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Abstract. Previous studies have demonstrated that exces-
sive reactive oxygen/nitrogen species (ROS/RNS)-induced 
apoptosis is an important feature of the injury to the lung 
epithelium in paraquat (PQ) poisoning. However the precise 
mechanisms of PQ-induced dysfunction of the mitochondria, 
where ROS/RNS are predominantly produced, remain to be 
fully elucidated. Whether globular adiponectin (gAd), a potent 
molecule protective to mitochondria, regulates the mitochon-
drial function of alveolar type II cells to reduce PQ-induced 
ROS/RNS production remains to be investigated. The current 
study aimed to investigate the precise mechanisms of PQ 
poisoning in the mitochondria of alveolar type II cells, and 
to elucidate the role of gAd in protecting against PQ-induced 
lung epithelium injury. Therefore, lung epithelial injury was 
induced by PQ co-culture of alveolar type II A549 cells for 
24 h. gAd was administrated to and removed from the injured 
cells in after 24 h. PQ was observed to reduce cell viability 
and increase apoptosis by ~1.5 fold in A549 cells. The oxida-
tive/nitrative stress, resulting from ROS/RNS and disordered 
mitochondrial function were evidenced by increased O2

-., 
NO production and reduced mitochondrial membrane 

potential (ΔΨ), adenosine 5'-triphosphate (ATP) content in 
PQ‑poisoned A549 cells. gAd treatment significantly reversed 
the PQ-induced cell injury and mitochondrial dysfunction in 
A549 cells. The protective effects of gAd were partly abro-
gated by an adenosine 5'-monophosphate-activated protein 
kinase (AMPK) inhibitor, compound C. The results suggest 
that reduced ΔΨ and ATP content may result in PQ-induced 
mitochondrial dysfunction of the lung epithelium, which 
constitutes a novel mechanism for gAd exerting pulmonary 
protection against PQ poisoning via AMPK activation.

Introduction

Previous studies have demonstrated that apoptosis is an 
important process in injured to the lung epithelium in para-
quat (PQ) poisoning (1,2). The mechanisms of apoptosis are 
highly complex and involve oxidative/nitrative stress impair-
ment to the function of mitochondria with the reduction of 
the mitochondrial membrane potential (ΔΨ), resulting in an 
increase of superoxide formation and reduced production 
of adenosine 5'-triphosphate (ATP) (3,4). Previous studies 
suggest that adenosine 5'-monophosphate-activated protein 
kinase (AMPK) is one of the most important molecules in the 
stimulation of ATP production and protection against oxida-
tive/nitrative stress in mitochondria (5,6). However, whether 
dysfunction of the mitochondria and reduction of ATP via 
inactivation of AMPK serve crucial roles in the PQ-induced 
apoptosis of alveolar epithelial type II cells remains to be fully 
elucidated.

Adiponectin (APN), an adipocytokine predominantly 
secreted by adipocytes and found at high levels in the 
plasma, has been reported to exhibit anti-insulin resistance 
and anti-inflammatory and anti-apoptotic properties (7-9). 
Circulating APN is present as trimeric, hexameric or oligo-
meric complexes of monomers, and cleavage to produce the 
C-terminal globular domain, gAd, has been proposed as an 
important regulatory step in the action of APN. This is due 
to the fact that this C-terminal fragment has been reported to 
mediate potent physiological effects (10,11). Previous studies 
have suggested that the potential role of gAd against apoptosis 
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is mediated via the activation of AMPK (12-14). APN-knockout 
mice exhibit inhibition of AMPK, a reduction in the levels of 
ATP, an increase of mitochondrial swelling and ROS/RNS 
production, resulting in augmented apoptosis, while admin-
istration of gAd reversed these effects. The protective effects 
of gAd have been reported to be reversed by administration 
of the AMPK inhibitor (compound C) (15). It remains unclear 
whether APN may protect alveolar type II cells from PQ 
poisoning via activation of AMPK and increasing the produc-
tion of ATP in mitochondria.

Therefore, the aims of the current study were: i) To deter-
mine whether mitochondrial function is impaired and ATP 
is reduced in PQ-poisoned alveolar type II cells via inacti-
vation of AMPK; ii) to determine the effect of gAd against 
PQ-induced apoptosis and in alveolar type II cells; and if so, 
iii) whether gAd mediates protective effects via activation of 
AMPK and increasing production of ATP.

Materials and methods

Materials. All reagents were purchased from Sigma-Aldrich 
(St. Louis, MO, USA), unless otherwise specified. RPMI 1640 
medium was obtained from Gibco; Thermo Fisher Scientific, 
Inc. (Waltham, MA, USA). Penicillin/streptomycin was 
obtained from Wisent, Inc. (Saint-Bruno, QC, Canada). 
PQ was purchased from Tokyo Chemical Industry Co., 
Ltd. (Tokyo, Japan). The globular domain of APN (gAd) 
was purchased from Beijing Adipobiotech, Inc. (Beijing, 
China). Compound C, an AMPK Inhibitor, was obtained 
from Merck Millipore (Darmstadt, Germany). The 
Annexin V-Fluorescein Isothiocyanate (FITC) Apoptosis 
Detection kit I was from Nanjing KeyGen Biotech Co., Ltd. 
(Nanjing, China). JC-1 and dihydroethidium (DHE) were 
purchased from Molecular Probes; Thermo Fisher Scientific, 
Inc. The Nitrate/Nitrite Colorimetric Assay kit was from 
Nanjing Jiancheng Biochemical Reagent Co. (Nanjing, China). 
The ATP Bioluminescent Somatic Cell assay kit was from 
Sigma-Aldrich.

Cell cultures and treatments. The human lung adenocarcinoma 
cell line A549 (Shanghai Institute of Biochemistry and Cell 
Biology, Shanghai, China) was grown in a monolayer culture 
in RPMI 1640 medium supplemented with 10% fetal bovine 
serum, 1% glutamine, 1% (v/v) streptomycin/penicillin. The 
culture medium was refreshed two to three times per week 
and was subcultured upon reaching 80% confluence. The cells 
were then seeded onto flat‑bottom six‑well or 96‑well plates 
with growth medium at 37˚C in a humidified atmosphere at 5% 
CO2, followed by administration of PQ at 300 µM for 24 h for 
the PQ, PA and PCA groups. Subsequently, gAd (2.5 µg/ml) 
was added and the cells were cultured for another 24 h, in 
order to investigate the role of gAd in PQ-induced cytotoxicity. 
PCA group cells were also treated with compound C (1 µM) 
for 30 min prior to the addition of PQ. The optimal doses and 
time points for gAd, PQ and compound C were determined 
through preliminary experiments (data not shown).

Measurement of cell viability. The 3-(4, 5-methylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 
conducted as previously described (16). Briefly, following PQ 

challenge, culture media was refreshed with media containing 
MTT reagent (5 mg/ml) and cells were incubated under stan-
dard conditions for an additional 4 h. The culture media was 
then carefully aspirated and 100 µl dimethylsulfoxide was 
added per well to solubilize the formazan crystals. Following 
agitation, absorbance was measured spectrophotometrically at 
a wavelength of 490 nm using a Benchmark Plus Microplate 
Spectrophotometer (Bio-Rad Laboratories, Inc., Hercules, CA, 
USA). Viabilities of the challenged cells were expressed rela-
tive to control cells.

Measurement of necrosis and apoptosis. Apoptotic and 
necrotic cell death were measured using flow cytometry with 
the Annexin V-FITC Apoptosis Detection kit I (17). At 24 h 
after administration of gAd, cells were trypsinized (Thermo 
Fisher Scientific, Inc.) without ethylenediaminetetraacetic acid 
and labelled with the fluorochromes in the absence of light for 
10 min at room temperature. Fluorescence was measured by 
flow cytometric analysis using a FACSCalibur flow cytometer 
(BD Biosciences, San Jose, CA, USA) to monitor green fluo-
rescence (525 nm band‑pass filter) for Annexin V‑fluorescein 
conjugate and red fluorescence (575 nm band‑pass filter) for 
PI respectively. The Annexin V-FITC-/PI-cell population was 
regarded as normal, while Annexin V-FITC+/PI-cells were 
taken as an indicator of early apoptosis, Annexin V-FITC+/PI+ 
as late apoptosis and Annexin V-FITC-/PI+ as necrosis. The 
data were analyzed using CellQuest software (BD Biosciences). 
A minimum of 30,000 gated events were acquired per sample.

Measurement of superoxide production. Production 
of superoxides was evaluated intracellularly using the 
superoxide-sensitive dye DHE (18). DHE is oxidized by super-
oxides to a novel product, which binds to DNA enhancing 
intracellular fluorescence. Culture medium was aspirated 
and cells were incubated with DHE (5 µM final concentra-
tion) for 10 min at 37˚C in the dark. Following two rinses 
in phosphate-buffered saline, cells were photographed using 
an Axiostart 50 (Zeiss, Oberkochen, Germany) microscope 
equipped with a Canon PowerShot G5 epifluorescence 
attachment (Canon, Inc., Tokyo, Japan). Between five and six 
photographs were captured from each well. The fluorescence 
intensity values for each photo were determined using Adobe 
Photoshop software (version 4; Adobe Systems, Inc., San Jose, 
CA, USA).

Measurement of nitrites. Nitrites were measured in the culture 
supernatants by a colorimetric assay using a procedure based 
on the Greiss reaction with sodium nitrite as the standard (19). 
Culture medium was collected and stored at ‑80˚C until anal-
ysis with the Nitrate/Nitrite Colorimetric Assay kit, according 
to the manufacturer's instructions.

Measurement of ΔΨ. The membrane potential assay was 
conducted as previously described (20). The relative ΔΨ was 
assessed using a laser scanning confocal microscope (SP8; 
Leica Microsystems GmbH, Wetzlar, Germany) analysis of 
cells stained with JC-1. Cells were incubated with 10 µg/ml 
JC‑1 for 30 min at 37˚C. Subsequent to applying the dye, the 
cells were scanned with the confocal microscope using a 
10x objective lens. Fluorescence was excited by the 488-nm 
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line of an argon laser and the 543-nm line of a helium/neon 
laser. The red emission of the dye is due to a potential-depen-
dent aggregation in the mitochondria, reflecting high ΔΨ. 
Green fluorescence indicates the monomeric form of JC‑1, 
appearing in the cytosol following mitochondrial membrane 
depolarization, indicating low ΔΨ. The ratio of red/green 
indicated the mitochondrial membrane depolarization states 
of different cells.

Measurement of ATP. The amount of ATP was measured 
in the cultured cells using a luminometer (Bio Orbit 1251 
Luminometer; Bio-Orbit, Turku, Finland) as previously 
described (21). Subsequent to exposure to different experi-
mental conditions, cells were collected to react with different 
working solutions of from the ATP Bioluminescent Somatic 
Cell assay kit, according to the manufacturer's instructions. 
All reactions for a given sample were monitored simultane-
ously and calibrated with the addition of an ATP standard 
from the kit.

Statistics. Data are presented as the mean ± standard error (n=5) 
and were analyzed for statistical significance by one‑ or two‑way 
analysis of variance with were least significant difference or 
Student-Newman-Keuls post hoc analyses. Statistical analysis 
and the significance of the data were determined using SPSS 
software, version 12.0 (SPSS, Inc., Chicago, IL, USA). P<0.05 
was considered to indicate a statistically significant difference.

Results

gAd reduced PQ‑mediated cytotoxicity. As presented in Fig. 1, 
PQ significantly reduced the cell viability of A549 cells, while 
gAd alleviated the PQ-induced cytotoxicity without any effects 
on the cells alone. However, pretreatment with compound C 
significantly reversed the protective effects of gAd on the 
viability reduced by PQ.

gAd reduced PQ‑mediated apoptosis. The results indicated that 
there was a low level of cell death in the control group (Fig. 2A). 
However, PQ was observed to induce apoptosis in ~37.5% cells 
(Fig. 2B). However, gAd significantly reversed the PQ‑induced 

cytotoxicity, reducing the percentage of apoptotic cells to 
22.3% (P<0.01). However, the pretreatment with compound C 
significantly reversed gAd's protective effect (Fig. 2).

gAd reduced PQ‑mediated superoxide production. As 
presented in Fig. 3, control cultures generally exhibited low 
fluorescence intensity while PQ-treated cultures exhibited 
bright red fluorescence. This indicated that PQ significanlty 
increased O2

-. production in cells compared with that of the 
controls (P<0.001). gAd inhibited the O2

-. production induced 
by PQ significanlty. However, pre-treatment with compound C 
partly reversed gAd's effects on O2

-. production.

gAd reduced PQ‑mediated nitrite production. Addition of 
PQ to the cultures significantly increased nitrite production 
compared with the controls (P<0.01). Administration of gAd 
or compound C significantly reversed the increase, however 
pre-treatment with compound C did not reverse the effects of 
gAd on nitrite production (Fig. 4).

gAd reduced PQ‑mediated ΔΨ depolarization. Incubation 
with PQ depolarized the ΔΨ significantly, resulting in a low 
ratio of red/green. Treatment with gAd repolarized the ΔΨ of 
the cells, resulting in a greater ratio of red/green, compared 
with PQ group (P<0.01). However, compound C reversed the 
repolarization of gAd, resulting in a lower ratio of red/green as 
compared with the gAd group (P<0.01; Fig. 5).

gAd partly reversed the PQ‑mediated reduction in ATP. 
Addition of PQ significantly reduced the intracellular ATP 
concentration, as compared with the initial control levels: 21% 
after 24 h, irrespective of the presence of other medium supple-
ments or stimulation (P<0.05). Conversely, treatment with gAd 
increased the ATP level to ~50% of that of the control group 
(P<0.05). However, compound C reversed the gAd-mediated 
increase (P<0.05; Fig. 6).

Discussion

The most prevalent cause of morbidity and mortality in patients 
with PQ poisoning is organ injury, in particular, injury to the 

Figure 1. Cellular-protective effect of gAd on PQ-induced A549 cells. Cells were treated with 300 µM PQ followed by 2.5 µg/ml gAd with or without adenosine 
5'-monophosphate-activated protein kinase inhibitor (compound C) pretreatment. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay 
was performed at 24 h subsequent to the administration of gAd. The data are presented as the mean ± standard deviation of five independent experiments, 
*P<0.05. gAd, globular adiponectin; PQ, paraquat.
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Figure 3. Anti-oxidative stress effects of gAd on PQ-induced A549 cells. Cells were treated with 300 µM PQ followed by 2.5 µg/ml gAd with or without 
adenosine 5'‑monophosphate‑activated protein kinase inhibitor (compound C) pretreatment. The fluorescence intensity of dihydroethidium was performed at 
24 h after the administration of gAd. (A) Control group; (B) PQ group; (C) PA group; (D) PCA group; (E) Quantification of fluorescence data. The data are 
presented as the mean ± standard deviation of five independent experiments, *P<0.05. gAd, globular adiponectin; PQ, paraquat.

  E

Figure 2. Anti-apoptotic effects of gAd on PQ-induced A549 cells. Cells were treated with 300 µM PQ followed by 2.5 µg/ml gAd with or without adenosine 
5'‑monophosphate‑activated protein kinase inhibitor (compound C) pretreatment. The flow cytometry assay was conducted 24 h subsequent to administration 
of gAd. Flow cytometry analysis of the (A) control, (B) PQ, (C) PA and (D) PCA groups are presented. (E) Percentage of apoptosis and necrosis for the four 
groups are presented as the mean ± standard deviation of five independent experiments, *P<0.05. gAd, globular adiponectin; PQ, paraquat; PI, propidium 
iodide; FITC, fluorescein isothiocyanate.

  A   B   C   D

  E

  A   B   C   D
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Figure 4. Anti-nitrative stress effects of gAd on PQ-induced A549 cells. Cells were treated with 300 µM PQ followed by 2.5 µg/ml gAd with or without 
adenosine 5'-monophosphate-activated protein kinase inhibitor (compound C). A colorimetric assay was performed 24 h subsequent to the administration of 
gAd. The data are presented as the mean ± standard deviation of five independent experiments, *P<0.05. gAd, globular adiponectin; PQ, paraquat.

Figure 5. Effect of gAd on PQ-mediated ΔΨ depolarization. Cells were treated with 300 µM PQ followed by 2.5 µg/ml gAd with or without adenosine 
5'-monophosphate-activated protein kinase inhibitor (compound C). Confocal microscopy analysis was performed 24 h subsequent to the administration 
of gAd on the (A) control, (B) PQ group, (C) PA group and (D) PCA group. The red emission of the dye is due to a potential-dependent aggregation in the 
mitochondria, indicating high ΔΨ. Green fluorescence indicates the monomeric form of JC‑1, appearing in the cytosol subsequent to mitochondrial membrane 
depolarization, indicating low ΔΨ. The ratio of red/green indicated the mitochondrial membrane depolarization states of different cells. (E) Quantification of 
the red/green ratio of the four groups is presented as the mean ± standard deviation of five independent experiments, *P<0.05. gAd, globular adiponectin; PQ, 
paraquat; ΔΨ, mitochondrial membrane potential.

  E

Figure 6. Effect of gAd on PQ-mediated reduction in ATP. Cells were treated with 300 µM PQ followed by 2.5 µg/ml gAd with or without adenosine 5'-mono-
phosphate-activated protein kinase inhibitor (compound C). The luminometer assay was performed 24 h subsequent to gAd administration. The data are 
presented as the mean ± standard deviation of five independent experiments, *P<0.05. gAd, globular adiponectin; PQ, paraquat; ATP, adenosine 5'-triphosphate.

  A   B   C   D
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lungs (22). It has been demonstrated that excessive ROS/RNS 
stress resulting from impaired mitochondria, is an important 
feature of the injured lung epithelium in PQ poisoning, though 
the underlying mechanism responsible for the mitochon-
drial dysfunction remains unclear (23). Therefore, studies 
have focussed upon clarifying the underlying mechanisms 
for PQ-associated mitochondria injury of alveolar type II 
cells (24,25) and developing novel strategies for the treatment 
of PQ-poisoned patients (26). In the present study, an estab-
lished PQ poisoning model with A549 cells cultured with PQ 
for 24 h was used, and it was confirmed that apoptosis and cell 
death were exacerbated in the presence of PQ. Furthermore, 
it was indicated that PQ markedly disturbed mitochondrial 
function, depolarizing ΔΨ and reducing ATP production, 
resulting in progressive increases of O2

-. and NO. This may 
be explained by the fact that PQ2+ induced the release of Ca2+ 
from cytoplasm (27), which may induce the depolarization of 
mitochondria and reduce ΔΨ (28). This results in reductions 
of ATP synthesis to less than 50% of the normal level, thus 
activating pro-apoptotic and pro-necrotic proteins, including 
Bax and caspase 3/7/8/9 (29,30). As a result, the injured mito-
chondria produce excessive O2

-. and NO, which attached to the 
mitochondrial membrane in turn, and resulted in increases in 
ROS/RNS production and ultimately inducing apoptosis (31).

Injury resulting from PQ poisoning was however, reversed 
by treatment with gAd in the current study. Although the asso-
ciated mechanisms remain to be fully elucidated, a previous 
study demonstrated the potential cellular protective effects of 
gAd against apoptosis via inhibiting mitochondrial dysfunc-
tion and ROS/RNS attachment (32). Therefore, the current 
study suggested that gAd may protect the alveolar type II cells 
aginst PQ-induced cell injury via inhibiting mitochondrial 
dysfunction and reducing oxidative/nitrative injury.

In order to further elucidate the underlying mechanisms 
for the cellular-protective effects of gAd in PQ poisoning 
against mitochondrial dysfunction and oxidative/nitrative 
injury, the signaling of AMPK, a protective kinase in oxida-
tive/nitrative injury and a downstream mediator of gAd's 
mitochondrial protective actions, was investigated (33). It was 
identified that the protective effects of gAd could be reversed 
by an AMPK inhibitor, compound C, which has been previ-
ously identified to block the cardiac protective benefits of gAd 
treatment against cardiac myocardial hypoxia/reoxygenation 
injury (15). This result clarified the critical role of AMPK in 
the pneumonocyte-protective effects of gAd, indicating it may 
be used in the therapy for PQ poisoning. This observation 
is consistent with a previous study by Yan et al (15), which 
demonstrated that gAd was able to activate AMPK-peroxisome 
proliferator-activated receptor γ coactivator 1-α, resulting in 
increased ATP production, improving ΔΨ, thus leading to 
return to normal function. These results indicate that AMPK 
may be one of the key molecules in gAd's inhibition of mito-
chondrial dysfunction induced by PQ. However, interspecies 
differences (34,35), animal model establishment (36,37) and 
the injury procedure (38) may affect whether AMPK signaling 
serves a beneficial or detrimental role in the mitochondria. 
Experiments using animal models should be conducted in 
order to further clarify the mechanisms.

There were limitations in the present study. The inactivation 
of AMPK was not introduced when PQ was added to the cells, 

due to the high rate of mortality, thus the ability to directly 
demonstrate the role of AMPK in PQ-poisoned mitochondria 
following oxidative/nitrative injury was compromised. In addi-
tion, gAd treatment in PQ poisoning may modulate numerous 
other key molecules in addition to AMPK-ATP (39-41). Thus, 
investigation of these molecules in oxidative/nitrative injury 
requires additional investigation.

In conclusion, it was demonstrated that the ΔΨ exhibited 
progressive reductions with increased oxidative/nitrative injury 
in PQ‑induced apoptosis. In addition, it was identified that in 
PQ poisoning, ΔΨ is increased in response to gAd treatment, 
which significantly attenuated mitochondrial dysfunction and 
oxidative/nitrative injury in PQ-poisoned alveolar type II cells. 
The present study provided indirect evidence for the possible 
role of the AMPK-ATP signaling pathway in gAd against 
oxidative/nitrative injury originating from the mitochondria 
following PQ poisoning. To the best of our knowledge, this is 
the first study to demonstrate the ability of gAd in attenuating 
oxidative/nitrative injury in PQ poisoning of lung cells beyond 
its metabolic actions. These observations add to the current 
understanding of the pathophysiology of PQ poisoning and 
the mechanisms of the widely used gAd therapy. This may aid 
in the development of future therapeutic strategies capable of 
assisting gAd in protecting against PQ-induced lung injury.
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