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Abstract

Antemortem tau positron emission tomography imaging suggests elevated tau

pathology in autosomal dominant versus late-onset Alzheimer’s disease at

equivalent clinical stages, but does not implicate the specific tau pathologies

responsible. Here we made stereological measurements of tau neurofibrillary

tangles, neuritic plaques, and neuropil threads and found compared to late-on-

set Alzheimer’s disease, autosomal dominant Alzheimer’s disease showed even

greater tangle and thread burdens. Regional tau burden resembled that observed

in tau imaging of a separate cohort at earlier clinical stages. Finally, our results

suggest tau imaging measures total tau burden in Alzheimer’s disease, com-

posed predominantly of tangle and thread pathology.

ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited.

2475

https://orcid.org/0000-0001-6698-1268
https://orcid.org/0000-0001-6698-1268
https://orcid.org/0000-0001-6698-1268
mailto:
http://creativecommons.org/licenses/by/4.0/


aThe composition of the DIAN and DIAN-TU

study groups is listed in the Author

Contributions section.

Introduction

Antemortem tau positron emission tomography (PET)

imaging suggests elevated tau pathology in autosomal domi-

nant (ADAD) versus late-onset Alzheimer’s disease (LOAD)

at equivalent clinical stages. Compared to LOAD, ADAD has

shown elevated 18F-flortaucipir1 radioligand binding in pre-

frontal, premotor, and inferior parietal cortices,2 as well as

precuneus and lateral parietal cortices.3 However, PET imag-

ing does not implicate specific tau pathologies responsible.

Previous work quantitatively comparing AD tau pathology

with PET imaging has typically been performed in a single

individual,4,5 and it is not known whether these results gen-

eralize, given the disease heterogeneity of both ADAD6 and

LOAD7. To investigate which tau pathologies contribute to

elevated 18F-flortaucipir binding in ADAD versus LOAD

cohorts, we made stereological measurements of three major

features of AD tau pathology: neurofibrillary tangles, neuritic

plaques, and neuropil threads.

Methods

Protocols for the study have received prior approval by

the local Institutional Review Board of each Dominantly

Inherited Alzheimer Network site. Informed consent was

obtained from each participant.

Cases selected for postmortem study were participants

in the Dominantly Inherited Alzheimer Network (n = 7)

or in studies directed by the Knight Alzheimer Disease

Research Center (n = 10) (Table 1). These individuals

met the inclusion criteria of high AD neuropathological

change8 without comorbid neurodegenerative or vascular

disease.

Neuropathological assessment of cases involved expert

evaluation of histology slides representing 16 brain areas

from the left side of each brain.9 Stereology focused on

tissues sampled in the coronal plane, including the frontal

lobe (middle frontal gyrus), temporal lobe (superior and

middle temporal gyri), parietal lobe (inferior parietal lobe

including angular gyrus), occipital lobe (calcarine sulcus

and peristriate cortex), parahippocampal gyrus, and hip-

pocampal subfield CA1 (both sampled at the level of the

lateral geniculate nucleus). From these regions, stereologi-

cal measurements of PHF-1 (a gift from Dr. Peter Davies)

immunostained tangles, plaques, and threads were made

using the Area Fraction Fractionator probe in Stereo

Investigator 10 (MBF Bioscience, Williston, VT, USA).

In a separate cohort (ADAD n = 14, LOAD n = 35),

antemortem 18F-flortaucipir PET was quantified using

regional standardized uptake value ratios (SUVRs).10

These individuals met the inclusion criteria of having a

Clinical Dementia Rating (CDR�)11 greater than 0; indi-

viduals with LOAD additionally had positive amyloid

PET imaging.12 Regional SUVRs of interest were defined

by FreeSurfer13 regions best corresponding to neu-

ropathology regions: caudal middle frontal cortex, middle

temporal cortex, inferior parietal cortex, pericalcarine cor-

tex, parahippocampal cortex, and hippocampus.

Regional differences across and within ADAD and

LOAD in neuropathology and imaging were assessed

using the Kruskal–Wallis test. Post hoc Wilcoxon rank-

sum tests were performed with Bonferroni–Holm multiple

comparisons correction to assess which regions showed

elevated tau burden in ADAD versus LOAD.

Results

Tangle, plaque, thread burden, and SUVR showed statisti-

cally significant regional differences across ADAD and

LOAD. Only tangle burden and SUVR showed significant

regional differences within ADAD and LOAD as well

(Fig. 1).

Compared to LOAD, tangle burden in ADAD was sig-

nificantly elevated outside the temporal lobe. Patterns of

regional tangle burden resembled those of regional

SUVRs. However, while CA1 is highest in median tangle

burden, the hippocampus has only the third and fourth

highest median SUVR in ADAD and LOAD, respectively

(Fig. 1C&F).

Neuritic plaque burden was elevated in ADAD, but no

post hoc test reached statistical significance after multiple

comparisons correction. Thread burden was elevated out-

side CA1 (Fig. 1B&D).

Discussion

Antemortem tau PET SUVRs and postmortem tangle bur-

den in frontal and parietal regions were elevated in

ADAD versus LOAD. This concordance appears robust at

the group level, even though antemortem imaging and

postmortem neuropathology were assessed in different

cohorts, roughly representing early and late clinical stages

of AD, respectively (Table 1). Additionally, the ADAD

neuropathology cohort demonstrates an earlier age of

onset than the ADAD imaging cohort, suggesting more

aggressive forms of AD pathology in the former.

Given differences in clinical stage and age of onset, it is

not surprising there are also discordant findings. First, in
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ADAD, tangle burden is elevated in the occipital lobe rel-

ative to LOAD, but SUVR is not. Second, medial tempo-

ral lobe regions show some of the highest regional tangle

burden in the neuropathology, but not imaging, cohort.

There are several potential explanations. First, tau burden

may be particularly modest in the medial temporal lobe

at early symptomatic stages of AD, but increase substan-

tially by end stage. Second, PET imaging may have diffi-

culty resolving the tau burden of small brain structures

compared to histopathological assessment. Finally, some

individuals in the imaging cohort may have subtle neu-

ropathological comorbidities that contribute to cognitive

impairment, qualifying an amyloid PET positive case with

low AD neuropathological change (transentorhinal versus

limbic stages of tau pathology) for inclusion in this study.

More discordances between imaging and neuropathol-

ogy come from patterns of regional neuritic plaque and

thread burden. Plaque burden was elevated in ADAD,

though no post hoc test reached statistical significance,

and thread burden was elevated outside CA1. Ringman

et al.14 found statistically significant elevation of plaque

burden in a larger cohort (ADAD n = 60, LOAD

n = 120), but used a semi-quantitative global score for

each individual. We could not find any published studies

comparing levels of neuropil threads between ADAD and

LOAD. We also attribute these discordant findings to dif-

ferences in clinical stage between neuropathology and

imaging cohorts.

Comparing frontal, temporal, and parietal lobe values

suggests tau PET SUVRs may correspond best to total tau

burden (summed contributions from tangles, plaques,

and threads). Similarly, Smith et al.4 found regional

SUVRs correlated best with regional total tau burdens in

a single individual with ADAD. However, that study also

found threads outnumbered tangles in every studied brain

region; we found no significant statistical dominance of

thread over tangle burden in any region in either ADAD

or LOAD.

Given our findings, we can make two conservative

claims. First, although tau PET did not assess individuals

in late stages of AD, and our neuropathologic assessments

focused on very late stages, the regional pattern of ele-

vated tau radioligand binding is largely concordant with

the regional pattern of elevated postmortem total tau bur-

den in ADAD versus LOAD. This suggests regional differ-

ences in tau pathology between ADAD and LOAD are

consistent throughout their symptomatic stages. We pro-

pose that tau PET did not identify the relatively high tau

burdens seen in the neuropathological assessment of CA1

and the parahippocampal gyrus because, at the level of

the lateral geniculate nucleus, these areas develop far

more robust tauopathy only in late stages of AD neu-

ropathological change,15,16 that are more likely to be asso-

ciated with a terminal Clinical Dementia Rating of 3 than

0.5 or 1. In contrast, the entire hippocampus was assessed

in tau PET imaging, which may explain some of the dis-

cordance in this comparison.

Second, like tangle burden, thread burden is elevated in

ADAD versus LOAD, and across more brain regions,

while plaque burden is elevated to a lesser extent. A possi-

ble explanation for greater tangle and thread burden in

ADAD than LOAD might be that LOAD is often a multi-

factorial process, with cerebral small vessel disease, TDP-

43, and other co-pathologies contributing to the clinico-

pathological phenotype such that less AD neuropathologic

change is needed to reach similar states of dementia

severity. That said, enhancement of tangle and thread

burden in ADAD compared to LOAD without an equally

Table 1. Cohort demographics.

Neuropathology cohort Imaging cohort

LOAD ADAD LOAD ADAD

Number 10 7 35 14

Age at visit, years (SD) 74.9 (6.75) 50 (12.5)

Age at onset, years (SD) 63.1 (9.83) 38.4 (4.65) 48.3 (0.83)1

Age at death, years (SD) 73.4 (8.29) 44.9 (7.47)

Female (%) 6 (60%) 4 (57.1%) 19 (54.3%) 8 (57.1%)

MMSE at visit, score (SD) 25.3 (3.88) 21.9 (6.40)

CDR at visit, score (0/0.5/1/2/3) 0.657 (0/26/8/1/0) 0.714 (0/12/1/0/1)

CDR at death, score (0/0.5/1/2/3) 2.75 (0/0/1/0/7) 3 (0/0/0/0/6)

APOE e4 (%) 7/9 (77.8%) 1/7 (14.3%) 22/34 (64.7%) 4/14 (28.6%)

Family Mutation APP/PSEN1/PSEN2 0/7/0 1/12/1

Ab plaque score (A0/1/2/3) 3 (0/0/0/10) 3 (0/0/0/7)

NFT stage (B0/1/2/3) 3 (0/0/0/10) 3 (0/0/0/7)

Neuritic plaque score (C0/1/2/3) 2.9 (0/0/1/9) 3 (0/0/0/7)

1Includes estimated age at onset using expected years to symptom onset (EYO).
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strong enhancement of plaque burden may seem unusual.

One explanation suggests tangles and threads are patho-

physiologically closely linked, with tangles appearing first,

and threads reflecting more severe saturation of neuronal

processes by abnormal tau, whereas neuritic plaques

develop later,16 and reflect more focal disturbances that

leave remaining neuronal cytosol unperturbed. Another

explanation: on sections immunostained for tau, within

areas of very dense threads, plaques are occasionally diffi-

cult to discern, and might be undercounted.

We note the limitations to this study. First, no individ-

uals in our neuropathology cohort had undergone

antemortem tau PET, precluding direct imaging-neu-

ropathology comparisons. Second, regions included in

the neuropathology portion of this study were limited in

number and not perfectly correspondent to those from

tau PET. Third, most ADAD individuals who came to

autopsy were at the end stage of disease. Finally, there is

a difference in age of AD symptom onset between the

imaging and neuropathology cohorts. Earlier ages of

onset appear to be correlated with higher cortical tau

PET signal17–19 and thus there may be a mixed contribu-

tion of mutation and early age of onset to the tau PET

imaging of the ADAD cohort. From the current study,

the tau pathologies responsible for differences observed in

tau PET between ADAD versus LOAD were revealed to

be predominantly neurofibrillary tangles and neuropil

threads. However, our current findings cannot address

how temporal progression of tau pathology in ADAD dif-

fers from that in LOAD (hypothesized to begin in the

brain stem20,21 and suspected to share early-stage distri-

bution in the medial temporal lobe with primary age-re-

lated tauopathy22). Future work can investigate the

temporal progression of AD tau pathology more broadly

by studying the relationship between earlier/later ages of

AD symptom onset and tau pathology. One possibility is

to introduce an early-onset sporadic AD cohort to help

disentangle the contributions of an earlier age of onset

Figure 1. (A) Exemplar PHF-1 immunostained neuropil threads (NT), neurofibrillary tangles (NFT), and neuritic plaques (NP). (B) Regional NT

burden in the frontal lobe (FL), temporal lobe (TL), parietal lobe (PL), occipital lobe (OL), parahippocampal gyrus (PHG), and hippocampal subfield

CA1 in ADAD and LOAD. (C) Regional NFT burden. (D) Regional NP burden. (E) Regional total tau (NT + NFT+NP) burden. (F) Regional 18F-

flortaucipir PET imaging SUVRs. Asterisks denote P-values < 0.05 (*), 0.01 (**), and 0.001 (***) for regionwise Wilcoxon rank-sum tests between

ADAD and LOAD. Only area under the curves (AUCs, the probability that a randomly selected ADAD individual has a higher regional tau burden

than a randomly selected LOAD individual) that are statistically significant after Bonferroni–Holm multiple comparisons correction are displayed.
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form the specific mutations that define the ADAD

cohort.
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