetics/Pharmacodynamics

Olorofim has also demonstrated in vivo effectiveness in several experimental models
of invasive fungal infections, including invasive aspergillosis caused by different species of
Aspergillus and azole-resistant A. fumigatus strains, central nervous system coccidioidomy-
cosis, and disseminated scedosporiosis and lomentosporiosis [50,54,58–60]. The PK/PD
parameter of olorofim associated with efficacy in experimental models of invasive my-
coses has been the trough or Cmin/MIC. Against invasive aspergillosis caused by either
azole-susceptible or resistant A. fumigatus strains, reductions in serum galactomannan
levels and improvements in survival occurred with more frequent administration, and this
time-dependent activity was confirmed by dose-fractionation studies [58]. A reduction
in galactomannan of 27% was achieved with a Cmin/MIC range of 3 to 16.5 against 8
A. fumigatus challenge strains. These findings have been confirmed in other models of
invasive mycoses, including sinopulmonary aspergillosis due to A. flavus, and coccidioidal
meningitis caused by C. immitis [50,59], and is consistent with the time-dependent activity
described in vitro [46].

2.2.4. Tolerability and Drug Interactions

Olorofim is significantly more potent against A. fumigatus DHODH (IC50 44 nM)
compared to recombinant human DHODH (IC50 > 100 µM) [44], suggesting fungal-specific
activity. In Phase I clinical studies, no significant changes in vital signs or laboratory values
were reported, and no severe or serious adverse effects were observed in healthy subjects
administered this agent [61,62]. Olorofim does undergo Phase I hepatic metabolism by
several CYP450 enzymes [63], and it also acts as a weak inhibitor of CYP3A4 [64]. Thus,
drug–drug interactions may be a clinical concern with this agent.

2.3. Other Antifungals with Novel Mechanisms of Action

Other antifungals with novel mechanisms of action that are not yet at advanced stages
of clinical development include ATI-2307 and GR-2307. ATI-2307 (formerly T-2307) is an
aromatic diamidine with a structure similar to pentamidine that was identified in a screen
of specific compounds in the chemical library at Toyama Chemical Company [65]. This
agent causes the collapse of fungal mitochondrial membrane potential by inhibiting the
respiratory chain complex, resulting in decreased adenosine triphosphate levels [66–68].
ATI-2307 has in vitro activity against Candida species, including azole and echinocandin-
resistant strains of C. albicans, C. glabrata, and C. auris, Cryptococcus species, Malassezia
furfur, Aspergillus species, Fusarium solani, and Lichtheimia corymbifera [65,69–72]. In vivo
efficacy has also been reported in animal models of invasive candidiasis, cryptococcosis,
and aspergillosis [65,70,71,73,74]. However, reduced to no activity has been reported
against Rhizopus arrhizus, Mucor racemosus, Scedosporium species, Trichophyton rubrum, and
Trichosporon asahii.

GR-2397, formerly VL-2397 and ASP2397, is a cyclic hexapeptide originally isolated
from an Acremonium persicinum strain (MF-34833) as part of a program to discover new
agents for pulmonary aspergillosis [75]. Although the intracellular drug target is unknown,
GR-2397 is structurally related to the siderophore, ferrichrome, and this agent is taken up
into A. fumigatus cells by the siderophore transporter, Sit1 [76]. Thus, the antifungal activity
is observed against species in which Sit1 is present [63,77], such as C. glabrata, including
echinocandin- and azole-resistant strains, and C. kefyr, but not C. albicans [76–78]. Activity
has also been demonstrated against Aspergillus species, including azole-susceptible and
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resistant A. fumigatus strains, A. flavus, and A. terreus [76,79]. In experimental models of
invasive candidiasis, efficacy has been demonstrated against infections caused by both
wild-type and azole- and echinocandin-resistant C. glabrata isolates [78]. Efficacy has also
been reported against aspergillosis [76], and the limited PK/PD data that are available
suggest that AUC/MIC is the parameter most closely associated with in vivo efficacy, as
this was demonstrated in a murine model of invasive pulmonary aspergillosis [80].

3. New Antifungals That Improve upon Current Classes and Mechanisms of Action
3.1. Ibrexafungerp
3.1.1. Mechanism of Action—Pharmacodynamics

Ibrexafungerp (SCY-078, triterpenoid class) is a semi-synthetic compound derived from
the natural product, enfumafungin [81]. Similar to the echinocandins, ibrexafungerp in-
hibits the production of 1,3-β-D-glucan through non-competitive inhibition of the
1,3-β-D-glucan synthase complex [82,83], although it is structurally different and not a
member of this class. Inhibition of 1,3-β-D-glucan synthesis weakens the cell wall, and
results in osmotic instability and eventual cell lysis [82,84]. However, the binding sites for
ibrexafungerp and the echinocandins only partially overlap; thus, cross-resistance between
these different antifungal classes is limited [85–87]. In addition, unlike the echinocandins,
ibrexafungerp can be absorbed from the gastrointestinal tract following oral administration,
and does not have to be administered intravenously.

3.1.2. Spectrum of Activity and Mechanisms of Resistance

Ibrexafungerp has in vitro activity against several Candida species, including C. albicans,
C. glabrata, C. parapsilosis, and C. tropicalis, as well as the emerging pathogen, C. auris [88];
against which, antibiofilm activity has also been demonstrated [89,90]. Its activity is also
maintained against azole-resistant isolates. However, reduced potency has been reported
against C. lusitaniae and C. krusei. Unlike the azoles, the activity of ibrexafungerp against
Candida species is maintained in low pH environments [91–93], which may make it useful
for the treatment of vulvovaginal candidiasis, for which it has received regulatory approval
for clinical use in the U.S.

Ibrexafungerp also demonstrates activity against Aspergillus species, including
A. fumigatus, A. niger, and A. terreus, as well as cryptic species and strains that are azole-
resistant [83,85,94,95]. In a rabbit model of invasive aspergillosis, enhanced efficacy, as
measured by reductions in pulmonary injury, fungal burden, galactomannan and 1,3-β-
D-glucan levels, and improvements in survival, was observed when ibrexafungerp was
combined with isavuconazole [96]. However, ibrexafungerp lacks in vitro activity against
the Mucorales and Fusarium species, and has variable activity against other molds, including
Microascus/Scopulariopsis species, Purpureocillium lilacinum, and Scedosporium species [97].
The in vitro activity of ibrexafungerp and the echinocandins against molds is measured
as the MEC value, which, as described above for manogepix, is the lowest concentration
that results in morphologic changes (i.e., short, stubby, abnormally-branched hyphae) [30].
These changes are due to the location of the 1,3-β-D-glucan synthase enzymes at the apical
tips and branch points of hyphae where growth occurs [30,82].

Point mutations within the FKS1 and FKS2 genes that encode subunits of 1,3-β-D-
glucan synthase can lead to ibrexafungerp and echinocandin resistance [98]. As noted
previously, the binding sites for ibrexafungerp and the echinocandins only partially overlap.
Thus, the activity of ibrexafungerp against Candida strains harboring FKS mutations is
variable [87,99], although it is generally more potent against FKS mutants compared to the
echinocandins [99–102]. However, FKS mutations that lead to specific amino acid changes,
such as F641S in C. albicans, and F649del, F658del, F659S, F659del, E655A, and W715L in
C. glabrata, can reduce ibrexafungerp activity [95,103–106].
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3.1.3. In Vivo Efficacy and Pharmacokinetics/Pharmacodynamics

Consistent with its in vitro activity, several studies have reported ibrexafungerp to
have in vivo efficacy in experimental models in candidiasis caused by different Candida
species, including C. albicans, C. glabrata, C. tropicalis, and C. auris [107,108]. Ibrexafungerp
has also demonstrated prophylactic activity in a murine model against Pneumocystis pneu-
monia due to its activity against the cyst form of this organism [109]. From a PK/PD
standpoint, the AUC/MIC has correlated with the effectiveness of ibrexafungerp in an-
imal models of invasive candidiasis [107,110]. When assessed by overall exposure, the
ibrexafungerp free drug AUC/MIC (fAUC/MIC) ratios associated with stasis, and mea-
sured by reductions in kidney fungal burden, have ranged from 0.1 to 1.7, and these were
lower to those reported for the echinocandins [107,110,111]. This difference may be due to
higher concentrations of ibrexafungerp within the kidneys due to extensive tissue distribu-
tion [110]. Fungicidal activity, defined as a 1-log10 reduction in fungal burden, has been
reported with ibrexafungerp fAUC/MIC ratios of 0.91 to 1.42 [107]. The estimated protein-
binding of ibrexafungerp ranges between 99.5% and 99.8% [110]. Although the PK/PD
parameter of ibrexafungerp has not been formally defined against Aspergillus infections, it
is thought to be the AUC/MEC [112].

3.1.4. Tolerability and Drug Interactions

In Phase I and II clinical studies, ibrexafungerp has been well-tolerated, although
non-serious adverse effects did increase with higher doses and longer durations of ther-
apy [113]. The most common mild-to-moderate adverse effects included nausea, vomiting,
diarrhea, and abdominal pain [112,114,115]. Of note, prolongations in QTc intervals were
not observed in a Phase II study of patients with invasive candidiasis [115]. Ibrexafungerp
is metabolized by CYP3A4, and the coadministration of strong inducers, such as rifampin,
or inhibitors of this enzyme, including itraconazole, should be avoided, as these may lead to
insufficient or supratherapeutic ibrexafungerp concentrations, respectively. Ibrexafungerp
is also a reversible inhibitor of CYP2C8 and 3A4. However, the coadministration of ibrexa-
fungerp and rosiglitazone, which is metabolized by CYP2C8, had no effect on the overall
exposure of this anti-diabetic drug [116]. Similarly, only a modest increase in tacrolimus con-
centrations, which is metabolized by CYP3A4, were observed with the co-administration
of ibrexafungerp [112]. Although tacrolimus dose adjustments are not currently recom-
mended when co-administered with ibrexafungerp, levels of this calcineurin inhibitor
should be monitored.

3.2. Rezafungin
3.2.1. Mechanism of Action—Pharmacodynamics

Rezafungin (CD101) is a second-generation echinocandin, and, similar to other
echinocandins, causes non-competitive inhibition of the 1,3-β-D-glucan synthase enzyme
complex [117]. 1,3-β-D-glucan is a major cell wall component of many pathogenic fungi;
thus, inhibiting its synthesis results in osmotic instability and eventual cell lysis [82,84].
Rezafungin is similar to anidulafungin in structure, but is modified within the cyclic core,
having the ornithine hemiaminal replaced with a choline aminal ether [118]. This change
leads to greater stability and a prolonged half-life for rezafungin (~130 h vs. ~24 h for
anidulafungin) [118–122].

3.2.2. Spectrum of Activity and Mechanisms of Resistance

As with the other echinocandins, rezafungin has potent in vitro activity against
Candida and Aspergillus species. This includes Candida species that frequently cause infec-
tions in humans, such as C. albicans, C. glabrata, C. tropicalis, and C. krusei, as well as less
common species, including C. dubliniensis, C. fabianii, C. inconspicua, C. kefyr, C. lipolytica,
and C. lusitaniae, among others [123–126]. Potent activity has also been observed against
C. auris [126]. Reduced potency is observed against members of the C. parapsilosis species
complex, including C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis, as well
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as against C. guilliermondii [125,126]. Rezafungin also lacks activity against fungi that are
intrinsically resistant to the echinocandin class, including Cryptococcus, Rhodotorula, and
Trichosporon species [117,124]. Rezafungin does have activity against Aspergillus fumigatus,
including azole-resistant isolates, A. flavus, A. terreus, and A. niger. It is also active against
cryptic members of Aspergillus section Fumigati (e.g., A. lentulus, A. thermomutatus, and
A. udagawae), and A. calidoustus [123,127]. As with the other echinocandins, the in vitro
activity of rezafungin against molds is measured as the MEC and not the MIC. Resistance
to the echinocandins is caused by mutations within highly conserved regions (hot spots
1 and 2) of FKS1 and FKS2 genes that encode subunits of the 1,3-β-D-glucan synthase
complex [98]. In fact, the reduced activity of this class against members of the C. parapsilosis
species complex and C. guilliermondii is due to naturally occurring point mutations within
FKS1 [128,129]. Against Candida isolates harboring FKS mutations, rezafungin MICs have
been reported to be similar to those of other echinocandins [124,130].

3.2.3. In Vivo Efficacy and Pharmacokinetics/Pharmacodynamics

In vivo efficacy has also been reported against infections caused by Candida and As-
pergillus species. Experimental models of invasive candidiasis have demonstrated rezafun-
gin to be effective against infections caused by several Candida species, including C. albicans,
C. auris, C. dubliniensis, C. glabrata, C. parapsilosis, and C. tropicalis [23,131–135]. Although
its in vitro activity appears to be similarly affected by FKS mutations in a similar fashion
as the other echinocandins, in one study, rezafungin maintained in vivo efficacy against
infection caused by a C. albicans isolate harboring a heterozygous FKS mutant at codon S645,
despite reduced in vitro activity against this strain [135]. Rezafungin was also effective in a
rabbit model for the treatment of endophthalmitis caused by wild-type C. albicans [136].
In experimental models of invasive aspergillosis caused by A. fumigatus, rezafungin was
also effective against infections caused by wild-type and azole-resistant strains [137,138].
Prophylactic efficacy has also been demonstrated against Pneumocystis pneumonia, as
rezafungin was effective in blocking the formation of the reproductive forms of P. murina in
immunocompromised mice [139].

As with the other echinocandins, the PK/PD parameter associated with rezafungin
efficacy is the AUC/MIC. In neutropenic murine models of invasive candidiasis caused by
C. albicans, C. glabrata, and C. parapsilosis strains with varying echinocandin susceptibility
profiles, free drug AUC/MIC ratios associated with fungal burden stasis ranged from 0.07
to 2.92, whereas 1-log10 reductions in fungal burden were two- to four-fold higher [131].
Similarly, in murine models of candidiasis caused by C. auris, C. dubliniensis, and C. tropicalis,
free drug AUC/MIC ratios associated with statis ranged from 1.88 to 11.65, and those
associated with at least a 1-log10 reduction in fungal burden were also approximately two-
to four-fold higher [131,132]. Dose fractionation studies in mice have also demonstrated
that the shape of the concentration–time curve is important against Candida infections, as
single high doses were associated with the largest decreases in fungal burden compared
to the same overall doses administered more frequently [140]. The Cmax/MEC ratio has
been reported to be associated with efficacy for the echinocandins against A. fumigatus
infections [141], and extended-interval dosing of rezafungin was associated with improved
survival and reductions in fungal burden in a murine model of disseminated aspergillosis
caused by an A. fumigatus isolate harboring a TR34/L98H mutation in CYP51A [138].

3.2.4. Tolerability and Drug Interactions

Due to the fungal-specific mechanism of action of the echinocandins, this class is
very well-tolerated. In healthy volunteers, the majority of adverse effects were mild and
transient. There was a tendency towards higher rates of adverse effects, such as infusion
reactions, in the group that received the highest rezafungin dose [121]. In addition, no ECG
abnormalities, including prolongations the QTc interval, were reported with rezafungin
infusions up to 1400 mg [142]. Similarly, in Phase II studies, rezafungin was safe and well-
tolerated in patients with candidemia and invasive candidiasis, and treatment-emergent
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adverse effects were deemed to be mild to moderate [143]. Rezafungin has a low potential
for drug–drug interactions, and minimal interactions with recombinant CYP450 enzymes
have been observed in vitro [144].

3.3. Oteseconazole
3.3.1. Mechanism of Action—Pharmacodynamics

To overcome drug–drug interactions that limit the clinical utility of triazoles, otesec-
onazole (VT-1161) and similar compounds (e.g., VT-1129 and VT-1598) have been designed
to have greater specificity for the fungal Cyp51 enzyme (i.e., lanosterol 14α-demethylase).
In oteseconazole, the triazole iron-binding group has been replaced with a tetrazole (i.e.,
four nitrogen atoms in the five-member ring), and the portion of the molecule recognized by
amino acids of the substrate-binding site within Cyp51 has also been modified [145]. Stud-
ies have reported a greater affinity of oteseconazole for fungal Cyp51 compared to human
CYP450 enzymes (~2000-fold) [145–148]. Thus, oteseconazole’s mechanism of action is the
same as the triazoles (i.e., inhibition of ergosterol biosynthesis), but with greater selectivity
for fungal enzymes and potentially fewer adverse effects and drug–drug interactions.

3.3.2. Spectrum of Activity and Mechanisms of Resistance

Oteseconazole is active against Candida species, including fluconazole-susceptible and
resistant isolates, Cryptococcus neoformans, Coccidioides immitis/posadasii, and Trichophyton
species [148–153].

Resistance to oteseconazole can occur by some of the same mechanisms that cause
resistance to the triazoles. In Candida albicans, marked increases in oteseconazole MICs
were reported to be caused by different mechanisms, including a premature stop codon
in the ERG3 gene; amino acid substitutions within the Erg11 enzyme; and overexpression
of the ATP-binding cassette transporter genes, CDR1 and MDR1 [152,154]. Similarly, in
C. glabrata, the efflux pump, Cdr1p, appears to affect oteseconazole activity to a greater
extent than that of Pdh1 and Snq2, all of which are regulated by the zinc cluster transcription
factor, Pdr1 [151]. Oteseconazole activity was also affected by Upc2a, another zinc cluster
transcription factor that regulates the genes involved in ergosterol biosynthesis.

3.3.3. In Vivo Efficacy and Pharmacokinetics/Pharmacodynamics

Efficacy has also been reported in animal models of various mycoses, including oropha-
ryngeal and vulvovaginal candidiasis caused by fluconazole-susceptible and -resistant
Candida albicans strains, and onychomycosis [155–157]. Reductions in fungal burden and
improvements in survival were also reported with oteseconazole treatment in experimental
models of coccidioidomycosis [149,158]. Prophylactic efficacy has also been demonstrated
in a murine model of pulmonary mucormycosis caused by Rhizopus arrhizus var. arrhizus,
which is consistent with the in vitro activity demonstrated against this species [159].

Although the PK/PD profile of oteseconazole most closely associated with efficacy has
not been formally studied, it is likely to be similar to the azoles, which is the AUC/MIC. Given
that the half-life reported in humans is 138 days, good exposures are expected [160,161]. Long
half-lives leading to sustained plasma levels and exposures have been observed in various
animals [149,158,161], and in a guinea pig model of onychomycosis, efficacy was observed
with either once-daily or once-weekly dosing [156]. Oteseconazole was recently approved
by the U.S. Food and Drug Administration for the treatment of recurrent vulvovaginal
candidiasis, and is recommended to be given orally at doses of 600 mg on day 1; 450 mg on
day 2; and then, beginning on day 14, 150 mg once-weekly when used as monotherapy [160].

3.3.4. Tolerability and Drug Interactions

Oteseconazole has been well-tolerated in clinical trials, with the most frequently
reported adverse effects being headache and nausea [160–164]. Most adverse effects were
mild to moderate, and were judged to be unrelated to the study drug. Oteseconazole
does not undergo significant metabolism, and co-administration with other drugs that are
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metabolized by CYP3A4 (midazolam, ethinyl estradiol, norethindrone) or are substrates of
p-glycoprotein (digoxin) did not result in significant differences in the pharmacokinetics of
these agents [160]. These results are consistent with oteseconazole having greater selectivity
for fungal Cyp51 compared to mammalian CYP450 enzymes.

4. New Routes of Administration

In addition to new classes of antifungals with novel mechanisms of action and modifi-
cations to established classes, new formulations of antifungals within established classes
that have different routes of administration are also being developed, including opelcona-
zole and encochleate amphotericin B (MAT2203). Opelconanzole (PC945) is a triazole under
development for administration directly to the lungs via inhalation, thus possibly limiting
systemic exposure [165]. Thus, it may reach high pulmonary concentrations at the site
of infection of fungi while possibly avoiding drug–drug interactions and adverse effects
that occur primarily within the liver. Opelconazole has broad-spectrum activity against
Candida species, including C. albicans, C. glabrata, C. krusei, and C. auris; Cryptococcus species;
several Aspergillus species, including A. fumigatus and A. flavus; and Rhizopus arrhizus [166].
However, it lacks activity against other fungal pathogens, including A. niger, Lichtheimia
corymbifera, and certain Penicillium species (i.e., P. chrysogenum and P. citrinum). Studies in
humans have been limited, but opelconazole has been well-tolerated following inhaled
administration to healthy individuals and those with mild asthma [165].

MAT2203 is a nanoparticle-based, encochleated formulation of amphotericin B that is
under development for oral administration of this polyene. As with other amphotericin B
formulations, MAT2203 binds to ergosterol within the fungal cell membrane, leading to
membrane disruption. Amphotericin B has broad-spectrum activity, and MAT2203 was
reported to have dose-dependent activity in different organs in a murine model of systemic
candidiasis [167]. In humans, measurable bloodstream concentrations have been reported
following oral administration of MAT2203, and the agent was well-tolerated at doses up to
800 mg/day [168].

5. Conclusions

Currently, there are several antifungals in development for the treatment of invasive
mycoses, with some in late-stage clinical trials. These include agents within new classes
with novel mechanisms of action and pharmacodynamics (i.e., manogepix, olorofim, ATI-
2307, and GR-2397) that demonstrate in vitro and in vivo activity against strains that have
developed resistance to azoles and the echinocandins, as well as species that are intrinsically
resistant to most clinically available antifungals. Others include those with the same or
similar mechanisms of action of clinically available antifungals, but that have been modified
to improve their pharmacokinetic profile (i.e., rezafungin), allow for oral administration
(i.e., ibrexafungerp, MAT2203), are delivered directly to the lungs (opelconazole), or have
reduced potential for clinically significant drug–drug interactions and adverse effects (i.e.,
oteseconazole). Each of these agents has the potential to improve clinical outcomes and
expand options available to clinicians for the treatment of invasive mycoses.
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