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The development of monocytes in bone marrow is a complex process with

multiple steps. We used RNA-seq data to analyze the transcriptome profiles in

developing stages of monocytes, including hematopoietic stem cells (HSCs),

common myeloid progenitors (CMPs), granulocyte–monocyte progenitors

(GMPs), and monocytes. We found that genes related to potassium and other

cation transmembrane activities and ion binding were upregulated during the

differentiation of HSCs into CMPs. Protein transport and membrane surface

functional molecules were significantly upregulated in the GMP stage. The

CD42RAC and proteasome pathways are significantly upregulated during the

development of HSCs into monocytes. Transcription factors Ank1, Runx2,

Hmga2, Klf1, Nfia, and Bmyc were upregulated during the differentiation of

HSCs into CMPs; Gfi1 and Hmgn2 were highly expressed during the

differentiation of CMPs into GMPs; Seventeen transcription factors including

Foxo1, Cdkn2d, Foxo3, Ep300, Pias1, Nfkb1, Creb1, Bcl6, Ppp3cb, Stat5b, Nfatc4,

Mef2a, Stat6, Ifnar2, Irf7, Irf5, and Cebpb were identified as potentially involved in

the development of GMPs into monocytes in mice and humans. In metabolism

pathway regulation, HSCs have high glucose, lipid, and nucleic acid metabolism

activities; CMPs mainly up regulate the TCA cycle related genes; and GMPs have

extremely active metabolisms, with significantly elevated pentose phosphate

pathway, TCA cycle, histidine metabolism, and purine metabolism. In the

monocyte phase, the tricarboxylic acid (TCA) cycle is reduced, and the

anaerobic glycolysis process becomes dominated. Overall, our studies offer

the kinetics and maps of gene transcriptional expressions and cell metabolisms

during monocyte development in bone marrow.
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Introduction

Monocytes/macrophages play an important role in the host’s

innate immune defense and regulate adaptive immunity in many

respects. The development of CD11b+CD115+Ly6G- monocytes

from Lin−Sca-1+c-Kit+CD150+ hematopoietic stem cells (HSCs) is a

precisely regulated multiple stepwise developing process, mainly

including the differentiation of HSCs into Lin−Sca-1−IL7Ra-c-

Kit+CD150−CD34+FcgRlow common myeloid progenitors

(CMPs), Lin−IL7Ra-Sca-1−c-Kit+CD150−CD34+FcgRhigh

granulocyte-monocyte progenitors (GMPs), and finally into

monocytes in bone marrow in steady state (1–3). It is well known

that monocyte development and survival in mice are tightly

dependent on colony-stimulating factor 1 (CSF1) (4, 5).

Transcription factors such as spleen focus forming virus proviral

integration oncogene Sfpi1 (also known as PU.1) and CCAAT/

enhancer-binding proteins (C/EBPs) play a prominent role in

monocyte differentiation at various stages of commitment (3, 6).

PU.1 directs HSCs to lymphoblastoid progenitor cells (LMPs) and

interacts with GATA-binding protein 1 (GATA1) (7) to inhibit the

differentiation of megakaryocyte-erythroid progenitor cells. C/

EBPa then directs LMPs to the GMP stage while inhibiting

lymphoid development by cross-repressing Pax5 and potentially

other regulators (8, 9). Increased PU.1 activity favors the

mononuclear cell commitment of GMPs. C/EBPa zipper with c-

Jun or c-Fos also contributes to monocyte lineage specification (5).

In addition, interferon regulatory factor (IRF8), Kruppel-like factor

4 (KLF4), GATA2, and Runx1 play crucial roles in the development

of monocytes in bone marrow (10–12). Heterozygous familial or

sporadic GATA2 mutations increase susceptibility to infection,

pulmonary dysfunction, autoimmunity, lymphedema, and

malignancy and gradually lose monocytes through aging (10).

Accumulating studies have significantly uncovered some key

molecular regulators for the differentiation of HSCs into

monocytes, but we still do not have detailed insights into the

roadmap of how the dynamic modulation of the gene

transcription signature shapes the development of HSCs into

monocytes in a whole transcriptional scale. With the emergence

of big data analysis (13–15), we can now integrate all the data from

multiple laboratories to analyze the metabolism and gene network

changes in this development process in a more detailed,

integrative way.

Given the currently available extensive transcriptomic

databases from multiple laboratories all over the world and

our detected RNA-seq data of mouse HSCs, CMPs, GMPs, and

monocytes (13–15), we focus on the integrative analysis of

transcriptome data during mouse monocyte development in

bone marrow in the steady state to identify the key

coordinated regulation of gene transcriptional expressions and

metabolism regulatory networks in each developing stage.

Considering species-specific differences, we also used the

genomewide transcriptional profiling data and ATAC-seq data

of human monocytes and relevant human tumor samples to
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confirm the key alterations of transcriptional networks and

factors identified in mouse samples. We systematically

investigated the dominant genetic pathways during

the differentiation of HSCs into monocytes, identified

“fingerprints” for each cell population and cell-type identity of

developing monocyte lineage, and uncovered additional genes

whose functions have been unrecognized in monocyte

differentiation until now as novel candidate regulators for the

certain stage of HSC differentiation into monocytes in bone

marrow. The present study provided a theoretical basis and the

fundamental principle for understanding the overall intrinsic

transcriptional regulatory network and immunometabolism

during monocyte development in bone marrow in mice

and humans.
Results

Data processing and identification of
gene transcriptional regulation modes
during monocyte development

To analyze the gene transcriptional expression profile

alterations during monocyte development, we first downloaded

all available RNA-seq data of HSCs, CMPs, GMPs, and

monocytes with C57BL/6 (B6) mouse genetic backgrounds

using the well-recognized biomarkers (Supplementary Table 1

and Supplementary Table 2) in NCBI and other web resources.

The collected metadata were systemically analyzed as shown in

Supplementary Figure 1. The data saturation (Supplementary

Figure 2) and the express ion abundance analys i s

(Supplementary Figure 3A) showed good quality in each cell

population. Importantly, the gene expression level in each cell

subset is virtually identical, as evidenced by the low standard

error of each gene, although all the data were collected in

different laboratories around the world (Supplementary

Figure 3B). To further validate these metadata, we observed

the expression patterns of the well-characterized key genes that

mark critical molecular events in monocyte differentiation.

Impressively, the transcriptional expression kinetic alterations

of Lyz, Ep300, Crebbp, Csf2rb, and other well-known marker

genes identified through the collected data were nicely consistent

with the current reports and conclusions (Figure 1A) (2, 5, 16,

17). We then defined expression genes in each cell as TPM>0.1.

Throughout the entire monocyte developmental process, HSCs

express 10758 genes, CMPs express 10525 genes, GMPs express

5982 genes, and monocytes express 9343 genes as detected by

RNA-seq (Figure 1B). The number of the shared genes in all

these cell populations was 5872. The number of genes modulated

at each cell development stage is shown in Figure 1B. The

correlation matrix of each cell sample based on the TPM

values of the expressed genes was clustered into each

subpopulation as defined (Supplementary Figure 4). Principal
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components analysis shows that the gene expression profiles of

all detected samples are highly correlated with the well-known

cell subpopulations, and the developing routine matches well the

developmental process of HSCs into monocytes (Figure 1C).

These analyses collectively indicated the high quality of the

collected metadata from all available resources.

After normalizing read counts data using DEseq2 software to

reduce technical variation and to ensure that the metadata were

comparable in the following assays (18), we screened

upregulated (padj<0.05, log(foldchange)>0) and downregulated

(q-value<0.05, log(foldchange)<0) differential genes in each

monocyte developing stage with DEseq2 software. As

Figure 1D shows, the numbers of the downregulated genes are

remarkably higher than those of the upregulated genes in each

stage during monocyte development in bone marrow. The more

minor gene expression changes occur during the development of

CMPs into GMPs (601 upregulated genes and 1483

downregulated genes), compared with gene expression profile

changes during HSC differentiation into CPMs (1203

upregulated genes and 3430 downregulated genes) and GMPs
Frontiers in Immunology 03
to monocytes (2538 upregulated genes and 3493 downregulated

genes) (Figure 1D). These data indicate that more dramatic gene

transcriptional modulation occurs during the differentiation of

HSCs into CMPs and the differentiation of GMPs into

monocytes, compared with those in the differentiation of

CMPs into GMPs. In addition, remarkably more gene

transcriptions (total 8406 genes) were downregulated than

genes upregulated (total 4347 genes) during the whole process

of HSC differentiation into monocytes (Figure 1D), suggesting

that the gene transcriptional turnoff is the major molecule

alteration event during the differentiation of HSCs into

monocytes in bone marrow.

To confirm the results that the altered gene expressions as

concluded with the large scale of the downloaded data in the

present study were reliable and reproducible, we detected the gene

mRNA expression profiles using the sorted HSCs, CMPs, GMPs,

and monocytes of C57BL/6 mice with the standard cell surface

markers (Supplementary Figure 5) and RAN-seq assays

(Supplementary Table 3). Most of the modulated genes in each

cell subpopulation identified by large data assays were also altered
B C

D

E

F

A

FIGURE 1

Differential gene function analysis and transcriptional regulation modes in mouse monocyte development stages. (A) The Z-score was used to
depict the expression of conclusive molecular and transcriptional factors during mouse monocyte development. (B) Venn plots of mouse HSCs,
CMPs, GMPs, and monocytes expression genes. The expression genes are defined as TPM > 0.1. (C) Population-distance analysis of genes
shown in two principal components (PC1 67.96%, PC2 12.83%). Cell types are color coded, labeled by name, and surrounded by different
ellipses: HSCs, red; CMPs, green; GMPs, blue; monocytes, purple. (D) The bar plot represents differential genetic statistics of mouse monocyte
developmental phases. The bars in darker color represent the RNA-seq data measured in our own laboratory, and the entire master composed
of dark and light bars represents the number of differential genes identified by the downloaded data. (E) Heatmap of upregulated genes in HSCs,
CMPs, GMPs, and monocytes in P53, NF-kappa B, MAPK, mTOR and Foxo signaling pathways. (F) The line chart is the different regulation mode
of expression genes in mouse monocyte development stages.
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similarly in our detected samples (Figure 1D, darker color bars

represent genes detected by our own RNA-seq assays). Thus,

in the following study, our RNA-seq assays also confirmed

the unique gene profiles in each developing stage during the

differentiation of HSCs into monocytes identified by the

metadata analysis.

With the altered gene transcriptional expression profiles

during the development of HSCs into monocytes, we analyzed

whether the transcriptionally modulated genes were enriched in

certain cellular components in the different developing stages

using the DAVID bioinformatics resource (http://david.abcc.

ncifcrf.gov/). Strikingly, the molecular locations in cellular

components of transcriptionally regulated genes were located

differently in different cellular components in certain developing

stages of HSCs into monocytes (q-value<0.01, Supplementary

Figure 6A). During the differentiation of HSCs into CMPs, the

molecules expressed by the downregulated genes are mainly

located in the cell–cell junction, actin cytoskeleton,

proteinaceous extracellular matrix, membrane regions, and

receptor complex; but the expressions of the upregulated genes

are mainly located in centrosome, protein-DNA complex, DNA

packing complex, nucleosome, and mitochondrial matrix.

During the differentiation of CMPs into GMPs, the genes

encoding proteins predominantly located in the cell–cell

junction, actin cytoskeleton, proteinaceous extracellular matrix,

membrane region, postsynapse, synaptic/postsynaptic

membrane, and plasma membrane protein complex are

downregulated, but the gene-encoding proteins located in the

lysosome, lytic vacuole, secretory granule, external side of the

plasma membrane, membrane microdomain/raft, and nuclear-

ER membrane network are upregulated (Supplementary

Figure 6A). During the differentiation of GMPs into

monocytes, most downregulated genes expressed molecules

that are located in ribosomal subunit, cytosolic part, Golgi

apparatus part, nucleolar part, organelle membrane, outer

membrane, peroxisome, oxidoreductase complex, and

proteasome complex, but the upregulated genes mainly express

molecules located in the adherent junction, cell–substrate

junction, nuclear chromatin, and chromosomal region

(Supplementary Figure 6A). It should be noted that many

genes associated with the actin cytoskeleton and membrane

region are downregulated at CMPs and GMPs but are then

upregulated at monocyte stages (Supplementary Figure 7A).

Genes expressing proteins located in lysosomes are constantly

upregulated throughout the entire differentiation process of

HSCs to monocytes (Supplementary Figure 7B), indicating

that the gain of the lysosomal system, which is an important

organelle for many immune functions, is a consecutive

endowing process. The genes related to enzymes are

upregulated in GMPs, whereas those expressing lysosomal

membrane proteins are upregulated in monocytes. The

transcriptionally upregulated gene expression profile may be
Frontiers in Immunology 04
associated with the gradual endorsement of the immune and

inflammatory function by monocytes/macrophages (19).

The data were also analyzed using KEGG (http://kobas.cbi.

pku.edu.cn/) pathway analysis (q-value<0.01). The results

indicate that the signaling pathway changes may play

complicated roles in monocyte development (Supplementary

Figure 6B) (20, 21). The following section discusses the detailed

signaling pathway changes during monocyte development.

There is a significant change in the peroxisome in

GMPs and ubiquitin-mediated proteolysis in monocytes

(Supplementary Figure 6B). Signal pathways such as Rap1 and

focal adhesion (22–24) are significantly downregulated during

the differentiation of HSCs to CMPs. However, pathways such as

PI3K-Akt, Rap1, RAS, mTOR, MAPK, NF-kB, cGMP-PKC,

cAMP, calcium, and FcgR-mediated phagocytosis are

upregulated in the differentiation stage of GMPs to monocytes

(Supplementary Figure 6B). We found that the P53, VEGF, NF-

kappa B, mTOR, MAPK, and FOXO signaling pathways are

upregulated mainly during the differentiation of HSCs to

monocytes (Figure 1E). Max has been reported to enhance cell

proliferation, differentiation, and inflammation (25). Genes c-

IAP1/2, c-FLIP, uPA, Bcl-6, Casp8, and CyclinD regulate cell

survival and apoptosis (26, 27). To see the regulatory pathways

of cell cycle and apoptosis during monocyte development, we

analyzed the enrichment of cluster3 and cluster6 genes of cell

cycle and apoptosis-related pathways shown in Figure 1F. The

results showed that BCL6 (28), c-FLIPL, and caspase8 were

elevated during monocyte development (Figure 1F and

Supplementary Figures 8, 9). Caspase 8 highly expressed in

monocytes may upregulate the mitochondria-regulated

apoptosis. Meanwhile, it is reported that caspase-8 is cleaved

in middle or late G1 phase, while caspase-3 is activated in late G1

or early S phase (29, 30). We speculated that the upregulation of

these cell cycle regulatory genes and genes such as caspase-8 also

indicated the elevated G1-S cell cycle process.

The gene transcriptional expression profile in each cell is

elaborately adjusted during cell differentiation. This unique profile

shapes the cell’s fate decision, differentiation direction, and

functional polarization (2, 5, 31, 32). We thus performed TCseq

to analyze the quantitatively and differentially regulated gene

expression modes during monocyte development (33–36). The

trend of gene changes during monocyte development can be

divided into 8 types (highly expressed genes in HSCs, highly

expressed genes in CMPs, significantly upregulated or

downregulated genes in GMPs, significantly upregulated or

downregulated genes in monocytes, and constantly

downregulated genes) when analyzed at k=8 (Figure 2D). To

determine whether there were genes exclusively expressed,

particularly cell populations during differentiation of HSCs into

monocytes in bone marrow, we then identified the highest gene

transcriptional expressions in each cell population during

differentiation of HSCs to monocytes. It is interesting that 1135
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and 975 genes were expressed in HSCs and monocytes at the

highest transcriptional levels, respectively, whereas only 122 and

112 genes were expressed in CMPs and GMPs at the highest

transcriptional levels, respectively (Supplementary Figure 10). In

contrast, 495 and 739 genes were selectively expressed in HSCs

and monocytes at the lowest transcriptional levels, respectively,

whereas only 125 and 65 genes were expressed in CMPs and

GMPs at the lowest transcriptional levels, respectively

(Supplementary Figure 10). More genes were expressed in HSCs

and monocytes at the highest and lowest levels than in CMPs and

GMPs, indicating that HSCs and monocytes are more

transcriptionally active and express more widely diverse genes

than CMPs and GMPs, which is consistent with the previous

report (37).
Glucose and nucleic acid
metabolism modes in different stages
of monocyte development

The KEGG analysis showed that metabolic changes were one

of the obvious characteristics of monocyte development

(Supplementary Figure 11). The heatmap and KEGG assays
Frontiers in Immunology 05
showed that the cell metabolism pathways, including glucose,

nucleic acid and fatty acid metabolism, greatly shifted during

HSC development into monocytes as indicated by the

distinctively regulated cell metabolism-related genes in

different developing cells (Figure 2A and Supplementary

Figure11). With the Metscape metabolism network analysis,

we found that HSCs have high levels of glucose metabolism

and are composed mainly of pentose phosphate pathway,

glycolysis, and gluconeogenesis (Figure 2B, Supplementary

Figure 11 and Supplementary Table 6). Genes related to

glucose metabolic activity especially glycolysis and

gluconeogenesis are downregulated during differentiation of

HSCs to CMPs, but TCA cycle related genes, such as pyruvate

kinase (Pklr), Acetate coA ligase (Acss1) were simultaneously

upregulated (Figure 2C). Consistent with our present analysis

(Figures 2B, C), Hannah A. Pizzato (38, 39) et al. found that

HSCs usually rely on glycolysis to remain quiescent, but

glycolysis process decreases and oxidative phosphorylation

increases during cell differentiation. In addition to the

significantly upregulated expressions of glycolytic pathway-

relevant genes, such as Ldhb, Ldhc, Me1, Galm, Aldh1b1,

Aldh3b1, Rrps1l1, Fbp1, Pgd and Rpe and the tricarboxylic

acid cycle (TCA)-related key genes, such as succinate-CoA ligase
B C D

A

FIGURE 2

Metabolism changes during mouse HSC differentiation to monocytes. (A) Heatmap of glucose metabolism, nucleic acid metabolism and fatty
acid metabolism-related genes based on their TPM values. The metscapes of the upregulated (B) and downregulated (C) genes in the
metabolism networks of pentose phosphate pathway, glycolysis, and gluconeogenesis in mouse HSCs, CMPs, GMPs, and monocytes. (D) The
regulated genes in pyrimidine metabolism and purine metabolism during monocyte development.
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(Suclg1 and Suclg2), succinate dehydrogenase (Sdhd), malate

dehydrogenase (Mdh2) and isocitrate dehydrogenase (Idh3a),

are highly expressed in GMPs, supporting that the metabolisms

of pentose phosphate and aerobic glycolysis are the main

metabolic pathways in GMP stage (Figure 2C), which is also

supported by the report that the metabolism of pentose

phosphate was upregulated during the cell cycle and cell

proliferation (Supplementary Figure 13) (40). However, the

genes related to the TCA cycle, such as Ilh2, Mdh2, Idh3a,

Suclg1, Suclg2, Sdhd, and Aco2, are decreased, whereas genes

involved in gluconeogenesis and the glycolysis process, such as

Aldh2, Aldh3a2, and Hk2, are upregulated during the

differentiation of GMPs into monocytes, indicating that the

glycolysis process gradually shifts to the carbohydrate

metabolism with the differentiation of HSCs into monocytes

(Figure 2C and Supplementary Figure 11). Thus, distinctive

energy supply strategies may be employed in different stages of

HSCs’ development into monocytes.

Nuclear acid metabolism is also important for cell metabolism

in many respects. We found that genes involved in pyrimidine

metabolism and purine metabolism are significantly upregulated

during the differentiation of HSCs into CMPs (Supplementary

Figure 11). But lipid metabolism and nucleotide metabolism are

significantly upregulated during the development of CMPs to

GMPs (Supplementary Figure 12), especially histidine metabolism

(Aldh3b1, Aldh1b1, and Hdc) and purine metabolism (Xdh,

Atp6v1b2, Adssl1, Gda, Atp6v1a, and Atp6v1e1) pathways,

which are upregulated in this process (Supplementary

Figures 11, 14). However, both pyrimidine metabolism and

purine metabolism are significantly downregulated during the

GMPs’ differentiation into monocytes (Figure 2D). It is well

known that pyrimidines and nucleic acids form five bases of

DNA and RNA and that pyrimidine metabolism is important for

the synthesis of DNA and RNA. Purine is a component of nucleic

acid molecules involved in the formation of purine nucleotides

and a main energy form of cells (ATP and ADP). It plays an

important role in many signal pathways triggered by various cell

membrane receptors (cAMP and cGMP) to support cell

proliferation and differentiation (41). Thus, the dynamic and

distinctive alterations of nucleotide metabolisms, including

purine metabolism and pyrimidine metabolism, indicate that

these metabolic pathways may affect play different roles in

different developing phases of monocytes.
Aqp1 may be a potential cell surface
marker for a subset of CMPs

To identify the potential new cell surface biomarkers for

certain cell subsets during HSC differentiation into monocytes,

we collected the membrane genes that are highly expressed in

certain cell subsets by gene ontology (GO) analysis and then

selected the genes expressed on the cell surface (Figures 3A–C).
Frontiers in Immunology 06
We found that transport cytoskeleton and ATPase genes

(Ap2a1, Ptk2b, Ap2m1, and Slc2a3), ion channel-related

genes (Atp1a1, and Gabrr1), and G protein-related genes

(Gnai3, Tnk2, and Gnb4) are highly expressed in HSCs

(Supplementary Figure 15A). The energy production-related

and protein transport-related genes (Aqp1, Gna14, and

Rtn4rl1) are selectively and highly expressed in CMPs

(Figure 3D). Aqp1 is a molecular water channel and non-

selective cation channel protein. Gna14 (Guanine nucleotide-

binding protein subunit alpha-14) serves as modulators or

transducers in various transmembrane signaling systems (42).

Thus, these genes may play a role in CMP differentiation, which

must be demonstrated with genetic approaches. We identified

genes Cdh1, App, and Gpc1 expressing proteins located on the

cell surface membrane that are highly expressed in GMPs

(Figure 3D). The membrane-related genes Atp1b3, Lat2,

Fcer1g, Lyn, Itgb2, Ahnak, Itgam, Cbi, Nfam1, Dnm2, Iqgap1,

Lrp1, Atp2b1, Crk, Adrb2, Capn2, Fnbp1, and Bmpr2 are highly

expressed in monocytes. These results and regulated genes in

certain developing stages of monocytes were verified by our

RNA-seq data (Supplementary Figure 15B). Considering the

shortage of specific biomarkers for CMPs, we thus checked the

protein expressions of these molecules on CMPs using

commercially available mAbs. But we only got the antibody

for mouse Aqp1 to allow us to detect the protein expression of

Aqp1 on the cell surface. As shown in Figure 4E, Aqp1 protein is

selectively expressed on a fraction of CMPs and then

downregulated in GMPs, whereas monocytes are negative for

Aqp1 expression as determined by flow cytometry (Figure 3E).

However, there was no difference in the differentiation function

of Aqp1+CMPs andAqp1-CMPs (Supplementary Figures 16A–C).

At the same time, we sorted CMPs with high Aqp1 expression

and cultured them with MCSF (25ng/ml) for 0,1,2 and 4 days.

And found that the expression of Aqp1 gradually decreased with

the cell development process (Supplementary Figure 16D). Thus,

our sequencing data and flow cytometry data demonstrated that

Aqp1 is highly expressed in CMPs but is gradually downregulated

and finally turned off in monocytes.
Gene transcriptional characterization of
CMPs and GMPs

We analyzed the gene transcriptional expressions highly

regulated in CMPs (cluster 7, Figure 1F). Through KEGG

analysis, we found that the genes highly expressed in CMPs

were significantly enriched in the ion binding as well as

hemopoiesis (Figure 4A; Supplementary Figure 17). We found

that the potassium-binding and other ion transport genes were

upregulated in CMPs by GO enrichment analysis. We then

used these upregulated ion transport-related genes in CMPs for

molecular network analysis and found that they predominantly

regulated multiple pathways such as integrin binding,
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proliferation, extracellular matrix organization, and ATPase

activity (Figure 4B). Fms-related tyrosine kinase 3 (FLT3) is a

cell surface receptor expressed by various hematopoietic

progenitor cells (43). From the network, we found that FLT3

is also expressed in the premature progenitor cells of the myeloid

lineage and is highly expressed in the CMP stage (Figure 4B),

which regulates the hematopoietic cell lineage as a

transmembrane receptor protein. In addition, the high

expressions of Atp1b2 and Atp4a genes in the CMP stage

(Figure 4B) may regulate ion transport by ATPase-coupled

ions transmembrane movement. Thus, the significantly

upregulated potassium and other cation transmembrane

activities in CMPs likely drive the differentiation of HSCs into

CMPs, which needs confirmation through genetic approaches in

animal models.

However, we like to identify the key transcription factors

that may predominantly regulate the pathway shifts in CMPs,

using the ENCODE database of NetworkAnalyst (44, 45) with

threshold criteria, including p-value<0.05 and human

homologous genes. We identified 6 highly expressed

transcription factors in CMPs (Figure 4C). Among the

transcription factors specifically expressed in the CMP stage,
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Nfia and Klf1 have been reported as positively correlated with

MegE lineage (46) and play an important role in erythroblast

enucleation (47, 48). Overexpression of Nfia in human bone

marrow progenitor cells attenuates monocyte and granulocyte

differentiation (49). Hmga2 has been reported to promote long-

term engraftment and myeloid erythroid differentiation of

human hematopoietic stem and progenitor cells (50).

Moreover, we found that transcription factors Runx2, Nfia,

Bmyc, and Klf1, highly expressed in CMPs, are closely

associated with ion transport genes (51–55). Through String

network analysis (Supplementary Figure 18), we concluded that

the transcription factors Ank1, Runx2, Nfia, Bmyc, and Klf1 may

regulate CMP development through the regulation of the ion

transport network. Surprisingly, we have discovered Bmyc as a

new potential transcription factor to control the differentiation

of HSCs into CMPs, which has not been reported so far. Bmyc is

a member of the Myc transcriptional regulator family in mice

and has been reported as a transcription factor inhibiting

Myc in vitro (56). By analyzing scATAC-seq data of human

HSCs, CMPs, GMPs and monocytes, we found that the

Runx2 and Hmga2 in mice identified by our analysis also

showed the similar expression trend in human scATAC-seq
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FIGURE 3

Cell membrane proteins selectively expressed in certain stage during mouse HSC differentiation to monocytes development. The dot plot
showing the modulated genes between HSC–>CMP (A), CMP–>GMP (B), and GMP–>monocyte (C) during mouse monocyte development. The
orange color represents the upregulated membrane-related genes, and the green color represents the downregulated membrane-related
genes. (D) Heatmap displaying the selectively upregulated membrane-related genes in mouse HSCs, CMPs, GMPs, and monocytes. (E) The
expression of AQP1 protein on mouse CMPs, GMPs and monocytes as detected by flow cytometry.
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(Supplementary Figure 19) (57).Nevertheless, the functions of

these newly identified transcription factors in CMPs are worthy

of future exploration.

To uncover the modulating characteristics of the gene

transcriptional expression networks during the differentiation

of CMPs into GMPs, we collected those genes transcriptionally

regulated during the differentiation of CMPs into GMPs for

further analysis (Supplementary Figure 20A). After analyzing

the functions of genes downregulated during the differentiation

of CMPs into GMPs, we found that these downregulated genes

are enriched in GTPase-related functions (Supplementary

Figures 20B, C). KEGG and GO functional analysis of genes

upregulated in GMPs showed that genes related to the vesicle,

extracellular region, protein process, infection, and metabolism

are positively regulated during the differentiation of CMPs to

GMPs (Supplementary Figures 21A, B). Many of the

extracellular protein-related genes and membrane receptor

genes, including Slpi, Cst7, Oosp1, Cfd, Hspa5, Rnase12,

Rnase10, Lbp, Gpc1, Creld2, Dmkn, Prom1, Pglyrp1, Fcgr2b,

Srgn, Tslp, Nav2, Fgl2, and Glt1d1, were highly expressed in

GMPs (Figure 4D), which means that extracellular secretion,

intracellular vesicle transport, and intercellular communication

are enhanced in the GMP phase. The ATAC-seq results showed
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that the average accessibility intensity of transcription start site

(TSS) in GMPs is lower than that of CMPs, indicating that the

overall chromatin accessibility is lower in GMPs than in CMPs

(Supplementary Table 4, Figure 4E), which is consistent with the

RNA-seq analysis data showing that more genes are

downregulated during the development of CMPs into

GMPs (Figure 1F).

In identifying which transcription factors play a major role

in the differentiation of CMPs into GMPs, we found that only

two transcription factors are highly expressed in GMPs

(Figure 4F). High mobility family nucleosome binding domain

2 (HMGN2) is a small unique non-histone protein and has

many biological functions, including chromatin structure,

regulation of transcription, and DNA repair (58), which may

affect the nucleotide metabolism (Figure 4F). We further

analyzed the correlation between the elevation of membrane

proteins with the potential downstream transcription factors and

metabolism during the developing process CMPs to GMPs.

Through protein-protein interaction network analysis, we

found that Fcgr2b and Fgl2, which are highly expressed in

GMPs (Figure 4D), may be one of key receptors to stimulate

the transcriptional expression of Gfi1 through Spi1 (Figure 4G)

(59). It is reported that Gfi1 has a positive regulatory effect on
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FIGURE 4

Transcriptional regulatory signatures in CMP and GMP developmental stages. (A) Dot plot of CMP highly expressed genes. The red color
indicates the genes enriched in ion transport, and the blue color indicates the genes enriched in cell development and survival. (B) Network of
ion-transport–related genes, which are highly expressed in mouse CMPs. (C) Selectively high expression of transcription factors in the CMP
stage. (D) Heatmap of genes related to extracellular region part (GO:0005576). (E) The line chart shows the average intensity of TSS in mouse
GMPs and CMPs. (F) High expressions of transcription factors selectively in the GMP stage. (G) Molecular network of membrane receptor-TF-
metabolism regulated network.
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Myc and then regulates the key glycolysis and lactate metabolic

enzymes, such as Ldha, Ldhb, and Idh1 (59). Therefore, we

speculate that the activation of Fcgr2b and Fgl2 receptors

regulates transcription factor Gfi1 and Myc expressions to

increase glycolysis and lactate metabolism during the

development of CMPs to GMPs.
Positively correlated genes during
monocyte development

With these series analyses, we found that many signal

pathways are obviously upregulated and downregulated during

GMP differentiation into monocytes (Supplementary Figure 22A

and Supplementary Figure 23). We then identified which

transcription factors may play an important role in the

differentiation of GMPs into monocytes. Analysis of

transcription factors and regulatory gene networks revealed 19

distinct transcription factors in the pathways that are significantly

upregulated during development of GMPs into monocytes
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(Supplementary Figure 22B). Inflammation, cell migration, and

proteasome are interdependently affected by networks of signaling

pathways through many transcription factors, including Foxo1,

Cdkn2d, Foxo3, Ep300, Pias1, Nfkb1, Creb1, Bcl6, Ppp3cb, Stat5b,

Lef1, Nfatc2, Nfatc4, Mef2a, Stat6, Ifnar2, Irf7, Irf5, and Cebpb

during the development of GMPs into monocytes (Figures 5A, B).

By analyzing with human scATAC-seq data of HSCs, CMPs,

GMPs and monocytes, we found that the transcription factors

Nfkb1, Ep300, Foxo1, Cebpb, Irf5, Mef2a, Irf7, Stat6 and Creb1

also showed the similar changing trend during the development of

GMPs into monocytes (Supplementary Figure 24) (57).

Importantly, a comparison of the key regulated transcription

factors during GMP differentiation into monocytes found that

most of these genes (17/19) show consistent upregulated

expression tendency in mice and humans, except for Nfatc2 and

Lef1, which are decreased in humanmonocytes (Figure 5C). These

data support that these key transcription factors and regulatory

networks in monocytes are highly conservative across species.

To investigate whether the major transcriptional regulation

of those genes in mouse monocyte development is also involved
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FIGURE 5

The significantly upregulated genes in mouse monocyte development. (A) Interaction network of the upregulated transcription factors and
pathways in the differentiation of GMPs to monocytes. Yellow indicates the transcription factors. (B) Heatmap of the upregulated transcription
factors during differentiation of GMPs into monocytes. (C) Heatmap of transcript factors changes in mouse and human HSCs into CMPs, CMPs
into GMPs, and GMPs into monocytes, including human tumor differently expressed transcription factors. (D) GSEA quasi-time series analyses of
genes related to CD42RAC pathway and proteasome pathway in HSCs, CMPs, GMPs, and monocytes. (E) Heatmap of migration-related genes
and immunoproteasome-related genes during mouse monocyte development. (F) Proposed model of the PI3K, CDC42, and RAC1 pathways
related to the cell migration during monocyte differentiation.
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in human monocyte development, we downloaded RNA-seq

data from tumor cells of patients with acute monocyte leukemia

to analyze the expressions of these transcription factors

compared with the healthy monocytes (Supplementary

Table 5). We found that the expressions of these transcription

factors in patients with acute monocyte leukemia are

significantly different in healthy people. The transcript factors

Foxo1, Cdkn2d, Foxo3, Ep300, Pias1, Nfkb1, Creb1, Bcl6,

Ppp3cb, Mef2a, and Irf5 are lower in acute monocyte leukemia

than those of normal human monocytes but that the transcript

factor Nfat4, Ifnar2, Irf7, and Cebpb are higher in acute

monocyte leukemia than those of normal human monocytes

(Figure 5C). These results further indicate that the transcription

factors Foxo1, Cdkn2d, Foxo3, Ep300, Pias1, Nfkb1, Creb1, Bcl6,

Ppp3cb, Stat5b, Nfatc4, Mef2a, Stat6, Ifnar2, Irf7, Irf5, and

Cebpb are potential key factors mastering the normal

differentiation of GMPs into monocytes in mice and humans.

This speculation needs confirmation through future

experimental studies.

The genes that are transcriptionally modified in either

positive way during the differentiation of GMPs into

monocytes are summarized in Figure 5D and Supplementary

Figure 23B. It was reported that the extensive network of

cytoskeletal and extracellular matrix proteins increases during

the developmental progression of myeloid precursor cells, which

may promote adhesion and chemotaxis in pluripotent states

(60). Using time series analysis of gene set enrichment analysis

(GSEA), we found that the pathways that master cell migration

and proteasome are significantly upregulated during GMP

differentiation into monocytes (Figures 5D, E), which may be

beneficial for the maturing monocytes to migrate from bone

marrow to the peripheral blood. The upregulated migration-

relevant genes in monocytes such as Arpc1b, Arpc2, Arpc5, Rac,

and PI3K would increase the migration ability of monocytes

(Figures 5D, E). Meanwhile, the upregulated PDFGR-PI3K-

CDC42/Rac1-Arp pathway (Figures 5D, F) would increase

fiber focal adhesion, filopodium, and lamellipodium to allow

monocytes to gradually acquire migration ability. This

speculation was nicely supported by experimental studies

showing that the PDFGR-Pi3k-CDC42/Rac1-Arp pathway is

involved in the migration of macrophages (61, 62). The

ubiquitin-proteasome pathway plays an important role in

various basic cellular processes. In particular, it plays a key

role in short-lived and regulatory protein degradation, including

regulation of the cell cycle, cell surface receptors, ion channels,

and antigen presentation (63). Obviously, proteasome complex-

related genes such as POMP, PA28a, PA28b, and other genes are
significantly and gradually upregulated during the whole

differentiation process of HSCs into monocytes (Figures 5D,

E). These upregulated genes would greatly help form

immunoproteasome in monocytes, which may subsequently

increase the monocytes’ shearing of the antigen (63).
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Negatively correlated genes during
monocyte development

We analyzed the gene transcriptional expressions that are

significantly downregulated during the differentiation of HSCs

into monocytes. According to the KEGG enrichment p-value, we

divided the enrichment results into 6 clusters (KOBAS: http://

kobas.cbi.pku.edu.cn/genelist/). The results showed that two

functionally related pathways, membrane surface receptors

(Il1r1, Cd59a, Itga2b, Gp9 and Sv2a) and lipid metabolism, are

significantly reduced during the development of HSCs into

monocytes (Figures 6A, B and Supplementary Figure 25). It

has been reported that these continuously downregulated genes

are associated with other hematopoietic cell lineage

differentiation. For example, Il1r1 has been reported to control

neutrophil development (64), CD59 plays an important role in

erythrocyte development (65), and CD41 and CD42 may affect

platelets development (66). Downregulation of these genes

tightly controls the development of HSCs into monocytes and

blocks the differentiation into other cell lineages. On the other

hand, we found that some of the metabolism-related genes are

downregulated during monocyte development (Figure 6C). We

used Metscape to enrich the metabolism-related genes and

found that the genes related to unsaturated fatty acid

metabolism, arachidonic acid metabolism, glycerophospholipid

metabolism, and prostaglandin formation from arachidonate

pathways are downregulated during monocyte development

(Figure 6D). These results suggested that the shutdown of

polyunsaturated fatty acids (PUFAs) might be involved in

monocyte development.
Discussion

In the present study, with the RNA-seq data of mouse and

human HSCs, CMPs, GMPs, and monocytes from the current

NCBI and our own transcriptome sequencing of the sorted cells,

we thoroughly analyzed the relationship between gene

transcriptional networks and the development stages of

monocytes, based on the high homology of mouse and human

genomes (67). With almost 15,000 identified expressing genes,

including more than 3,000 significantly regulated genes, these

data represent a deep analysis comparing HSCs, CMPs, GMPs,

and monocytes. Many genes and gene clusters are

downregulated during the differentiation of HSCs to CMPs,

which may be related to the fact that the genes related to cell

stemness have been shut down during monocyte development

(68). We found that the ion-binding–related genes are

significantly upregulated from HSCs to CMPs. The CD42RAC

pathway and the immunoproteasome pathway are consistently

upregulated during monocyte development to promote the

migration of early developing monocytes from bone marrow
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to the periphery and development of antigen-presenting

functions. The extremely small number of genes upregulated

throughout the developmental phase of HSCs to monocytes

suggests that monocyte development may not be determined by

a specific number of genes across the whole process; instead,

each developmental phase may require different transcriptional

regulation modes during the differentiation of HSCs

to monocytes.

Potassium-related pathways are upregulated during the

differentiation of HSCs to CMPs. The Wnt, Foxo, NF-kb,

mTOR, and PI3K-Akt signaling pathways decrease

significantly in the CMP differentiation into GMP phase,

whereas FcgR-mediated phagocytos i s , phagosome,

Phospholipase D, Foxo, PI3K-Akt, calcium, TNF, VEGF,

mTOR, AMPK, MAPK, and lysosome pathways are

upregulated in the developing phase of differentiation of

GMPs into monocytes (Figure 7). During the development of

CMPs into GMPs, cell membrane-associated genes, especially

those related to cell transport function, are upregulated,

indicating that the vesicle transport function of cells was

significantly increased in this differentiation phase. In addition,

we have analyzed transcriptome data at various stages of
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monocyte development. We can convert the transcription of

monocyte development into eight patterns. Through sequencing

data, we found that membrane-related genes Aqp1, Gna14, and

Rtn4rl1 are selectively and highly expressed in CMPs, whereas

Cdh1, App, and Gpc1 are highly expressed in GMPs. With flow

cytometry analysis, we confirm that Aqp1 was selectively

expressed on the cell surface of CMPs, which may serve as a

surface marker for CMPs in mice. The membrane-related genes

Atp1b3, Lat2, Fcer1g, Lyn, Itgb2, Ahnak, Itgam, Cbi, Nfam1,

Dnm2, Iqgap1, Lrp1, Atp2b1, Crk, Adrb2, Capn2, Fnbp1, and

Bmpr2 are highly and selectively expressed in monocytes. The

biological functions of these genes in monocytes must be

addressed in the future. The transport and secretory function

are significantly increased, and phagosome begins to increase at

the stage at which CMPs develop into GMPs. Thus, the diverse

immune function of monocytes is gained in different

differentiation kinetics during differentiation.

Metabolism regulates monocyte development in many ways.

Glucose, lipid, and nucleotide metabolisms are at a high level in

HSCs (69) (Figure 7). Our analysis showed that HSCs have high

levels of glucose metabolism and are composed mainly of

pentose glycolysis, and gluconeogenesis, whereas CMPs
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FIGURE 6

The significantly downregulated genes in mouse monocyte development. (A) Enrichment network of the upregulated transcription factors and
pathways in the differentiation of HSCs into monocytes. Each node represents an enriched term, and the node color represents different
clusters; the node size represents 6 levels of enriched p-values. (B) Heatmap of the downregulated genes in hematopoietic cell lineage
pathway. (C) Heatmap of the downregulated genes in lipid metabolism-related pathways. (D) Network of consistently downregulated genes
enriched in metabolism pathways.
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downregulate these pathways but upregulate genes in the TCA

cycle pathway. The cell metabolism of GMPs is extremely active,

as indicated by the significantly elevated pentose phosphate

pathway, lipid metabolism, and nucleotide metabolism in

GMPs. In the monocyte phase, the TCA cycle is reduced, and

the anaerobic glycolysis process becomes dominated, indicating

that the glycolysis process gradually shifts to the pentose

phosphate metabolism with the differentiation of HSCs

into monocytes.

Nuclear acid metabolism is also important for cell

metabolism in many respects. The genes involved in

pyrimidine metabolism and purine metabolism are

significantly upregulated during the differentiation of HSCs

into CMPs, and the lipid metabolism and nucleotide

metabolism are significantly upregulated during the

development of CMPs into GMPs. However, both pyrimidine

metabolism and purine metabolism are significantly

downregulated during the differentiation of GMPs into

monocytes. The alterations of nucleotide metabolism indicate

that these metabolic pathways may play different roles in

different developing phases of monocytes.
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Different transcription factors play different important roles

in different stages of monocyte development (Figure 7). Our

analysis showed that Ank1, Runx2, Nfia, Hmga2, Klf1, and

Bmyc are more highly expressed in CMPs than in HSCs,

suggesting that these transcription factors may be involved in

shaping the development of HSCs into CMPs. By comparison

with human scATAC-seq data, we found that most of the stage-

specific transcription factors in mice we analyzed also showed

the same trend in human HSCs, CMPs, GMPs and monocytes

scATAC-seq (57). Fewer transcription factors are upregulated in

the development of CMPs into GMPs, indicating that post-

transcriptional regulatory systems may drive cell development in

this stage. But we found that the regulation of Fcgr2b/Fgl2-Gfi1-

Myc pathway may play an important role in CMPs to GMPs.

Because RNA-seq analysis is performed at the transcriptional

level and changes in post-transcriptional modification or protein

modification cannot be directly detected in the present study, the

roles of the nontranscriptional regulation in this process require

investigation. With the analysis of mouse and human’s RNA-seq

data, we found the transcriptional expressions of transcription

factors Foxo1, Cdkn2d, Foxo3, Ep300, Pias1, Nfkb1, Creb1, Bcl6,
FIGURE 7

Schematic diagram of the major transcriptional regulation during the development of HSCs to monocytes. Most gene transcriptional
expressions related to cell metabolisms, signal pathways, and transcription factors during the differentiation of HSCs into monocytes are
summarized. “-” represents no significant regulation, “↑” represents upregulation, and “↓” represents downregulation.
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Ppp3cb, Stat5b, Nfatc4, Mef2a, Stat6, Ifnar2, Irf7, Irf5, and

Cebpb are consistently increased in the development of human

and mouse GMPs into monocytes. By analyzing the RNA-seq

data of acute monocytic leukemia, we found that the

transcriptional expression of the transcription factors Foxo1,

Cdkn2d, Foxo3, Ep300, Pias1, Nfkb1, Creb1, Bcl6 and Ppp3cb

are reversely downregulated in acute monocytic leukemia

compared with monocytes in healthy individuals. And it is

reported that Foxo1 (70) and Cdkn2d (71) activity is critical

for the maintenance of leukemia. Forkhead box proteins are a

group of transcriptional factors implicated in different cellular

functions such as differentiation, proliferation and senescence

(72) to affect hematopoietic tumor, while EP300 suppresses

leukemia development in myelodysplastic syndromes through

inhibiting Myb (73). It has also been reported that mutations in

the human Ank1 (74, 75), Runx2 (76–79), Nfia (80), Hmga2

(81), and Klf1 (82, 83) genes caused diseases of the

hematopoietic system, such as hereditary spherocytosis, fetal

anemia, myelodysplastic syndrome, and acute erythroleukemia.

The diseases caused by mutations in these genes strongly

support our speculation that the transcription factors Ank1,

Runx2, Nfia, Hmga2, Klf1, and Bmyc may play important roles

in monocyte development. Thus, these newly identified

transcription factors may play important roles in monocyte

development in bone marrow, which is worthy of future study.

Our present studies use the combined all existing RNA-seq

data of HSCs, CMPs, GMPs, and monocytes from different

laboratories throughout the world to perform integrative big

data analysis to perform differential gene analysis using the

DEseq2 application. We found that more than 80% of the

differential genes obtained by integrating the downloaded data

were consistent with the data measured in our laboratory,

supporting the reliability and reproducibility of this analysis

approach. That more differential genes were identified in the

combined data than in our own detected data indicates that the

analysis with the combined data was more sensitive than that

with single lab data, which was possibly due to the increased

sample number. We also know that pre-mRNA splicing is a

critical step in gene expression that results in the removal of

intron sequences from immature mRNA, resulting in mature

mRNA that can be translated into protein. In order to explore

whether the changes at the metabolic and transcriptional levels

we found are related to RNA splicing, we performed RNA

splicing analysis on the raw data by rmats software, and the

results showed that the specific changes in the pathway process

we found may be weakly related to RNA splicing

(Supplementary material-RNA splicing analysis).

In summary, we offered a more comprehensive gene

transcriptional expression profile and regulatory networks for the

differentiation of HSCs into monocytes in mice. We also identified

the potential key transcription factors for certain differentiation

stages in the whole monocyte development process. We believe that
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systemic analysis of RNA-seq data with other big data would

provide a fundamental molecular regulatory map for our

comprehensive understanding of the effect of transcriptional

regulation on mononuclear cell lineage development.
Materials and methods

Mice

C57BL/6 (B6) mice were purchased from the Beijing

University Experimental Animal Center (Beijing, China). All

mice were bred and maintained in specific pathogen-free

conditions. All experimental manipulations were undertaken

in accordance with the Institutional Guidelines for the Care

and Use of Laboratory Animals, Institute of Zoology, Chinese

Academy of Sciences.
Antibodies and flow cytometry

Antibodies to the following were purchased from Biolegend,

eBioscience and Bioss and were used at 1:100-1:400 dilutions:

B220-FITC, CD11b-FITC, CD4-FITC, CD8-FITC, TER-119-

FITC, Gr-1-FITC, SCAL-1-APC-CY7, SCAL-1-percpcy5.5, C-

KIT-PE-CY7, C-KIT-APC, CD16/32-PRE-CY5, CD16/32-PE,

CD150-PE, CD34-Alexa Fluor®700, CD11b-PE-CY5, CD45-

PE-CY7, CD115-PE, LY6G-FITC, rabbit anti-mouse AQP1,

and goat anti-rabbit 488. For flow cytometric analysis of

surface markers, cells were stained with antibodies in PBS

containing 0.1% (w/v) BSA and 0.1% NaN3. For the myeloid

progenitors isolated method, lineage cells were isolated by the

negative selection procedure of magnetic-activated cell sorting

using MS Lineage Panel Biotin (Biolegend) and BD beads

(#559971). MoFlo™ XDP (Beckman) was used to sort HSC

(Lin−Sca-1+c-Kit+CD150+), CMP (Lin−Sca-1−c-Kit+CD150
−CD34+FcgRlow), and GMP (Lin−Sca-1−c-Kit+CD150
−CD34+FcgRhigh) cells. Biotin-CD3e antibody, biotin-TER119

antibody, biotin-CD45R antibody, and biotin-Ly6G antibody

were used with magnetic-activated cell sorting to remove T cells,

B cells, and granular cells, followed by MoFlo™ XDP (Beckman)

to sort monocytes (CD11b+CD45highCD115+Ly6G-).
RNA-seq and ATAC-seq data collection

We used the existing secondary generation sequencing

RNA-seq and ATAC-seq results from the SRA database, which

was specifically developed to collect RNA-seq and ATAC-seq

data, to perform deep analyze the transcriptional profile

alteration during monocyte development in bone marrow. To

ensure that these data were comparable with ours, we used HSCs
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(Lin−Sca-1+c-Kit+CD150+), CMPs (Lin−Sca-1−c-Kit+CD150−

CD34+Fc gR l ow ) , GMPs (L in−Sca -1− c -K i t +CD150−

CD34+FcgRhigh) , and monocytes (CD11b+CD45h igh

CD115+Ly6G-) of B6 mice to perform RNA-seq data assays.
Genomic and annotation
information data

We downloaded the mouse reference genomic sequence

GRCm38 (mm10) from the UCSC database and obtained

mouse gene annotation information from NCBI’s RefSeq data,

Ensembl, and UCSC databases.
RNA-seq raw data processing

The raw data downloaded from the database is stored in

fastq format and contains sequencing quality and sequence

information. We used Perl design procedures to complete the

two-filtering work. The processing of the original data consisted

of two aspects: first, filtering the low-quality reads (Q<20) and,

second, the Solexa platform designs a specific sequence link at

the 5’ end of each sequence at the time of library preparation.

These joints do not exist in the original sequence but can be read

out in the sequencing; therefore, they must be filtered to remove

the linker sequence. Filtering the raw data results in high-quality

read data. To screen out the search data that is positioned on the

genome, we mapped the read data to the mouse mm10 reference

genome using HISAT2 mapping software (84).
RNA-seq data saturation analysis

Based on the total number of readings, we measured 10-14

reads (%) randomly between 0% and 100% of the RNA-seq

reads. They were then mapped to the mouse genome and the

number of corresponding expression genes was examined. The

number of comparative genes is stabilized when the proportional

values are randomly selected. RNA-seq data saturation analysis

can determine whether the transcription amount of each sample

can be saturated. The selected qualified data were used for

comparative analysis of subsequent gene expression profiles.
Extract gene expression data and
differential gene analysis

Select String-tie software was used to construct transcripts

independently for each cell (the mapping result file for each cell

was submitted to String-tie) (84). The gene expression kurtosis
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map was drawn using the R language editor. A comparison was

made of the coincidence of the trend of expression of RNA-seq

data in different cells.

DEseq2 software was used to identify the differentially

expressed genes of HSC–CMP, CMP–GMP, and GMP–

Monocytes (18). We first normalized the data and eliminated

the batch effect. Then, we set p <= 0.05 and log2(foldchange) to a

significant difference in the two cell thresholds. We deleted the

gene that was not fully expressed, thus ensuring that the

resulting difference gene was truly different rather than caused

by inter-laboratory measurement errors. The R language editing

program was used, according to the screening of differences in

genes and genetic trends, to draw the thermal spectrum and

volcanic map and the visual display of individual genes in

different cell expression trends.
Gene ontology, KEGG pathway, and
gene network analysis

GO functional annotation analysis was performed on all cell

differential genes using the DAVID Bioinformatics Resources 6.8

online search tool (https://david.ncifcrf.gov/) (85, 86). KEGG

pathway analysis was performed on all different genes of each

cell using the KOBAS online search tool (http://kobas.cbi.pku.

edu.cn/) (87, 88). The KEGG analysis results were used to

analyze the metabolic pathways, visualized by iPath 3 (https://

pathways.embl.de/ipath3.cgi) and Cytoscape software, using

NetworkAnalyst (http://www.networkanalyst.ca/faces/home.

xhtml) to find the network of proteins and transcription

factors of the target gene (44, 45, 89–92). This network was

then imported into Cytoscape for visualization.
ATAC-seq analysis

Peaks of ATAC-seq were generated by macs2 v2.1.1 (93)

with “-g mm –nomodel –shif -50 –extsize 100” and peak regions

were merged based on their overlap using bedtools, which also

calculated RPKM with multicopy. Normalized (RPKM) ATAC-

seq profile for every regulatory element was calculated by

segmenting a ± 10,000 bp window around its TSS

using Deeptools.
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Ank1 Ankyrin 1

Ap2a1 Adaptor related protein complex 2 subunit alpha 1

Ap2m1 Adaptor related protein complex 2 subunit mu 1

App Amyloid beta precursor protein

Aqp1 Aquaporin 1

Arpc1b Actin related protein 2/3 complex subunit 1B

Arpc2 Actin related protein 2/3 complex subunit 2

Arpc5 Actin related protein 2/3 complex subunit 5

Atp1a1 ATPase Na+/K+ transporting subunit alpha 1

Atp1b2 ATPase Na+/K+ transporting subunit beta 2

Atp4a ATPase H+/K+ transporting subunit alpha

C/EBPs CCAAT/enhancer-binding proteins

Cdh1 Cadherin 1

Cdkn2d Cyclin dependent kinase inhibitor 2D

Cfd Complement factor D

c-Fos Fos proto-oncogene

c-Jun Jun proto-oncogene

CMP Common Myeloid Progenitors

Creb1 CAMP responsive element binding protein 1

Crebbp CREB binding protein

Creld2 Cysteine rich with EGF like domains 2

Csf2rb Colony stimulating factor 2 receptor beta common subunit

DEGs Differentially Expressed Genes

Dmkn Dermokine

EP300 E1A binding protein P300

Fcgr2b Fc fragment of IgG receptor IIb

Fgl2 Fibrinogen like 2

FLT3 Fms related tyrosine kinase 3

Gabrr1 Gamma-aminobutyric acid type a receptor Rho1 subunit

GATA1 GATA-binding protein 1

GATA2 GATA-binding protein 2

Gfi1 Growth factor Independent 1 transcriptional repressor

Glt1d1 Glycosyltransferase 1 domain containing 1

GMP Granulocyte monocyte progenitors

Gna14 G protein subunit alpha 14

Gnai3 G protein subunit alpha I3

Gnb4 G protein subunit beta 4

GO Gene ontology

Gpc1 Glypican 1

GSEA Gene set enrichment analysis

HMGN2 High mobility family nucleosome binding domain 2

HSCs Hematopoietic stem cells

Hspa5 Heat shock protein family A (Hsp70) member 5

HSPC Hematopoietic stem and progenitor cell

Ifnar Interferon alpha and beta receptor subunit 1

Irf5 Interferon regulatory factor 5

Irf7 Interferon regulatory factor 7
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IRF8 Interferon regulatory factor

KEGG Kyoto encyclopedia of genes and genomes

Klf1 Kruppel like factor 1

KLF4 Kruppel-like factor 4

Lbp Lipopolysaccharide binding protein

Lef1 Lymphoid enhancer binding factor 1

LMPs Lymphoblastoid progenitor cells

Lyz Lysozyme

Mef2a Myocyte enhancer factor 2A

Nav2 Neuron navigator 2

Nfatc4 Nuclear factor of activated T cells 4

Nfia Nuclear factor I A

NFkb1 Nuclear factor kappa b subunit 1

Oosp1 Oocyte secreted protein 1

Pglyrp1 Peptidoglycan recognition protein 1

Pi3k Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta

Pias1 Protein inhibitor of activated STAT 1

POMP Proteasome maturation protein

Ppp3cb Protein phosphatase 3 catalytic subunit beta

Prom1 Prominin 1

Ptk2b Protein tyrosine kinase 2 beta

Rac Rac Family small GTPase 1

Rnase10 Ribonuclease a family member 10

Rnase12 Ribonuclease a Family member 12

RNA-seq RNA sequencing

Rtn4rl1 Reticulon 4 receptor like 1

Runx1 RUNX family transcription factor 1

Runx2 RUNX family transcription factor 2

Slc2a3 Solute carrier family 2 member 3

SPI1 Transcription factor PU.1

Srgn Serglycin

Stat5b Signal transducer and activator of transcription 5B

Stat6 Signal transducer and activator of transcription 6

TCA Tricarboxylic acid cycle

Tnk2 Tyrosine kinase non-receptor 2

TPM Transcripts per kilobase of exon model per million mapped reads

Tslp Thymic stromal lymphopoietin
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