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Abstract: (1) Background: As the pandemic months progress, more and more evidence shows that
the placenta acts as a “barrier” to SARS-CoV-2, although rare cases of vertical transmission have
been described. (2) Methods: In an attempt to investigate whether the symptoms’ severity was
related to different placental histological characteristics and the immune microenvironment, we
subdivided 29 placentas from 29 mothers positive for SARS-CoV-2 into two groups, depending on
the symptomatology (moderate/severe vs. asymptomatic/mild), performing immunohistochemical
investigations for CD4 + and CD8 + T lymphocytes, as well as for CD68 + macrophage. We also
evaluated the immuno-expression of the ACE2 receptor at the placental level. These two groups
were compared to a control group of 28 placentas from 28 SARS-CoV-2-negative healthy mothers.
(3) Results: The symptoms (likely to be related to viremia) were statistically significantly correlated
(p < 0.05) with histopathological changes, such as maternal malperfusion, decidual arteriopathy, blood
vessel thrombus of fetal relevance. Furthermore, the immuno-expression of ACE2 was significantly
lower in SARS-CoV-2-positive groups vs. control group (p = 0.001). (4) Conclusions: There is
still much to study and discover regarding the relationship between SARS-CoV-2 and histological
changes in placentas and how the latter might contribute to various neonatal clinical outcomes, such
as prematurity.

Keywords: placenta; SARS-CoV-2; ACE-2; immunohistochemistry; CD4; CD8; RT-PCR; immunopathology

1. Introduction

More than a year and a half after its inception, the severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2) pandemic continues to affect the entire globe, posing new
challenges and new questions, as important pathogenic mechanisms go on being discov-
ered [1,2]. It has now been demonstrated that SARS-CoV-2 can affect different organs,
featuring different manifestations and clinical pictures [3–6]. Surely, the fundamental re-
lationship between pregnancy and SARS-CoV-2 was partially studied at the start of the
pandemic, but it began to be more thoroughly investigated as new evidence came to the
fore [7]. Even if much remains to be understood regarding the materno-fetal (vertical) trans-
mission of SARS-CoV-2, if it does actually occur, a “barrier” role exerted by the placenta
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against potential placental infection, fetal transmission and the development of more or
less overt disease due to SARS-CoV-2 (COVID-19) has been more clearly defined [8].

In the previous work, we illustrated some more frequent features in the placentas of
infected women, in particular, maternal and deciduous thrombosis, increased intervillous
fibrin and, in rare cases, fetal thrombosis [7].

In this work, we take a step forward, attempting to correlate the symptomatology of
SARS-CoV-2-positive mothers with the extent of histopathological changes in the placental
parenchyma. Here, we investigate the possible relationship between the symptoms’ gravity
of SARS-CoV-2-positive mothers and the pattern of histological alterations, and we probe
the ACE2 receptor immune expression.

2. Materials and Methods
2.1. Patients

The study was conducted on 29 placentas from 29 SARS-CoV-2-positive pregnant
mothers followed at the Gynecology and Obstetrics Operative Unit from 31 October 2020
to 31 August 2021, identified through electronic clinical records. They were classified
into two groups, based on the need for admission to the intensive care unit (COVID
intensive care, CIC, vs. COVID not intensive care, CNIC). All women who presented
during labor and delivery underwent testing, along with all neonates, with GeneXpert Dx
Xpress SARS-CoV-2 RT-PCR (Cepheid, Atlanta, GA, USA) [9]. The analytical sensitivity and
specificity of this test are reported by the manufacturers as 100% (87/87 samples) and 100%
(30/30 samples), respectively, with a detection limit of 250 copies/mL or 0.0100 plaque-
forming units per milliliter [10]. Positivity in the SARS-CoV-2 test was an independent
criterion for the histopathologic analysis of the placentas. The clinical information, history
and any medical therapies practiced were retrieved from the electronic medical records
of Gynecology and Obstetrics. Symptoms considered mild included fever, cough, altered
taste, malaise, headache, myalgia or muscle aches but not dyspnoea (breathing difficulties)
or radiologically detectable changes.

Symptoms considered moderate included oxygen saturation (SpO2) equal to or greater
than 94% and/or clinical or radiological evidence of pneumonia. Symptoms considered
severe included SpO2 < 94% or respiratory failure (IR) signs/symptoms. For sampling
of placental lesions, we adhered to the Amsterdam criteria [11], the parameters consid-
ered being: maternal malperfusion, decidual arteriopathy, fetal malperfusion, decidual
inflammation, perivillous fibrin deposition, terminal villous hyperplasia, villous hypervas-
cularization, thrombi in fetal vessels, syncytial nodes. In addition, we evaluated further
placental alterations (not included in the Amsterdam criteria), namely choriamnionitis and
perivillary histiocytosis. In order to study the distribution of immune cells in the groups
under study, immunohistochemical investigations for CD4, CD8, CD68 and ACE2 were
performed.

2.2. Controls

The CIC and CNIC groups were compared with a control group of 28 placentas
from 28 healthy pregnant women with a physiological outcome, selected from historical
controls [7], matched by gestational age and maternal age. All placentas in the control
group were retrieved from birth cohorts prior to the onset of the coronavirus pandemic.
Data were obtained from the electronic archives and from re-reading of the slides.

2.3. Procedure

The placentas were fixed in Formalin buffered at 10%, and photographs of the mater-
nal and fetal surfaces were taken; they were then weighed, sampled and examined along
the cut surface. The samples obtained included 2 rolls of amnio-chorial membrane, at least
2 samples from the umbilical cord, 3 from the maternal surface, 2 full-thickness sections
and representative samples of any lesions present. All samples were subjected to routine
treatment, inclusion, 5 µm sectioning and hematoxylin–eosin staining (H&E). They were
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observed with an Olympus BX-51 Optical Microscope (New York, NY, USA) equipped with
the Olympus DP80 image acquisition system. On each section of the placenta, immunos-
taining with antibody rabbit anti-SARS-CoV-2 spike S1 glycoprotein monoclonal antibody,
Thermofisher (Waltham, MA, USA), rabbit, was performed, as well as antigenic unmasking
heat-induced citrate buffer epitope retrieval, for enzymatic immunohistochemical (IHC)
analysis, at pH 6, diluted 1:800. In addition, immunostaining with anti-CD4 was performed:
mouse monoclonal Ab (mAb), code M7310, (DAKO, Carpinteria, CA, USA), dilution 1:50;
anti-CD8: mouse monoclonal Ab (mAb), code NCLCD8-295, (Novacastra Laboratories
Ltd., Newcastle, UK), dilution 1:50; anti-CD68 (PG-M1): mouse monoclonal Ab (mAb),
code GA613, (Dako Agilent, Santa Clara, CA, USA), dilution 1:100; anti-CD34: mouse
monoclonal Ab (mAb), code QBEnd 10, (Dako Agilent), dilution 1:250. Finally, we used the
anti-ACE2-Receptor: mouse monoclonal Ab (mAb), code ab89111, (Abcam, Cambridge,
UK), dilution 1:250 [12].

The immunohistochemical reactions were evaluated, investigating the cell density for
the CD4 and CD8 markers by counting positive cells in 10 fields (HPF) for each clinical
case, at the level of the intervillous space and the maternal decidua (combined). Each field
was examined at 400× magnification; the size of each field was 140 microns in length by
110 microns in width, the total amplitude of the field being 15,400 microns squared.

Assessment of ACE2-Receptor expression was performed by highlighting the chro-
mogen signal on the cell membrane of maternal decidua [13] using the following score:
grade 0 = no staining; grade 1 = weak staining; grade 2 = moderate staining; grade 3 = in-
tense staining plus the score for the percentage of extension of the mass (score 0: <1%; score
1: 1–25%; score 2: 26–50%; score 3: 51–74%; score 4: >75%). The final score (sum of the
2 previous scores) was considered “High” if >3 vs. “Low” if <3.

All cases were examined independently under double-blind conditions by two pathol-
ogists with expertise in the field of perinatal pathology to confirm the diagnoses.

2.4. Statistical Analysis

A retrospective observational study was conducted on COVID-affected pregnant
women to evaluate whether the gravity of the disease, evaluated by the need for admission
to the intensive care unit, could be a risk factor for placental findings. A group of placentae
randomly selected from a population of pregnancy with a physiological outcome was
employed as the control group. A preliminary description of maternal features in the CIC,
CNIC and control groups was produced. Comparisons of gestational age and placental
weight among groups were performed with one-way analysis of variance (ANOVA) for
independent groups, while the expressions of CD4, CD8, CD68 and ACE2 were compared
among groups using the Kruskal–Wallis test for independent groups, as the Kolmogorov–
Smirnov test showed a non-normal distribution. Post hoc test was employed for multiple
comparisons. Maternal/pregnancy features and placental findings in the three groups
were compared with the chi-square test. The odds ratio with 95% confidence intervals
were calculated to evaluate the risk of specific placental injury in the CIC group compared
to the CNIC group; when OR was not applicable, RR was calculated. To correct for the
potential presence of type I errors induced by multiple testing, all results were corrected for
false discovery rates (FDR) with alpha = 0.05. Quantities are reported as mean ± standard
deviation. Categorical data are reported as frequencies and percentages. Statistical analysis
was performed by means of SAS Software 9.4. (SAS Institute Inc., Cary, NC, USA).

3. Results

The maternal and pregnancy features are reported in Table 1. The mean gestational
period was 35.2 ± 4.4 weeks for the CIC group, 36.9 ± 1.8 for the CNIC group and 38 ± 2 for
the control group, with significant differences in gestational age among the groups (p = 0.02).
Preterm births were more prevalent in the COVID groups compared to controls (p = 0.005).
Among the 29 placentas analyzed, there were no cases of maternal–fetal transmission of



Viruses 2022, 14, 1330 4 of 13

SARS-CoV-2, neither in the intensive care group nor in the non-intensive care group. The
other pregnancy features were equally distributed in the two groups (p > 0.05).

Table 1. Maternal and pregnancy features.

Maternal and Pregnancy
Features

COVID
Intensive Care
(13 Mothers)

COVID non
Intensive Care
(16 Mothers)

Control Group
(28 Mothers)

p
Values

Gestational age (week),
means ± sd 35.2 ± 4.4 36.9 ± 1.8 38 ± 2 0.020

Preterm, n (%) 7 (53.8) 9 (56.2) 4 (14.3) 0.005
Primiparous, n (%) 6 (50.0) • 6 (40.0) • 17 (60.7) 0.420

Cesarean Section, n (%) 9 (81.8) •• 10 (71.4) • § 26 (92.8) 0.180
• presence of 1 missing data, •• presence of 2 missing data, § presence of 1 IVG.

Regarding therapies in the CIC group of patients, one patient underwent heparin
administration, while the remaining received symptomatic therapy with non-steroidal anti-
inflammatory drugs (NSAIDs). Invasive ventilatory therapy was administered in seven
patients, while six patients underwent non-invasive ventilation. In the CNIC group, seven
women were asymptomatic and received no medications, while the remaining women,
with mild symptoms, received symptomatic therapy based on NSAIDs.

The placental findings in the three groups are reported in Table 2. The mean placental
weight was significantly different among the three groups, with lower values observed
in the CIC group (p = 0.02). A higher percentage of maternal vascular malperfusion was
observed in the CIC group compared to the CNIC group and control group (100% vs.
68.7% vs. 38.3%, p = 0.001), and the risk of maternal malperfusion was higher in the CIC
group compared to the CNIC group (RR = 1.5, 95%CI: 1.1–2.2). The same applied for
perivillous fibrin deposition (100% vs. 68.7% vs. 11%, p < 0.001), while the risk of this
placental injury was not significantly higher in the CIC group compared to the CNIC group
(RR = 1.4, 95%CI: 1–2). There were higher percentages of decidual arteriopathy (92.3% vs.
43.7% vs. 3.6%, p < 0.001) and fetal vessels thrombi (92.3% vs. 31.2% vs. 0, p < 0.01) in
the intensive care group compared to the other groups. The risk of decidual arteriopathy,
thromboses and terminal villous hyperplasia was higher in the CIC group than the CNIC
group (O.R. = 15.4; 95%CI: 1.6–149; O.R. = 26.4; 95%CI: 2.6–262; O.R. = 6.9; 95%CI: 1.3–37,
respectively). Instead, no higher risks in CIC than CNIC were observed in terms of fetal
vascular malperfusion (O.R. = 1.4; 95%CI: 0.3–6.3), decidual inflammation (O.R. = 3.3;
95%CI: 0.5–20), villous hypervascularization (O.R. = 3.1; 95%C_I: 0.5–20.6), syncytial nodes
(O.R. = 0.4; 95%CI: 0.06–2.5), chorioamnionitis (O.R. = 0.25; 95%CI: 0.02–2.6) and perivillary
histiocytosis (O.R. = 4.28; 95%CI: 0.7–25). For these placental findings, except for villous
hypervascularization and syncytial nodes, significant differences in both positive groups
were observed vs. the control group.

An example of some of these placental changes is reported in Appendix A (Figure A1).
At immunohistochemistry, all sections of 29 placentas from SARS-CoV-2-positive

mothers and of 28 placentas from control mothers were tested for anti-SARS-CoV-2 S1 spike
protein immunostaining.

Figure 1 shows an example of preparation for immunostaining with anti-SARS-CoV-2
S1 spike protein antibody in placentae from intensive care mothers; note the intense
positivity at the level, mainly, of the syncytiotrophoblast and of the intervillous histiocytes
in the maternal space.
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Table 2. Placental findings in COVID intensive care, COVID not intensive care and control groups.

Placental Finding
COVID Intensive

Care
(13 Placentae)

COVID non
Intensive Care
(16 Placentae)

Control Group
(28 Placentae)

FDR
Corrected p

Values
OR (95%CI)

Weight (grams), means ± sd 445.8 ± 104.9 547.2 ± 100 533 ± 188 0.02 -
Maternal malperfusion, n (%) 13 (100.0) 11 (68.7) 11 (39.3) 0.001 1.5 (1.1–2.2) §
Decidual arteriopathy, n (%) 12 (92.3) 7 (43.7) 1 (3.6) <0.001 15.4 (1.6–148.8)

Fetal malperfusion, n (%) 6 (46.2) 6 (37.5) 0 0.002 1.4 (0.3–6.3)
Decidual inflammation, n (%) 11 (84.6) 10 (62.5) 0 <0.001 3.3 (0.5–20.3)

Perivillous fibrin deposition, n (%) 12 (100.0) • 11 (68.7) 3 (11) <0.001 1.4 (1–2) §
Terminal villous hyperplasia n (%) 8 (61.5) 3 (18.8) 5 (17.9) 0.01 6.9 (1.3–37.2)
Villous hypervascularization, n (%) 4 (30.8) 2 (12.5) 12 (42.9) 0.11 3.1 (0.5–20.6)

Thrombi in fetal vessels, n (%) 12 (92.3) 5 (31.3) 0 <0.001 26.4 (2.6–262)
Syncytial nodes, n (%) 2 (15.4) 5 (31.3) 14 (50.0) 0.10 0.4 (0.06–2.5)

Chorioamnionitis, n (%) 1 (7.7) 4 (25.0) 0 0.02 0.25 (0.02–2.6)
Perivillary histiocytosis, n (%) 11 (84.6) 9 (56.3) 5 (17.9) <0.001 4.3 (0.7–25)

O.R. or RR(§) were calculated to evaluate the risk of specific placental findings in CIC vs. CNIC’; FDR correction
refers to comparisons of proportions and RR results. • presence of 1 missing data.
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bar: 700 µm). (B) Detail of box of previous picture of anti-SARS-CoV-2 S1 spike protein positivity 
(Immunohistochemistry, Original Magnification: 20×, scale bar: 350 µm) (red arrows indicate SARS-
CoV-2-positive histiocytes). (C) Immunohistochemical negative control of a placenta from a 
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µm). 
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are represented in Figure 6A–D. No significant differences were observed among groups 
for CD4 (p > 0.05) (Figure 6A). A significant difference was observed in CD8 expression 
values between CIC and controls (p = 0.004) but not between CIC and CNIC (p > 0.05) 
(Figure 6B). CD68 expression values were significantly different among groups (p < 0.001), 
and the difference was significant in each pairwise comparison (Figure 6C). ACE2 
expression values for CIC and CNIC were significantly lower vs. controls (p = 0.001) but 
not significantly different between the two SARS-CoV-2 groups (p > 0.05) (Figure 6D). In 
all three groups there was no immunolabeling at the level of extravillous trophoblasts 
(EVT) but only at the level of maternal decidua cells. 

Figure 1. (A) Preparation for immunostaining with anti-SARS-CoV-2 S1 spike protein antibody in
placentae from intensive care mothers (Immunohistochemistry, Original Magnification: 4×, scale
bar: 700 µm). (B) Detail of box of previous picture of anti-SARS-CoV-2 S1 spike protein positivity
(Immunohistochemistry, Original Magnification: 20×, scale bar: 350 µm) (red arrows indicate SARS-
CoV-2-positive histiocytes). (C) Immunohistochemical negative control of a placenta from a negative
SARS-CoV-2 mother (Immunohistochemistry, Original Magnification 4×, scale bar: 800 µm).
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Figure 2A,B shows examples of the presence of CD4 + T lymphocytes in intervillous
space and basal plate from a mother belonging to CIC group.
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Figure 2. Examples of the presence of CD4 + T lymphocytes in intervillous space (A) and basal plate
(B) from a mother belonging to CIC group. Note that, in our analysis, there was no statistically
significant difference (p > 0.05) between the three groups. (Immunohistochemistry for CD4, Original
Magnification 20×, red arrows indicate CD4 positive lymphocytes, scale bar: 350 µm).

Furthermore, Figure 3A,B shows examples of the presence of CD8 + T lymphocytes in
intervillous space (A) and basal plate (B) from a mother belonging to CIC group.
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Figure 3. Examples of the presence of CD8 + T lymphocytes in intervillous space (A) and basal
plate (B) from a mother belonging to CIC group. Note that, in our work, there was statistically
significant difference only between CIC and control group but not between CIC and CNIC group.
(Immunohistochemistry for CD8, Original Magnification 20×, red arrows indicate CD8 positive
lymphocytes, scale bar: 350 µm).

Figure 4 shows examples of immunostaining with anti-CD68 antibody (PGM-1) in
chorionic discs from CIC (A), CNIC (B) and control (C) groups; note the extensive positivity,
more pronounced in the placentas from SARS-CoV-2-positive women of the CIC group
with respect to the other groups. In Figure 4D, the presence of histiocyte–macrophage
elements (CD68 positive) is appreciated both in the intervillous space and at the level of
Hofbauer cells. Figure 4E shows the extensive and widespread presence of CD68 positive
histiocytic elements at the level of the maternal decidua.



Viruses 2022, 14, 1330 7 of 13Viruses 2022, 14, x FOR PEER REVIEW 8 of 14 
 

 

 

 
Figure 4. Examples of immunostaining with anti-CD68 antibody (PGM-1) in chorionic discs from 
CIC (A), CNIC (B) and control (C) groups. ((A), Original Magnification: 4×, scale bar: 700 µm. (B,C), 
Original Magnification: 10×, scale bar: 700 µm). (D) Photomicrograph showing the presence of CD68 
positive histiocytes/macrophages in the intervillous space of a mother’s placenta belonging to the 
CIC group; note that the red arrow indicates the intervillous histocytes (those studied and analyzed 
in our work), while the black arrow indicates the Hofbauer cells (CD68 positive), which make up a 
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CD68 positive histiocytes/macrophages in the basal plate of a placenta from a mother belonging to 
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Figure 5. Examples of immunostaining with anti-ACE2 antibody in chorionic discs from the CIC 
(A), CNIC (B) and control (C) groups (Immunohistochemistry, Original Magnification: 20× (A–C). 
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Figure 4. Examples of immunostaining with anti-CD68 antibody (PGM-1) in chorionic discs from
CIC (A), CNIC (B) and control (C) groups. ((A), Original Magnification: 4×, scale bar: 700 µm. (B,C),
Original Magnification: 10×, scale bar: 700 µm). (D) Photomicrograph showing the presence of
CD68 positive histiocytes/macrophages in the intervillous space of a mother’s placenta belonging
to the CIC group; note that the red arrow indicates the intervillous histocytes (those studied and
analyzed in our work), while the black arrow indicates the Hofbauer cells (CD68 positive), which
make up a population of cells residing within the chorionic villi. (E) Photomicrograph showing the
presence of CD68 positive histiocytes/macrophages in the basal plate of a placenta from a mother
belonging to the CIC group; note the extensive positivity (Immunohistochemistry for CD68, Original
Magnification 40×). Scale bar: 500 µm.

Figure 5 shows examples of immunostaining with anti-ACE2 antibody in chorionic
discs from the CIC (A), CNIC (B) and control (C) groups.
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Figure 5. Examples of immunostaining with anti-ACE2 antibody in chorionic discs from the CIC (A),
CNIC (B) and control (C) groups (Immunohistochemistry, Original Magnification: 20× (A–C). (scale
bar: 400 µm).

CD4, CD8, CD68 and ACE2 expression values in the CIC, CNIC and control groups
are represented in Figure 6A–D. No significant differences were observed among groups for
CD4 (p > 0.05) (Figure 6A). A significant difference was observed in CD8 expression values
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between CIC and controls (p = 0.004) but not between CIC and CNIC (p > 0.05) (Figure 6B).
CD68 expression values were significantly different among groups (p < 0.001), and the
difference was significant in each pairwise comparison (Figure 6C). ACE2 expression values
for CIC and CNIC were significantly lower vs. controls (p = 0.001) but not significantly
different between the two SARS-CoV-2 groups (p > 0.05) (Figure 6D). In all three groups
there was no immunolabeling at the level of extravillous trophoblasts (EVT) but only at the
level of maternal decidua cells.

Figure 6. CD4 (A), CD8 (B), CD68 (C) and ACE2 (D) expression values in the COVID Int. Care (13 patients),
COVID not Int. Care (16 patients) and Controls (28 patients).

4. Discussion

Since the early months of the pandemic, interest in SARS-CoV-2-positive pregnant
mothers has attracted the attention of the scientific community. Although in the first
months only case reports and small case series were available for histopathological and
immunohistochemical analysis, over the ensuing months, efforts to clarify the relationship
between pregnancy, SARS-CoV-2 and possible neonatal outcomes multiplied consider-
ably [14–16]. From the various studies presented in the literature, it would seem that the
neonatal transmission rate of SARS-CoV-2 ranges between 0.5% and about 3%, and it is
now quite clear that positivity for SARS-CoV-2 is distinct from placental infection, which is
again different from vertical transmission [17,18]. No case of maternal–fetal transmission
of SARS-CoV-2 was found in our study.

Various authors, including our group [7,8,14–19], have reported different histopatho-
logical patterns affecting the placental parenchyma in SARS-CoV-2-positive women. It
seems that alterations, such as maternal thrombosis, deciduitis, increased intervillous fibrin,
and, in rare cases, fetal thrombosis, are more commonly found in this patient popula-
tion. Furthermore, there have already been previous attempts to correlate the severity
of the maternal infection with potential placental histopathological changes; in fact, the
concept of “viremia” was applied to try to correlate the amount of virus present in the
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circulation with the possible placental and vertical transmission of the infection [20]. From
the studies examined, it seems that a greater viremia, and therefore symptoms, translates
into a greater risk of vertical transmission and adverse outcomes [21,22]. In this work,
carried out with the aim of identifying any differences in the histopathological patterns of
placental damage among women in intensive care (with severe symptoms) and women not
admitted to intensive care (asymptomatic or with mild symptoms) and the control group
of healthy mothers from the historical archive, we found a statistically significant increased
tendency of vascular maternal malperfusion in the CIC group compared to the CNIC and
control groups, with a significant RR for CIC vs. CNIC. This finding was corroborated by a
similar trend with regard to the deposition of perivillous fibrin, as if greater histological
alterations were found as the viral load and viremia increased, also represented by an
increased quantity of fibrin. Furthermore, the higher percentage of decidual arteriopathy
and a higher frequency of thrombus formation in fetal blood vessels in the CIC group could
be explained by the concept of “uncontrolled activation” of the coagulation cascade by
SARS-CoV-2 (so-called storm cytokine) [23]. From the data in our possession and available
in the literature, it would seem that a pathophysiological process occurs at the placental
level, similar to what is described in the lung; Iba et al. have described in detail the events
of endotheliopathy and coagulopathy that occur at the level of the beds’ vascular of arteries,
veins and capillaries, leading to delineation of the so-called CAC, or both coagulopathies,
from COVID-19 [24–26]. In their paper, Flores-Pliego et al. try to correlate the expression
of some molecules (evaluated with immunofluorescence) to the degree of severity of the
COVID-19 disease. The authors declare that the expression of the von Willebrand factor
increases in the decidua endothelium and in the chorionic villi of the placenta derived
from women with COVID-19, being higher in severe cases; Claudin-5 and VE-cadherin
expression decreased in the decidua and chorionic villi of the placenta of women with
severe COVID-19 but not in those with mild disease. Therefore, these data suggest that
the placentas of women with COVID-19 have a permeable and thrombosed endothelial
condition, sensitive to the severity of the disease [25].

Concerning the study of the immunological substrate in placentas, we found that
CD4 + T cell density was entirely comparable in the three study groups, while there was
a statistically significant difference in terms of CD8 + T lymphocytes in the CIC group
compared to the control group (at the level of maternal decidua and the intervillous
space). This finding could be explained by the possibility that placentas of COVID-positive
mothers with severe symptoms are subject to a greater tendency of chronic villitis, as
recently reported by Bertero L. et al. [27]. This picture could be integrated with a peripheral
CD4 and CD8 immune response deficiency in patients with mild COVID-19 symptoms
compared to patients with moderate/severe symptoms, as reported very recently by
Bukowska-Ośko et al. [28].

Regarding the CD68 marker (PG-M1), the infiltration of intervillous macrophages
(CD68+) in the placentas of mothers in the CIC group was higher compared to the CNIC
and control groups. As also demonstrated by us in the previous work [7], it would seem
that the sensitization of the histiocytes to the viral insult would increase the recall of the
same in the intervillous space (it must be remembered that the Hofbauer cells are positive
for CD68 but should not be counted in the analysis), thus supporting more the electron
microscopy data that demonstrate the presence of virions inside the histiocytes parasitized
by SARS-CoV-2. These data are in agreement with various studies in the literature [29–34],
which reported a greater increase in macrophages, interpreted as an attempt to block
and limit the spread of the virus or as a “side effect” of an inflammatory response on a
dysregulated immune system basis.

Finally, regarding the immunohistochemical expression of ACE-2, an obligatory
premise must be made. Bloise et al. [35] pointed out that ACE-2 and TMPRSS2 are expressed
differently depending on the stage of pregnancy. In particular, they demonstrated that as
the pregnancy progresses, a marked reduction in these two proteins occurs both at the level
of the syncytiotrophoblast and at the smooth muscle, vascular endothelium and maternal
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decidua levels. These data could explain why, in our study, the immuno-expression was
very low in general, and only a mild positivity was retained at the level of the cells constitut-
ing the maternal decidua. On the other hand, a recent paper by Bardon-Faure et al. seems
to contradict this hypothesis, as these authors have described both a continuous positivity
of ACE2 during pregnancy and a positive immunostaining of the immunohistochemistry
in the placentas of SARS-CoV-2-positive mothers [36].

Another interpretation could be provided by the paper by Verma S. et al. [37]; in their
series of cases, they describe a very reduced ACE2 immune expression in the placentas of
SARS-CoV-2-positive mothers, thus suggesting the possibility of a true downregulation
of the receptor in the course of viral infection. Our results seem to be in agreement with
this last interpretation. However, it should be emphasized that these data need to be
confirmed by protein quantification methods, such as the Western blot, as well as by
immunohistochemistry, as performed in our study.

Finally, it seems quite certain that the low incidence rate of maternal–fetal transmission
is due to a “barrier” effect, so that the placenta acts as the ultimate bulwark against
SARS-CoV-2 [38–40]. Similarly, it does not seem that ACE-2, at least in the third trimester
of pregnancy, is able to act as a “gateway” to virions but rather some other receptor,
which has yet to be well characterized. From this point of view, one possibility could
be transmembrane cellular protease serine 2 (TMPRSS2), which, being more strongly
expressed than ACE-2, could act as a “gateway” to SARS-CoV-2 endocytosis [39,41].

Regarding preterm births in the three groups, there is a significant prevalence of early
birth in the SARS-CoV-2-positive groups with respect to control group. Our data further
confirm different previous works that agree in counting preterm birth among the adverse
effects of SARS-CoV-2 infection [40,42,43]. Furthermore, Blitz et al., in a recent paper [44],
clearly demonstrate that women with severe SARS-CoV-2 symptoms are at greater risk of
premature birth of the newborn than cases of asymptomatic infections.

Limitations

The present work was focused on studying the distribution of immune cells on
formaldehyde-fixed and paraffin-embedded (FFPE) samples, a process that may have
created a “wash-out” of cells at the intervillous level. In addition, the study evaluated
a limited number of placentas, and the control group was randomly selected from the
historical archive.

Furthermore, it was not possible to obtain and correlate the histological and im-
munophenotypic data with the ultrasound data, nor to study the profile of maternal
leukocytes. It should also be clarified that it is possible that intensive care per se could have
repercussions on the placentas.

5. Conclusions

There is still much to study and discover regarding the etiopathogenesis mechanisms
of SARS-CoV-2; there is even more to understand about immunopathology and the rela-
tionship between placental parenchyma, virus and host response. Pregnant intensive care
patients show severe alterations of the placenta, which might negatively affect its ability
to support the fetus. Therefore, placental function needs to be closely monitored in the
affected mothers. Whether or not placental malfunction, as indicated by IHC, might lead
to preterm birth, as indicated by our findings, remains to be prospectively examined in a
larger cohort.
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Figure A1. Placental findings in COVID intensive care, COVID not intensive care and control groups
(A) Histological micrograph shows features of a chorionic disc of a SARS-CoV-2 positive placenta.
Note perivillous deposition and morphological characteristics of maternal malpefusion (Hematoxylin-
Eosin, Original Magnification 10×). (B) Detail of previous image shows a vessel with a thrombus in
various stages of organization (Hematoxylin-Eosin, Original Magnification 20×).
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