

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## *N*-Ethyl-2-[1-(2-hydroxy-4-methylphenyl)ethylidene]hydrazinecarbothioamide

#### Brian J. Anderson, Jeffrey R. Hall and Jerry P. Jasinski\*

Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA

Correspondence e-mail: jjasinski@keene.edu

Received 20 May 2014; accepted 26 May 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.070; wR factor = 0.204; data-to-parameter ratio = 27.6.

The title compound,  $C_{12}H_{17}N_3OS$ , crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit. The dihedral angle between the mean planes of the benzene ring and the hydrazinecarbothioamide group are 6.9 (4) and 37.2 (5)° in molecules *A* and *B*, respectively. An intramolecular  $O-H\cdots N$  hydrogen bond is observed in each molecule. This serves to maintain an approximately planar conformation for molecule *A*, but leaves a significant twist between these two groups in molecule *B*. In the crystal, a weak  $N-H\cdots S$  interaction is observed, forming inversion dimers among the *B* molecules and resulting in an  $R_2^2(8)$  motif. These dimers are further interconnected by weak  $N-H\cdots O$  and  $C-H\cdots O$  intermolecular interactions, forming chains along [011].

#### **Related literature**

For the biological activity of thiosemicarbazones, see: Chellan *et al.* (2010). For binding motifs of thiosemicarbazones, see: Lobana *et al.* (2009). For thiosemicarbazones as ligands in catalysis, see: Xie *et al.* (2010). For related structures, see: Anderson *et al.* (2012, 2013a,b).



#### Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{17}N_3OS\\ M_r = 251.34\\ \text{Triclinic, }P\overline{1}\\ a = 7.4253 \ \text{(4)} \ \text{\AA}\\ b = 8.7713 \ \text{(4)} \ \text{\AA}\\ c = 20.7093 \ \text{(11)} \ \text{\AA} \end{array}$ 

 $\begin{array}{l} \alpha = 96.238 \ (4)^{\circ} \\ \beta = 94.400 \ (5)^{\circ} \\ \gamma = 100.177 \ (4)^{\circ} \\ V = 1313.35 \ (12) \ \text{\AA}^{3} \\ Z = 4 \\ \text{Mo} \ K\alpha \ \text{radiation} \end{array}$ 

organic compounds

 $0.28 \times 0.24 \times 0.12 \text{ mm}$ 

 $\mu = 0.24 \text{ mm}^{-1}$ T = 173 K

#### Data collection

| Agilent Eos Gemini diffractometer          | 17011 measured reflections             |
|--------------------------------------------|----------------------------------------|
| Absorption correction: multi-scan          | 8692 independent reflections           |
| (CrysAlis PRO and CrysAlis                 | 5875 reflections with $I > 2\sigma(I)$ |
| RED; Agilent, 2012)                        | $R_{\rm int} = 0.038$                  |
| $T_{\rm min} = 0.693, T_{\rm max} = 1.000$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.070$ | 315 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.204$               | H-atom parameters constrained                              |
| S = 1.09                        | $\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 8692 reflections                | $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ |

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$             | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$      | D - H     | ··A   |
|-----------------------------------------|--------------|-------------------------|-------------------|-----------|-------|
| $O1A - H1A \cdots N3A$                  | 0.84         | 1.85                    | 2.589 (2)         | 146       |       |
| $C10A - H10B \cdots O1B^{i}$            | 0.98         | 2.45                    | 3.406 (3)         | 164       |       |
| $O1B - H1B \cdot \cdot \cdot N3B$       | 0.84         | 1.81                    | 2.545 (2)         | 146       |       |
| $N1B - H1BA \cdots O1A^{ii}$            | 0.88         | 2.36                    | 3.076 (2)         | 139       |       |
| $N2B - H2B \cdot \cdot \cdot S1B^{iii}$ | 0.88         | 2.52                    | 3.320 (2)         | 152       |       |
| Symmetry codes: (i) $-x, -y, -z + 1.$   | -x + 1, -y + | -1, -z + 1;             | (ii) $-x + 1, -y$ | , -z + 1; | (iii) |

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus *et al.*, 2012).; program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2676).

#### References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Anderson, B. J., Freedman, M. B., Millikan, S. P. & Jasinski, J. P. (2013a). Acta Cryst. E69, o1315.
- Anderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013b). Acta Cryst. E69, 011.
- Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, 02982.
- Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). *Eur. J. Inorg. Chem.*, pp. 3520–3528.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). *Coord. Chem. Rev.* **253**, 977–1055.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
- Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647.

# supplementary materials

### Acta Cryst. (2014). E70, o735 [doi:10.1107/S1600536814012203]

# N-Ethyl-2-[1-(2-hydroxy-4-methylphenyl)ethylidene] hydrazine carbothio a mide

## Brian J. Anderson, Jeffrey R. Hall and Jerry P. Jasinski

### 1. Comment

Thiosemicarbazones are a versatile class of ligands that have been studied for their biological activity (Chellan *et al.*, 2010), interesting binding motifs (Lobana *et al.*, 2009), and their use as ligands in catalysis (Xie *et al.*, 2010). We have previously reported the structure of three similar novel thiosemicarbazones (Anderson *et al.*, 2012; Anderson *et al.*, 2013*a*; Anderson *et al.*, 2013*b*). Here, we report the synthesis and crystal structure of a new novel thiosemicarbazone ligand, (I),  $C_{12}H_{17}N_3OS$ .

The title compound, (I), crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig. 1). The dihedral angles between the mean planes of the benzene ring and the hydrazinecarbothioamide group is 6.9 (4)° (N3A/N2A/C1A/S1A/N1A) and 37.2 (5)° (N3B/N2B/C1B/S1B/N1B). An intramolecular O—H···N hydrogen bond is observed serving to maintain an approximately planar conformation in A. However in B there is a significant twist between these two groups. In the crystal, a weak N2B—H2B···S1B intermolecular interaction is observed forming inversion dimers among the B molecules in an  $R_2^2$ [8] motif format (Fig. 2). These dimers are further interconnected by weak N1B—H1BA···O1A and C10A—HH10B···O1B intermolecular interactions (Table 1) forming polymeric chains along [011].

### 2. Experimental

A 25 mL round bottom flask was charged with 0.1986 g (1.428 mmol) of 4'-methylacetophenone, 0.1702 g (1.428 mmol) of 4-ethyl-3-thiosemicarbazide and dissolved in 5 mL of a 1:1 ethanol: water solution and refluxed for 96 hours (Fig. 3). The reaction was allowed to cool to room temperature before dichloromethane (5 mL) and deionized water (5mL) were added, and the organic layer was separated. The aqueous layer was then extracted with an additional 5 mL of dichloromethane. The organic layers were then combined, washed with brine (2 X 5 mL), dried with magnesium sulfate, and the solvent removed in vacuo resulting in an off-white powder. The product was recrystallized from dichloromethane. m.p. 428–431 K.

### 3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH<sub>2</sub>), 0.98Å (CH<sub>3</sub>), 0.88Å (NH) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH<sub>2</sub>, NH) or 1.5 (CH<sub>3</sub>, OH) times  $U_{eq}$  of the parent atom. Idealised Me refined as rotating group. Idealised tetrahedral OH refined as rotating group.



#### Figure 1

ORTEP drawing of (I),  $C_{12}H_{17}N_3OS$ , showing the labeling scheme of molecules A and B with 30% probability displacement ellipsoids.



#### Figure 2

Molecular packing for (I) viewed along the *a* axis. Dashed lines indicate weak N2B—H2B···S1B intermolecular interactions forming inversion dimers among the B molecules in an  $R_2^2[8]$  motif format. These dimers are further interconnected by weak N1B—H1BA···O1A and C10A—HH10B···O1B intermolecular interactions forming polymeric chains along [011].



Z = 4

F(000) = 536

 $\theta = 3.6 - 32.3^{\circ}$ 

 $\mu = 0.24 \text{ mm}^{-1}$ 

Irregular, colourless

 $0.28 \times 0.24 \times 0.12 \text{ mm}$ 

T = 173 K

 $D_{\rm x} = 1.271 {\rm Mg m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 4160 reflections

#### Figure 3

Reaction scheme.

#### N-Ethyl-2-[1-(2-hydroxy-4-methylphenyl)ethylidene]hydrazinecarbothioamide

Crystal data

 $C_{12}H_{17}N_3OS$   $M_r = 251.34$ Triclinic,  $P\overline{1}$  a = 7.4253 (4) Å b = 8.7713 (4) Å c = 20.7093 (11) Å  $\alpha = 96.238 (4)^{\circ}$   $\beta = 94.400 (5)^{\circ}$   $\gamma = 100.177 (4)^{\circ}$   $V = 1313.35 (12) \text{ Å}^3$ 

#### Data collection

| Agilent Eos Gemini                                   | $T_{\rm min} = 0.693, \ T_{\rm max} = 1.000$                              |
|------------------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                                       | 17011 measured reflections                                                |
| Radiation source: Enhance (Mo) X-ray Source          | 8692 independent reflections                                              |
| Graphite monochromator                               | 5875 reflections with $I > 2\sigma(I)$                                    |
| Detector resolution: 16.0416 pixels mm <sup>-1</sup> | $R_{\rm int} = 0.038$                                                     |
| $\omega$ scans                                       | $\theta_{\text{max}} = 32.9^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ |
| Absorption correction: multi-scan                    | $h = -11 \rightarrow 11$                                                  |
| (CrysAlis PRO and CrysAlis RED; Agilent,             | $k = -12 \rightarrow 13$                                                  |
| 2012)                                                | $l = -26 \rightarrow 30$                                                  |
| Refinement                                           |                                                                           |
| Refinement on $F^2$                                  | Primary atom site location: structure-invariant                           |
| Least-squares matrix: full                           | direct methods                                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.070$                      | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.204$                                    | neighbouring sites                                                        |
| S = 1.09                                             | H-atom parameters constrained                                             |
| 8692 reflections                                     | $w = 1/[\sigma^2(F_0^2) + (0.0861P)^2 + 0.5803P]$                         |
| 315 parameters                                       | where $P = (F_0^2 + 2F_c^2)/3$                                            |
| 0 restraints                                         | $(\Delta/\sigma)_{\rm max} = 0.002$                                       |
|                                                      | $\Delta \rho_{\rm max} = 0.66 \text{ e} \text{ Å}^{-3}$                   |
|                                                      | $\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$                  |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|-------------|-------------|-----------------------------|
| S1A | 0.83372 (9) | 0.27257 (8) | 1.00813 (3) | 0.04037 (17)                |

| OlA  | 0.6515 (3)  | 0.23324 (18)  | 0.72182 (8)  | 0.0367 (4)   |
|------|-------------|---------------|--------------|--------------|
| H1A  | 0.6753      | 0.2509        | 0.7625       | 0.055*       |
| N1A  | 0.6804 (4)  | 0.1452 (2)    | 0.89037 (10) | 0.0445 (5)   |
| H1AA | 0.6540      | 0.1539        | 0.8489       | 0.053*       |
| N2A  | 0.8328 (3)  | 0.3978 (2)    | 0.89858 (9)  | 0.0292 (4)   |
| H2A  | 0.8879      | 0.4857        | 0.9220       | 0.035*       |
| N3A  | 0.8001 (3)  | 0.3907 (2)    | 0.83175 (8)  | 0.0264 (3)   |
| C1A  | 0.7795 (3)  | 0.2685 (3)    | 0.92817 (10) | 0.0308 (4)   |
| C2A  | 0.8520 (3)  | 0.5138 (2)    | 0.80405 (10) | 0.0262 (4)   |
| C3A  | 0.8189 (3)  | 0.4995 (2)    | 0.73234 (10) | 0.0244 (4)   |
| C4A  | 0.7229 (3)  | 0.3614 (2)    | 0.69440 (10) | 0.0253 (4)   |
| C5A  | 0.6966 (3)  | 0.3517 (2)    | 0.62696 (10) | 0.0288 (4)   |
| H5A  | 0.6272      | 0.2590        | 0.6027       | 0.035*       |
| C6A  | 0.7694 (3)  | 0.4746 (3)    | 0.59403 (10) | 0.0295 (4)   |
| C7A  | 0.8656 (3)  | 0.6109 (3)    | 0.63058 (11) | 0.0332 (5)   |
| H7A  | 0.9159      | 0.6967        | 0.6091       | 0.040*       |
| C8A  | 0.8889 (3)  | 0.6230(2)     | 0.69794 (11) | 0.0307 (4)   |
| H8A  | 0.9542      | 0.7179        | 0.7218       | 0.037*       |
| C9A  | 0.7471 (4)  | 0.4560 (3)    | 0.52077 (11) | 0.0431 (6)   |
| H9AA | 0.8343      | 0.3935        | 0.5038       | 0.065*       |
| H9AB | 0.7712      | 0.5591        | 0.5056       | 0.065*       |
| H9AC | 0.6213      | 0.4033        | 0.5050       | 0.065*       |
| C10A | 0.9427 (5)  | 0.6663 (3)    | 0.84219 (12) | 0.0476 (7)   |
| H10A | 0.8864      | 0.6808        | 0.8832       | 0.071*       |
| H10B | 0.9271      | 0.7515        | 0.8166       | 0.071*       |
| H10C | 1.0741      | 0.6666        | 0.8518       | 0.071*       |
| C11A | 0.6132 (6)  | -0.0035 (3)   | 0.91371 (15) | 0.0679 (11)  |
| H11A | 0.5281      | 0.0117        | 0.9474       | 0.081*       |
| H11B | 0.7177      | -0.0439       | 0.9338       | 0.081*       |
| C12A | 0.5152 (5)  | -0.1188 (3)   | 0.85797 (16) | 0.0609 (9)   |
| H12A | 0.6030      | -0.1424       | 0.8271       | 0.091*       |
| H12B | 0.4188      | -0.0745       | 0.8358       | 0.091*       |
| H12C | 0.4596      | -0.2149       | 0.8745       | 0.091*       |
| S1B  | 0.27526 (9) | 0.11629 (8)   | 0.50079 (3)  | 0.03846 (17) |
| O1B  | 0.0388 (3)  | -0.00478 (19) | 0.22569 (9)  | 0.0442 (5)   |
| H1B  | 0.0632      | -0.0032       | 0.2661       | 0.066*       |
| N1B  | 0.3440 (3)  | 0.0524 (2)    | 0.37797 (9)  | 0.0328 (4)   |
| H1BA | 0.3114      | 0.0004        | 0.3388       | 0.039*       |
| N2B  | 0.0643 (3)  | -0.0663 (2)   | 0.40373 (9)  | 0.0322 (4)   |
| H2B  | -0.0052     | -0.1076       | 0.4323       | 0.039*       |
| N3B  | 0.0112 (3)  | -0.0985 (2)   | 0.33722 (9)  | 0.0297 (4)   |
| C1B  | 0.2276 (3)  | 0.0313 (2)    | 0.42314 (11) | 0.0302 (4)   |
| C2B  | -0.1110 (3) | -0.2211 (2)   | 0.31448 (11) | 0.0275 (4)   |
| C3B  | -0.1631 (3) | -0.2420 (2)   | 0.24375 (10) | 0.0269 (4)   |
| C4B  | -0.0889 (3) | -0.1338 (2)   | 0.20249 (11) | 0.0304 (4)   |
| C5B  | -0.1424 (3) | -0.1555 (3)   | 0.13613 (12) | 0.0335 (5)   |
| H5B  | -0.0930     | -0.0789       | 0.1099       | 0.040*       |
| C6B  | -0.2666 (3) | -0.2867 (3)   | 0.10702 (12) | 0.0341 (5)   |
| C7B  | -0.3400 (3) | -0.3951 (3)   | 0.14698 (13) | 0.0383 (5)   |

| H7B  | -0.4254     | -0.4858     | 0.1282       | 0.046*      |
|------|-------------|-------------|--------------|-------------|
| C8B  | -0.2904 (3) | -0.3726 (3) | 0.21335 (12) | 0.0350 (5)  |
| H8B  | -0.3441     | -0.4479     | 0.2394       | 0.042*      |
| C9B  | -0.3194 (4) | -0.3111 (3) | 0.03475 (12) | 0.0442 (6)  |
| H9BA | -0.4496     | -0.3057     | 0.0261       | 0.066*      |
| H9BB | -0.2987     | -0.4138     | 0.0166       | 0.066*      |
| H9BC | -0.2443     | -0.2298     | 0.0143       | 0.066*      |
| C10B | -0.1944 (3) | -0.3386 (3) | 0.35613 (12) | 0.0354 (5)  |
| H10D | -0.3220     | -0.3281     | 0.3611       | 0.053*      |
| H10E | -0.1241     | -0.3208     | 0.3992       | 0.053*      |
| H10F | -0.1918     | -0.4440     | 0.3354       | 0.053*      |
| C11B | 0.5237 (4)  | 0.1568 (3)  | 0.38931 (12) | 0.0419 (6)  |
| H11C | 0.6026      | 0.1200      | 0.4227       | 0.050*      |
| H11D | 0.5078      | 0.2634      | 0.4058       | 0.050*      |
| C12B | 0.6130 (6)  | 0.1606 (6)  | 0.32810 (19) | 0.0867 (14) |
| H12D | 0.5308      | 0.1899      | 0.2942       | 0.130*      |
| H12E | 0.6394      | 0.0572      | 0.3141       | 0.130*      |
| H12F | 0.7281      | 0.2373      | 0.3354       | 0.130*      |
|      |             |             |              |             |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | <i>U</i> <sup>23</sup> |
|------|-------------|-------------|-------------|--------------|--------------|------------------------|
| S1A  | 0.0474 (4)  | 0.0438 (3)  | 0.0272 (3)  | -0.0004 (3)  | 0.0005 (2)   | 0.0092 (2)             |
| O1A  | 0.0507 (10) | 0.0243 (7)  | 0.0290 (8)  | -0.0091 (7)  | 0.0076 (7)   | -0.0001 (6)            |
| N1A  | 0.0690 (15) | 0.0318 (10) | 0.0271 (10) | -0.0068 (10) | 0.0037 (9)   | 0.0063 (8)             |
| N2A  | 0.0386 (10) | 0.0245 (8)  | 0.0234 (8)  | 0.0036 (7)   | 0.0032 (7)   | 0.0019 (6)             |
| N3A  | 0.0328 (9)  | 0.0235 (8)  | 0.0227 (8)  | 0.0047 (7)   | 0.0042 (6)   | 0.0019 (6)             |
| C1A  | 0.0380 (11) | 0.0282 (10) | 0.0264 (10) | 0.0050 (9)   | 0.0067 (8)   | 0.0042 (8)             |
| C2A  | 0.0319 (10) | 0.0189 (8)  | 0.0275 (10) | 0.0053 (8)   | -0.0001 (8)  | 0.0018 (7)             |
| C3A  | 0.0279 (9)  | 0.0185 (8)  | 0.0256 (9)  | 0.0031 (7)   | 0.0001 (7)   | 0.0013 (7)             |
| C4A  | 0.0266 (9)  | 0.0202 (8)  | 0.0280 (10) | 0.0015 (7)   | 0.0041 (7)   | 0.0018 (7)             |
| C5A  | 0.0297 (10) | 0.0253 (9)  | 0.0286 (10) | 0.0019 (8)   | 0.0005 (8)   | -0.0024 (7)            |
| C6A  | 0.0342 (10) | 0.0287 (10) | 0.0254 (10) | 0.0069 (9)   | -0.0004 (8)  | 0.0025 (7)             |
| C7A  | 0.0439 (12) | 0.0249 (9)  | 0.0294 (11) | 0.0014 (9)   | -0.0008 (9)  | 0.0075 (8)             |
| C8A  | 0.0395 (11) | 0.0195 (8)  | 0.0307 (11) | 0.0017 (8)   | -0.0022 (8)  | 0.0030 (7)             |
| C9A  | 0.0560 (16) | 0.0437 (13) | 0.0259 (11) | 0.0024 (12)  | -0.0011 (10) | 0.0030 (9)             |
| C10A | 0.080 (2)   | 0.0258 (11) | 0.0280 (12) | -0.0066 (12) | -0.0112 (12) | 0.0026 (8)             |
| C11A | 0.120 (3)   | 0.0359 (14) | 0.0379 (15) | -0.0174 (17) | 0.0104 (17)  | 0.0114 (11)            |
| C12A | 0.079 (2)   | 0.0331 (13) | 0.062 (2)   | -0.0119 (15) | 0.0111 (16)  | 0.0024 (12)            |
| S1B  | 0.0403 (3)  | 0.0435 (3)  | 0.0269 (3)  | -0.0003 (3)  | 0.0034 (2)   | -0.0028 (2)            |
| O1B  | 0.0627 (12) | 0.0257 (8)  | 0.0350 (9)  | -0.0126 (8)  | -0.0058 (8)  | 0.0044 (6)             |
| N1B  | 0.0359 (9)  | 0.0302 (9)  | 0.0274 (9)  | -0.0044 (8)  | 0.0045 (7)   | -0.0021 (7)            |
| N2B  | 0.0342 (9)  | 0.0326 (9)  | 0.0271 (9)  | -0.0002 (8)  | 0.0056 (7)   | 0.0000 (7)             |
| N3B  | 0.0313 (9)  | 0.0275 (8)  | 0.0281 (9)  | 0.0017 (7)   | 0.0014 (7)   | 0.0000 (7)             |
| C1B  | 0.0345 (10) | 0.0262 (9)  | 0.0280 (10) | 0.0023 (9)   | 0.0004 (8)   | 0.0019 (8)             |
| C2B  | 0.0271 (9)  | 0.0222 (9)  | 0.0329 (11) | 0.0047 (8)   | 0.0058 (8)   | 0.0007 (7)             |
| C3B  | 0.0263 (9)  | 0.0211 (9)  | 0.0325 (11) | 0.0043 (8)   | 0.0027 (8)   | 0.0000 (7)             |
| C4B  | 0.0345 (11) | 0.0198 (9)  | 0.0351 (11) | 0.0035 (8)   | 0.0003 (8)   | 0.0011 (8)             |
| C5B  | 0.0361 (11) | 0.0277 (10) | 0.0364 (12) | 0.0070 (9)   | 0.0002 (9)   | 0.0039 (8)             |
| C6B  | 0.0327 (11) | 0.0321 (11) | 0.0370 (12) | 0.0104 (9)   | -0.0016 (9)  | -0.0015 (9)            |

# supplementary materials

| C7B  | 0.0328 (11) | 0.0312 (11) | 0.0442 (14) | -0.0034 (9)  | -0.0032 (9)  | -0.0046 (9)  |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C8B  | 0.0331 (11) | 0.0274 (10) | 0.0412 (13) | -0.0019 (9)  | 0.0038 (9)   | 0.0014 (9)   |
| C9B  | 0.0433 (13) | 0.0496 (15) | 0.0361 (13) | 0.0088 (12)  | -0.0071 (10) | -0.0032 (11) |
| C10B | 0.0385 (12) | 0.0301 (11) | 0.0359 (12) | -0.0005 (9)  | 0.0085 (9)   | 0.0042 (9)   |
| C11B | 0.0397 (12) | 0.0426 (13) | 0.0351 (13) | -0.0111 (11) | 0.0015 (10)  | 0.0010 (10)  |
| C12B | 0.067 (2)   | 0.104 (3)   | 0.067 (2)   | -0.037 (2)   | 0.0288 (18)  | -0.016 (2)   |

Geometric parameters (Å, °)

| S1A—C1A       | 1.669 (2) | S1B—C1B       | 1.681 (2)   |
|---------------|-----------|---------------|-------------|
| O1A—H1A       | 0.8400    | O1B—H1B       | 0.8400      |
| O1A—C4A       | 1.357 (2) | O1B—C4B       | 1.358 (3)   |
| N1A—H1AA      | 0.8800    | N1B—H1BA      | 0.8800      |
| N1A—C1A       | 1.330 (3) | N1B—C1B       | 1.327 (3)   |
| N1A—C11A      | 1.459 (3) | N1B—C11B      | 1.465 (3)   |
| N2A—H2A       | 0.8800    | N2B—H2B       | 0.8800      |
| N2A—N3A       | 1.379 (2) | N2B—N3B       | 1.387 (3)   |
| N2A—C1A       | 1.359 (3) | N2B—C1B       | 1.360 (3)   |
| N3A—C2A       | 1.290 (3) | N3B—C2B       | 1.297 (3)   |
| C2A—C3A       | 1.474 (3) | C2B—C3B       | 1.469 (3)   |
| C2A—C10A      | 1.496 (3) | C2B—C10B      | 1.497 (3)   |
| C3A—C4A       | 1.412 (3) | C3B—C4B       | 1.414 (3)   |
| C3A—C8A       | 1.406 (3) | C3B—C8B       | 1.404 (3)   |
| C4A—C5A       | 1.386 (3) | C4B—C5B       | 1.384 (3)   |
| C5A—H5A       | 0.9500    | C5B—H5B       | 0.9500      |
| C5A—C6A       | 1.389 (3) | C5B—C6B       | 1.388 (3)   |
| C6A—C7A       | 1.390 (3) | C6B—C7B       | 1.394 (3)   |
| C6A—C9A       | 1.501 (3) | C6B—C9B       | 1.500 (3)   |
| C7A—H7A       | 0.9500    | С7В—Н7В       | 0.9500      |
| C7A—C8A       | 1.383 (3) | C7B—C8B       | 1.379 (3)   |
| C8A—H8A       | 0.9500    | C8B—H8B       | 0.9500      |
| С9А—Н9АА      | 0.9800    | С9В—Н9ВА      | 0.9800      |
| С9А—Н9АВ      | 0.9800    | C9B—H9BB      | 0.9800      |
| С9А—Н9АС      | 0.9800    | C9B—H9BC      | 0.9800      |
| C10A—H10A     | 0.9800    | C10B—H10D     | 0.9800      |
| C10A—H10B     | 0.9800    | C10B—H10E     | 0.9800      |
| C10A—H10C     | 0.9800    | C10B—H10F     | 0.9800      |
| C11A—H11A     | 0.9900    | C11B—H11C     | 0.9900      |
| C11A—H11B     | 0.9900    | C11B—H11D     | 0.9900      |
| C11A—C12A     | 1.497 (4) | C11B—C12B     | 1.476 (4)   |
| C12A—H12A     | 0.9800    | C12B—H12D     | 0.9800      |
| C12A—H12B     | 0.9800    | C12B—H12E     | 0.9800      |
| C12A—H12C     | 0.9800    | C12B—H12F     | 0.9800      |
|               |           |               |             |
| C4A—O1A—H1A   | 109.5     | C4B—O1B—H1B   | 109.5       |
| C1A—N1A—H1AA  | 118.1     | C1B—N1B—H1BA  | 118.0       |
| C1A—N1A—C11A  | 123.7 (2) | C1B—N1B—C11B  | 124.01 (19) |
| C11A—N1A—H1AA | 118.1     | C11B—N1B—H1BA | 118.0       |
| N3A—N2A—H2A   | 120.1     | N3B—N2B—H2B   | 121.2       |
| C1A—N2A—H2A   | 120.1     | C1B—N2B—H2B   | 121.2       |

| C1A—N2A—N3A                                             | 119.78 (17) | C1B—N2B—N3B                                           | 117.55 (18) |
|---------------------------------------------------------|-------------|-------------------------------------------------------|-------------|
| C2A—N3A—N2A                                             | 119.35 (17) | C2B—N3B—N2B                                           | 120.16 (18) |
| N1A—C1A—S1A                                             | 123.78 (17) | N1B—C1B—S1B                                           | 123.27 (17) |
| N1A—C1A—N2A                                             | 116.28 (19) | N1B—C1B—N2B                                           | 116.29 (19) |
| N2A—C1A—S1A                                             | 119.91 (16) | N2B—C1B—S1B                                           | 120.44 (17) |
| N3A—C2A—C3A                                             | 117.47 (17) | N3B—C2B—C3B                                           | 116.11 (18) |
| N3A—C2A—C10A                                            | 122.20 (19) | N3B-C2B-C10B                                          | 123.4 (2)   |
| C3A-C2A-C10A                                            | 120.34 (18) | C3B-C2B-C10B                                          | 120.51 (18) |
| C4A—C3A—C2A                                             | 122.63 (17) | C4B—C3B—C2B                                           | 122.56 (18) |
| C8A—C3A—C2A                                             | 120.90 (17) | C8B—C3B—C2B                                           | 121.23 (19) |
| C8A—C3A—C4A                                             | 116.43 (18) | C8B—C3B—C4B                                           | 116.2 (2)   |
| O1A—C4A—C3A                                             | 122.03 (18) | O1B—C4B—C3B                                           | 121.90 (19) |
| O1A—C4A—C5A                                             | 116.98 (17) | O1B—C4B—C5B                                           | 116.80 (19) |
| C5A—C4A—C3A                                             | 121.00 (18) | C5B—C4B—C3B                                           | 121.29 (19) |
| С4А—С5А—Н5А                                             | 119.3       | C4B—C5B—H5B                                           | 119.3       |
| C4A—C5A—C6A                                             | 121.46 (19) | C4B—C5B—C6B                                           | 121.4 (2)   |
| С6А—С5А—Н5А                                             | 119.3       | C6B—C5B—H5B                                           | 119.3       |
| C5A—C6A—C7A                                             | 118.27 (19) | C5B—C6B—C7B                                           | 118.0 (2)   |
| С5А—С6А—С9А                                             | 119.8 (2)   | C5B—C6B—C9B                                           | 120.9 (2)   |
| C7A—C6A—C9A                                             | 121.9 (2)   | C7B—C6B—C9B                                           | 121.1 (2)   |
| С6А—С7А—Н7А                                             | 119.7       | C6B—C7B—H7B                                           | 119.5       |
| C8A—C7A—C6A                                             | 120.64 (19) | C8B—C7B—C6B                                           | 120.9 (2)   |
| C8A—C7A—H7A                                             | 119.7       | C8B—C7B—H7B                                           | 119.5       |
| СЗА—С8А—Н8А                                             | 118.9       | C3B—C8B—H8B                                           | 118.9       |
| C7A—C8A—C3A                                             | 122.15 (19) | C7B—C8B—C3B                                           | 122.2 (2)   |
| C7A—C8A—H8A                                             | 118.9       | C7B—C8B—H8B                                           | 118.9       |
| С6А—С9А—Н9АА                                            | 109.5       | C6B—C9B—H9BA                                          | 109.5       |
| C6A—C9A—H9AB                                            | 109.5       | C6B-C9B-H9BB                                          | 109.5       |
| C6A—C9A—H9AC                                            | 109.5       | C6B—C9B—H9BC                                          | 109.5       |
| H9AA—C9A—H9AB                                           | 109.5       | H9BA—C9B—H9BB                                         | 109.5       |
| H9AA - C9A - H9AC                                       | 109.5       | H9BA—C9B—H9BC                                         | 109.5       |
| H9AB—C9A—H9AC                                           | 109.5       | H9BB—C9B—H9BC                                         | 109.5       |
| $C_{2A}$ $C_{10A}$ $H_{10A}$                            | 109.5       | C2B-C10B-H10D                                         | 109.5       |
| $C_{2A}$ $C_{10A}$ $H_{10B}$                            | 109.5       | C2B $C10B$ $H10E$                                     | 109.5       |
| $C_{2A}$ $C_{10A}$ $H_{10C}$                            | 109.5       | C2B $C10B$ $H10E$                                     | 109.5       |
| $H_{10}A - C_{10}A - H_{10}B$                           | 109.5       | $H_{10}D_{10}C_{10}B_{10}H_{10}F_{10}$                | 109.5       |
| H10A C10A H10C                                          | 109.5       | HIOD CIOB HIOE                                        | 109.5       |
| H10R C10A H10C                                          | 109.5       | HIOE CIOR HIOF                                        | 109.5       |
| $\frac{1110}{110} - \frac{110}{110} + \frac{1110}{110}$ | 109.5       | $\frac{110}{110} - \frac{110}{110} - \frac{110}{110}$ | 109.5       |
| NIA-CIIA-HIIA                                           | 109.7       | NIB-CIIB-HIID                                         | 109.0       |
| NIA-CIIA-HIIB                                           | 109.7       | NIB-CIIB-HIID                                         | 109.0       |
| NIA—CIIA—CIZA                                           | 109.8 (2)   |                                                       | 110.2 (2)   |
| HIIA—CIIA—HIIB                                          | 108.2       | HIIC—CIIB—HIID                                        | 108.1       |
| CI2A—CI1A—HIIA                                          | 109.7       | CI2B—CIIB—HIIC                                        | 109.6       |
| CILA-CILA-HIIB                                          | 109.7       | CI1D CI2D HI2D                                        | 109.6       |
| CIIA—CI2A—HI2A                                          | 109.5       | CIIB—CI2B—HI2D                                        | 109.5       |
| CI1A - CI2A - HI2B                                      | 109.5       | CIIB—CI2B—HI2E                                        | 109.5       |
| UIIA—UI2A—HI2U                                          | 109.5       | UIIB—UI2B—HI2F                                        | 109.5       |
| HI2A—CI2A—HI2B                                          | 109.5       | H12D—C12B—H12E                                        | 109.5       |
| H12A—C12A—H12C                                          | 109.5       | H12D—C12B—H12F                                        | 109.5       |

| H12B—C12A—H12C    | 109.5        | H12E—C12B—H12F    | 109.5       |
|-------------------|--------------|-------------------|-------------|
|                   |              |                   |             |
| O1A—C4A—C5A—C6A   | -177.9 (2)   | O1B—C4B—C5B—C6B   | 177.4 (2)   |
| N2A—N3A—C2A—C3A   | 178.30 (17)  | N2B—N3B—C2B—C3B   | 177.79 (18) |
| N2A—N3A—C2A—C10A  | -1.6 (3)     | N2B—N3B—C2B—C10B  | -3.3 (3)    |
| N3A—N2A—C1A—S1A   | 175.07 (16)  | N3B—N2B—C1B—S1B   | 162.66 (16) |
| N3A—N2A—C1A—N1A   | -6.7 (3)     | N3B—N2B—C1B—N1B   | -18.2 (3)   |
| N3A—C2A—C3A—C4A   | 4.4 (3)      | N3B—C2B—C3B—C4B   | -1.4 (3)    |
| N3A—C2A—C3A—C8A   | -173.1 (2)   | N3B—C2B—C3B—C8B   | 178.3 (2)   |
| C1A—N1A—C11A—C12A | -177.2 (3)   | C1B—N1B—C11B—C12B | -176.4 (3)  |
| C1A—N2A—N3A—C2A   | -179.6 (2)   | C1B—N2B—N3B—C2B   | 160.1 (2)   |
| C2A—C3A—C4A—O1A   | 1.3 (3)      | C2B—C3B—C4B—O1B   | 1.3 (3)     |
| C2A—C3A—C4A—C5A   | -179.14 (19) | C2B—C3B—C4B—C5B   | -179.1 (2)  |
| C2A—C3A—C8A—C7A   | 177.6 (2)    | C2B—C3B—C8B—C7B   | -179.4 (2)  |
| C3A—C4A—C5A—C6A   | 2.6 (3)      | C3B—C4B—C5B—C6B   | -2.1 (3)    |
| C4A—C3A—C8A—C7A   | 0.0 (3)      | C4B—C3B—C8B—C7B   | 0.3 (3)     |
| C4A—C5A—C6A—C7A   | -2.0 (3)     | C4B—C5B—C6B—C7B   | 1.5 (3)     |
| C4A—C5A—C6A—C9A   | 176.5 (2)    | C4B—C5B—C6B—C9B   | -178.2 (2)  |
| C5A—C6A—C7A—C8A   | 0.4 (4)      | C5B—C6B—C7B—C8B   | -0.1 (4)    |
| C6A—C7A—C8A—C3A   | 0.6 (4)      | C6B—C7B—C8B—C3B   | -0.8 (4)    |
| C8A—C3A—C4A—O1A   | 178.9 (2)    | C8B—C3B—C4B—O1B   | -178.4 (2)  |
| C8A—C3A—C4A—C5A   | -1.5 (3)     | C8B—C3B—C4B—C5B   | 1.1 (3)     |
| C9A—C6A—C7A—C8A   | -178.0 (2)   | C9B—C6B—C7B—C8B   | 179.7 (2)   |
| C10A—C2A—C3A—C4A  | -175.7 (2)   | C10B—C2B—C3B—C4B  | 179.7 (2)   |
| C10A—C2A—C3A—C8A  | 6.8 (3)      | C10B—C2B—C3B—C8B  | -0.6 (3)    |
| C11A—N1A—C1A—S1A  | -2.5 (4)     | C11B—N1B—C1B—S1B  | -2.9 (3)    |
| C11A—N1A—C1A—N2A  | 179.4 (3)    | C11B—N1B—C1B—N2B  | 178.0 (2)   |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                                | <i>D</i> —Н | H···A | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|--------------------------------------------------------|-------------|-------|--------------|-------------------------|
| O1 <i>A</i> —H1 <i>A</i> ···N3 <i>A</i>                | 0.84        | 1.85  | 2.589 (2)    | 146                     |
| C10 <i>A</i> —H10 <i>B</i> ···O1 <i>B</i> <sup>i</sup> | 0.98        | 2.45  | 3.406 (3)    | 164                     |
| O1 <i>B</i> —H1 <i>B</i> ···N3 <i>B</i>                | 0.84        | 1.81  | 2.545 (2)    | 146                     |
| $N1B$ — $H1BA$ ···O $1A^{ii}$                          | 0.88        | 2.36  | 3.076 (2)    | 139                     |
| N2B—H2B···S1B <sup>iii</sup>                           | 0.88        | 2.52  | 3.320 (2)    | 152                     |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1.