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Abstract: The phytohormone salicylic acid (SA) plays a crucial role in plant growth and development.
However, the mechanism of high-concentration SA-affected gravitropic response in plant root growth
and root hair development is still largely unclear. In this study, wild-type, pin2 mutant and various
transgenic fluorescence marker lines of Arabidopsis thaliana were investigated to understand how root
growth is affected by high SA treatment under gravitropic stress conditions. We found that exogenous
SA application inhibited gravitropic root growth and root hair development in a dose-dependent
manner. Further analyses using DIRECT REPEAT5 (DR5)-GFP, auxin sensor DII-VENUS, auxin efflux
transporter PIN2-GFP, trans-Golgi network/early endosome (TGN/EE) clathrin-light-chain 2 (CLC2)-
mCherry and prevacuolar compartment (PVC) (Rha1)-mCherry transgenic marker lines demonstrated
that high SA treatment severely affected auxin accumulation, root-specific PIN2 distribution and
PIN2 gene transcription and promoted the vacuolar degradation of PIN2, possibly independent of
clathrin-mediated endocytic protein trafficking. Our findings proposed a new underlying mechanism
of SA-affected gravitropic root growth and root hair development via the regulation of PIN2 gene
transcription and PIN2 protein endocytosis in plants.

Keywords: Arabidopsis thaliana; auxin; gravitropism; PIN2; salicylic acid

1. Introduction

Plant growth and response to environmental alterations are precisely governed by
phytohormones. The phytohormone salicylic acid (SA), which functions as a plant defense
activator, plays a crucial role in the local and systemic response against microbial pathogens
and in the defining of the transduction pathway mediating plant response to abiotic
stresses such as drought [1–3], salt stress [4], chilling [5,6], heavy metal tolerance [7–9] and
heat [10,11].

In addition to its regulatory role in plant response to biotic and abiotic stresses, SA also
has specific effects on plant growth and development [1]. It regulates various biological
processes such as seed germination, bud development, vegetative growth, photosynthesis,
respiration, thermogenesis, flower formation, fruit setting and ripening, seed production,
senescence and cell death [1,12]. These effects are SA concentration-, plant growth condition-
and developmental stage-dependent. Generally, a low concentration of SA promotes plant
growth under unfavorable conditions, whereas a high concentration of SA inhibits plant
growth [1,12,13]. In Arabidopsis, exogenous application of SA proportionally reduced
root elongation [13–15] and specifically induced its waving growth in a concentration-
dependent manner [15,16]. At the concentration of 250 µM, exogenous application of SA
inhibited the growth of primary roots and the development of lateral roots [17]. In other
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plant species, such as maize, soybean and pine tree, a low concentration of SA increased
root biomass [13,16,18–20]. More detailed studies demonstrated that SA regulated root
development by affecting auxin signaling and auxin transport [13,15–17,21]. The number
of periclinal and tangential divisions in the outer layers of roots was increased by SA-
mediated auxin accumulation via a CYCD6;1-dependent mechanism [16]. Thus, a low
concentration of SA promoted adventitious root development and altered root apical
meristem architecture, whereas a high concentration of SA inhibited all the processes of
root growth [16].

Since the discovery of directional auxin transport upon gravitropic stimulation, its
mechanism has been well established in plants [22,23]. Gravitropic stimulation induced
the asymmetric movement of auxin, which in turn caused the gravitropic curvature of root
growth [24–26]. Therefore, auxin was essential for gravitropism [27]. In Arabidopsis, the root-
specific PIN-FORMED2 (PIN2), which is shoot-ward localized in the lateral root cap and
root epidermis cells, and root-ward localized in the root cortex cells, functions as an auxin
efflux transporter directing the transport of auxin from root tip into the root elongation
zone. During the gravitropic response, PIN2 regulated the transport of auxin [28]. In
the Arabidopsis pin2 mutant, shoot-ward auxin distribution in the lower side of roots was
largely repressed during gravity stimulus, leading to the agravitropic growth of roots [29].
Meanwhile, PIN2 can also affect the onset and growth of root hairs [30]. Root hair-specific
overexpression of PIN2 significantly inhibited root hair growth by depleting the auxin
levels in root hair cells [31].

Recently, a negative correlation between SA and gravitropism was reported [32]. SA
treatment resulted in a noticeable reduction in root gravitropism. Auxin redistribution
and quantitative analyses suggested that SA reduced the lateral diffusion and endocytic
internalization of PIN2 [32]. In this study, we investigated the role of SA response in root
growth and root hair development upon gravity stimulus. We showed that exogenous
application of high concentration of SA affected root development in a concentration-
dependent manner upon gravity stimulus. We also demonstrated that the application of a
high concentration of SA not only repressed the transcriptional expression of PIN2 in the
nucleus but also modulated the vacuolar degradation, possibly via the clathrin-independent
endocytic trafficking, of PIN2 protein in Arabidopsis.

2. Results
2.1. High-Concentration SA Application Affects Root Gravitropic Growth in a
Dose-Dependent Manner

To understand whether exogenous application of high-concentration SA would affect
the root growth and development of Arabidopsis in response to gravitropic stress, five-day-
old wild-type (WT) Arabidopsis seedlings germinated on half-strength Murashige and Skoog
(1/2MS) medium were subjected to different concentrations of SA treatments. Arabidopsis
seedlings were transferred onto 1/2MS medium plates supplemented with 0, 100, 200 and
300 µM SA and cultured for 16 h after being orientated at 90◦ (Figure 1A). The deviated root
tip angles along the vertical direction were measured. Consistent with previous reports, a
dose-dependent agravitropic response in the root tip growth was observed [15,16,21,32–34].
At all concentrations tested, exogenous application of SA significantly reduced the de-
viated root tip angles and the length of newly grown roots (Figure 1A–C). We further
examined the effects of SA treatments on root hair development and found that high-
concentration SA treatments also significantly reduced root hair number and length in an
SA-dose-dependent manner (Figure 1D–F). Compared to the control seedlings, root hair
development of seedlings treated with a high concentration of SA was severely suppressed.
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Figure 1. Effects of high-concentration SA on root gravitropic responses and root hair development 
in Arabidopsis. Five-day-old wild-type Arabidopsis (Col-0) seedlings grown on ½MS medium were 
used. (A–C) Effects of SA treatments on the deviated root tip angles and new root growth. 
Five-day-old seedlings were transferred to new ½MS medium plates supplemented with 100, 200 
or 300 µM SA, and cultured for another 16 h after being orientated at 90°. The inset images show 
1.5, 2.0, 3.0, and 4.5× enlarged new root growth, respectively. Scale bar = 3 mm. (D–F) Effects of SA 
treatments on root hair development. Five-day-old seedlings transferred to new ½MS medium 
plates supplemented with 100, 200 or 300 µM SA were vertically cultured for another 48 h. Root 
hair number and length were measured (n = 6). Scale bar = 1 mm. Student’s t-test was performed 
between the groups (mock vs. SA). Error bar = standard deviation (SD). p-values were determined 
with two-tailed Student’s t-test assuming equal variances (*** p < 0.001). 

2.2. SA Reduces Auxin Accumulation and Distribution in the Root Apical Meristem 
Auxin polar transport is the driving factor that affects root gravitropism [29]. We 

analyzed auxin distribution and polar transportation in the roots of Arabidopsis seedlings 
treated with 0 or 200 µM SA using the auxin response reporter DIRECT REPEAT5 
(DR5)-GFP [35] and auxin sensor DII-VENUS [36] transgenic marker lines. We observed 
that DR5-dependent GFP fluorescence was mainly distributed in the root apical meri-
stem (RAM) around the quiescent centre (QC) and columella cell (CC) areas. SA treat-
ment significantly decreased the DR5-dependent GFP fluorescence in the QC and CC 
regions, whereas the DII-VENUS signal was gradually enhanced (Figure 2A–D). We 
further examined auxin accumulation after 90° re-orientation in the transgenic DR5-GFP 
seedlings. Without SA treatment, auxin was accumulated in the lower side of the root 
meristematic zone region upon gravity stimulus (Figure 2E). Consistent with a previous 
study, SA treatment decreased auxin accumulation in the lower side [32]. Previous 
time-course studies have shown that exogenous SA application suppressed auxin 
transport in the roots [16,32,34]. We also observed that after being exposed to 200 µM SA 
for 24 h, DR5-dependent GFP fluorescence was significantly reduced, and there was no 
auxin accumulation in the lower side of the roots (Figure 2E,F). 

Figure 1. Effects of high-concentration SA on root gravitropic responses and root hair development in
Arabidopsis. Five-day-old wild-type Arabidopsis (Col-0) seedlings grown on 1/2MS medium were used.
(A–C) Effects of SA treatments on the deviated root tip angles and new root growth. Five-day-old
seedlings were transferred to new 1/2MS medium plates supplemented with 100, 200 or 300 µM SA,
and cultured for another 16 h after being orientated at 90◦. The inset images show 1.5, 2.0, 3.0, and
4.5× enlarged new root growth, respectively. Scale bar = 3 mm. (D–F) Effects of SA treatments on root
hair development. Five-day-old seedlings transferred to new 1/2MS medium plates supplemented
with 100, 200 or 300 µM SA were vertically cultured for another 48 h. Root hair number and length
were measured (n = 6). Scale bar = 1 mm. Student’s t-test was performed between the groups (mock
vs. SA). Error bar = standard deviation (SD). p-values were determined with two-tailed Student’s
t-test assuming equal variances (*** p < 0.001).

2.2. SA Reduces Auxin Accumulation and Distribution in the Root Apical Meristem

Auxin polar transport is the driving factor that affects root gravitropism [29]. We
analyzed auxin distribution and polar transportation in the roots of Arabidopsis seedlings
treated with 0 or 200 µM SA using the auxin response reporter DIRECT REPEAT5 (DR5)-
GFP [35] and auxin sensor DII-VENUS [36] transgenic marker lines. We observed that
DR5-dependent GFP fluorescence was mainly distributed in the root apical meristem (RAM)
around the quiescent centre (QC) and columella cell (CC) areas. SA treatment significantly
decreased the DR5-dependent GFP fluorescence in the QC and CC regions, whereas the
DII-VENUS signal was gradually enhanced (Figure 2A–D). We further examined auxin
accumulation after 90◦ re-orientation in the transgenic DR5-GFP seedlings. Without SA
treatment, auxin was accumulated in the lower side of the root meristematic zone region
upon gravity stimulus (Figure 2E). Consistent with a previous study, SA treatment de-
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creased auxin accumulation in the lower side [32]. Previous time-course studies have
shown that exogenous SA application suppressed auxin transport in the roots [16,32,34].
We also observed that after being exposed to 200 µM SA for 24 h, DR5-dependent GFP
fluorescence was significantly reduced, and there was no auxin accumulation in the lower
side of the roots (Figure 2E,F).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. Effects of high-concentration SA on auxin accumulation and transportation. (A,B) Auxin 
accumulation in transgenic DR5-GFP seedlings. Three-day-old DR5-GFP seedlings grown on ½MS 
were treated with 200 µM SA for 1, 2, 3, 4 and 5 days, respectively. DR5-GFP signal (fluorescence 
intensity) was examined after the respective treatment (n = 4). (C,D) Auxin degradation in trans-
genic DII-VENUS seedlings. Three-day-old DII-VENUS seedlings grown on ½MS were treated 
with 200 µM SA for 1, 2, 3, 4 and 5 days, respectively. DII-VENUS signal (fluorescence intensity) 
was examined after the respective treatment (n = 4). (E,F) Auxin distribution in transgenic 
DR5-GFP seedlings. Five-day-old DR5-GFP transgenic seedlings were transferred to ½MS medium 
containing 0 or 200 µM SA and cultured for 0 h, 6 h, 12 h and 24 h after 90° re-orientation. DR5-GFP 
signal (fluorescence intensity) was examined after the respective treatment (n = 4). Error bar = 
standard deviation (SD). 
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transferred to ½MS medium containing 0 or 200 µM SA and cultured for 2 days. We 
found that a high dosage of SA treatments significantly decreased the accumulation of 
PIN2-GFP in roots, leading to a discontinuous PIN2-GFP signal on the plasma mem-
brane (PM) (Figure 3A,B). We further analyzed PIN2 gene expression in wild-type Ara-
bidopsis and root growth in PIN2 loss-of-function mutant (pin2) in response to 
high-concentration SA treatments. Seven-day-old Arabidopsis (Col-0) seedlings were 
treated with 200 µM SA for 0 h, 6 h, 12 h and 24 h, respectively. qRT-PCR analyses 
showed that PIN2 expression was gradually suppressed for the duration of SA treatment 
(Figure 3C). Consistently, the root growth of pin2-2 mutant seedlings showed an 
un-sensitive response to SA treatment. Unlike the wild-type seedlings, whose root 
growth on ½MS medium containing 20 µM SA was severely suppressed, the root growth 
of pin2-2 seedlings was not affected (Figure S1A–C). Therefore, high-concentration SA 

Figure 2. Effects of high-concentration SA on auxin accumulation and transportation. (A,B) Auxin
accumulation in transgenic DR5-GFP seedlings. Three-day-old DR5-GFP seedlings grown on 1/2MS
were treated with 200 µM SA for 1, 2, 3, 4 and 5 days, respectively. DR5-GFP signal (fluorescence
intensity) was examined after the respective treatment (n = 4). (C,D) Auxin degradation in transgenic
DII-VENUS seedlings. Three-day-old DII-VENUS seedlings grown on 1/2MS were treated with
200 µM SA for 1, 2, 3, 4 and 5 days, respectively. DII-VENUS signal (fluorescence intensity) was
examined after the respective treatment (n = 4). (E,F) Auxin distribution in transgenic DR5-GFP
seedlings. Five-day-old DR5-GFP transgenic seedlings were transferred to 1/2MS medium containing
0 or 200 µM SA and cultured for 0 h, 6 h, 12 h and 24 h after 90◦ re-orientation. DR5-GFP signal
(fluorescence intensity) was examined after the respective treatment (n = 4). Error bar = standard
deviation (SD).

2.3. SA Reduces PIN2 Accumulation and Distribution in the Roots

As an auxin efflux transporter, root-specific PIN2 affected both the onset and growth
of root hairs [30]. To understand whether SA treatment would affect the accumulation of
PIN2 in roots, we investigated the protein dynamics of PIN2 in transgenic ProPIN2:PIN2-
GFP seedlings [37]. Five-day-old ProPIN2:PIN2-GFP seedlings were transferred to 1/2MS
medium containing 0 or 200 µM SA and cultured for 2 days. We found that a high dosage
of SA treatments significantly decreased the accumulation of PIN2-GFP in roots, leading
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to a discontinuous PIN2-GFP signal on the plasma membrane (PM) (Figure 3A,B). We
further analyzed PIN2 gene expression in wild-type Arabidopsis and root growth in PIN2
loss-of-function mutant (pin2) in response to high-concentration SA treatments. Seven-day-
old Arabidopsis (Col-0) seedlings were treated with 200 µM SA for 0 h, 6 h, 12 h and 24 h,
respectively. qRT-PCR analyses showed that PIN2 expression was gradually suppressed
for the duration of SA treatment (Figure 3C). Consistently, the root growth of pin2-2 mutant
seedlings showed an un-sensitive response to SA treatment. Unlike the wild-type seedlings,
whose root growth on 1/2MS medium containing 20 µM SA was severely suppressed,
the root growth of pin2-2 seedlings was not affected (Figure S1A–C). Therefore, high-
concentration SA application might inhibit the seedling root growth by affecting both PIN2
expression and accumulation.
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recent report [32], the PIN2-GFP signal in the roots of seedlings treated with 200 µM SA 
was heterogeneous in shape and size and discontinuously displayed on the plasma 
membrane (PM) (Figure 4). Further quantitative analysis of the PIN2-GFP signal revealed 
that a high concentration of SA treatment decreased the incidence of PIN2-GFP at the PM 
in a time-dependent manner (Figure 4). In addition, the PIN2-GFP signal in the cyto-
plasm was observed in a dispersive state after being treated with 200 µM SA for 6 h, 
suggesting that high-concentration SA might have induced the entry of PIN2 into the 
vacuole for degradation. 

Based on the above observations, we postulated that high-dosage SA treatment 
might promote PIN2 endocytosis. To verify this hypothesis, we separately crossed the 

Figure 3. Effects of high-concentration SA on PIN2 accumulation and PIN2 expression. (A,B) PIN2
accumulation in the roots of transgenic ProPIN2:PIN2-GFP seedlings. Five-day-old ProPIN2:PIN2-
GFP seedlings were treated with 200 µM SA for 2 days. PIN2-GFP signal was measured in the
roots (n = 4). (C) qRT-PCR analysis of PIN2 expression in wild-type Arabidopsis (Col-0) seedlings.
Sever-day-old seedlings were transferred to 200 µM SA-containing 1/2MS medium and cultured for
0 h, 6 h, 12 h and 24 h, respectively. Scale bar = 50 µm. Error bar = standard deviation (SD). p-values
were determined with two-tailed Student’s t-test assuming equal variances (* p < 0.05).

2.4. SA-Induced PIN2 Internalization Is Independent of Clathrin-Mediated Endocytosis

To further understand how PIN2 is impacted by a high concentration of SA application,
we investigated its protein dynamics on the cell surface in the five-day-old ProPIN2:PIN2-
GFP transgenic marker line seedlings grown on 1/2MS medium supplemented with 200 µM
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SA for 2, 3, 4, 6 and 24 h, respectively [37]. We found that, consistent with a recent report [32],
the PIN2-GFP signal in the roots of seedlings treated with 200 µM SA was heterogeneous
in shape and size and discontinuously displayed on the plasma membrane (PM) (Figure 4).
Further quantitative analysis of the PIN2-GFP signal revealed that a high concentration of
SA treatment decreased the incidence of PIN2-GFP at the PM in a time-dependent manner
(Figure 4). In addition, the PIN2-GFP signal in the cytoplasm was observed in a dispersive
state after being treated with 200 µM SA for 6 h, suggesting that high-concentration SA
might have induced the entry of PIN2 into the vacuole for degradation.
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Figure 4. High-concentration SA induces PIN2-GFP degradation. PIN2-GFP fluorescence signal in
the roots of five-day-old ProPIN2:PIN2-GFP transgenic seedlings treated with 200 µM SA for 0, 2, 3, 4,
6 and 24 h was observed. Scale bar = 5 µm.

Based on the above observations, we postulated that high-dosage SA treatment might
promote PIN2 endocytosis. To verify this hypothesis, we separately crossed the PIN2-GFP
transgenic line with the transgenic marker lines stably expressing the fluorescent markers
for trans-Golgi network/early endosome (TGN/EE) clathrin-light-chain 2 (CLC2)-mCherry
(CS781677) [38] and prevacuolar compartment (PVC) (Rha1-mCherry, CS781672) [39].
Five-day-old seedlings harboring both PIN2-GFP and CLC2-mCherry or PIN2-GFP and
Rha1-mCherry were, respectively, treated with 200 µM SA for 2, 3, 5 and 16 h. The co-
localizations of PIN2-GFP with these marker proteins in root cells were analyzed. We found
that high-level SA application enhanced the intracellular accumulation of PIN2 in the
punctate structures after 2 h, 3 h and 5 h treatments. Interestingly, the SA-induced clusters
of PIN2-GFP and CLC2-mCherry did not exhibit apparent co-localization (Figure 5A). By
contrast, PIN2-GFP exhibited obvious co-localization with Rha1-mCherry (Figure 5B). After
16 h SA treatment, PIN2-GFP concentrated in the structures that resembled vacuoles, sug-
gesting that PIN2 could have been transported to the vacuole for subsequent degradation
(Figure 5B).
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The green, red and yellow fluorescence signals respectively represented GFP, mCherry and the 
co-localized GFP and mCherry proteins. The white, indigo and red arrows respectively denoted the 
aggregated PIN2-GFP, Rha1-mcherry, and the co-localized PIN2-GFP and Rha1-mCherry proteins. 
The small and big white boxes respectively showed the 2× and 8× images of the samples treated for 
5 and 3 h. Scale bar = 3 µm. Values of Rp and Rs coefficients were calculated. 

3. Discussion 
SA regulated not only the resistance to biotic and abiotic stresses but also the 

growth and development of plants [1,14,16]. Similar to strigolactones, which interact 
with nitric oxide and the effects of auxin on PIN2 targeting, trafficking and clath-
rin-mediated endocytosis to regulate root system architecture in Arabidopsis thaliana and 
pea [40], and function as signal molecules for the communication between plants and 
bacteria, SA also regulates plant root development by altering auxin signaling and 
transport [13,15–17,21,41]. Recently, a regulatory mechanism of PIN2-dependent auxin 
transport in response to a high-concentration SA treatment was reported [32]. Since PIN2 

Figure 5. PIN2 is transported to PVC for degradation under a high concentration of SA treatment.
Five-day-old transgenic Arabidopsis seedlings harboring both PIN2-GFP and CLC2-mCherry (A) or
PIN2-GFP and Rha1-mCherry (B) were treated with 200 µM SA for 2, 3, 5 and 16 h, respectively.
The green, red and yellow fluorescence signals respectively represented GFP, mCherry and the
co-localized GFP and mCherry proteins. The white, indigo and red arrows respectively denoted the
aggregated PIN2-GFP, Rha1-mcherry, and the co-localized PIN2-GFP and Rha1-mCherry proteins.
The small and big white boxes respectively showed the 2× and 8× images of the samples treated for
5 and 3 h. Scale bar = 3 µm. Values of Rp and Rs coefficients were calculated.

3. Discussion

SA regulated not only the resistance to biotic and abiotic stresses but also the growth
and development of plants [1,14,16]. Similar to strigolactones, which interact with nitric
oxide and the effects of auxin on PIN2 targeting, trafficking and clathrin-mediated en-
docytosis to regulate root system architecture in Arabidopsis thaliana and pea [40], and
function as signal molecules for the communication between plants and bacteria, SA also
regulates plant root development by altering auxin signaling and transport [13,15–17,21,41].
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Recently, a regulatory mechanism of PIN2-dependent auxin transport in response to a
high-concentration SA treatment was reported [32]. Since PIN2 also affects the onset and
growth of root hairs, we investigated the role of SA on both root growth and root hair
development upon gravity stimulus. Statistical analysis of the root growth of Arabidopsis
seedlings exposed to high concentrations of SA upon gravity stimulus exhibited significant
inhibition of root growth and root hair development (Figure 1A–F). To understand how
the root growth was affected by SA application, we treated the seedlings of the DR5-GFP
marker line with 200 µM SA and examined the distribution of the DR5-GFP signal. As
indicated by the decreased fluorescence signal in the Arabidopsis roots, a high concentration
of SA treatment reduced auxin accumulation and distribution in the root apical meristem
(Figure 2A–E).

During the gravitropic response, auxin transporter PIN2 was shown to be expressed in
the cell layers of the epidermis and cortex to regulate auxin transport [28]. Under 100 µM of
SA treatment, gravity triggered the redistribution of PIN2 [32]. Consistently, we observed
that the application of 200 µM SA also led to impaired PIN2 accumulation and distribution
(Figure 3A,B). SA can converge with jasmonic acid (JA), ethylene (ET), gibberellin (GA),
abscisic acid (ABA) and auxin signals to affect plant growth and development by regulating
gene transcription in the nucleus [12,21,42]. We observed that SA treatment down-regulated
the transcription of PIN2 in Col-0 seedlings (Figure 3C). Root hair-specific overexpression of
PIN2 greatly inhibited root hair growth by depleting auxin levels in the root hair cells [31].
We concluded that by regulating the expression of PIN2 and the degradation of PIN2
protein, high levels of SA impaired PIN2-dependent auxin transport and inhibited root
hair growth. Differently, exogenous ABA application reduced the intensity of membrane
PIN2 by suppressing PIN2 expression rather than by accelerating PIN2 degradation to elicit
the waving root growth trajectory [43]. At a concentration of 100 µM, SA stimulated PIN2
hyperclustering during gravitropism [32]. We treated Arabidopsis seedlings with 200 µM SA
and found that SA induced clathrin-independent mediated PIN2 degradation, suggesting
different effects of different SA dosages on PIN2 (Figure 4).

A growing number of studies have demonstrated the importance of endocytosis in
different physiological processes in plants [21]. Endocytosis that depends on the vesicle coat
protein clathrin or clathrin-mediated endocytosis (CME) is the most prominent endocytic
mechanism [21]. Cargo proteins can be endocytosed by the clathrin-dependent mechanism,
which is constitutively or ligand inducibly dependent on the large GTPase dynamin, or by
the clathrin-independent (CI) mechanism, which is either caveolarly and RhoA-regulatorily
dependent on the large GTPase dynamin, or CDC42- and ARF6-regulatorily independent
on the large GTPase dynamin [44]. CME not only functions in plant immune responses
but also plays an essential role in nutrient uptake and intercellular transport of auxin,
specifically in the internalization of the PIN family [21]. Auxin has been reported to
inhibit the internalization step of PIN2 [13]. Brassinosteroid (BR) signaling acted as an
antagonist of PIN2 endocytosis, thereby delimiting root gravitropism [45]. Now it is
generally accepted that there are different clathrin-independent mechanisms, some of them
regulated by ligands and membrane lipid composition [45,46]. In Arabidopsis, ABA can
employ asparagine rich protein (NRP)-dependent PIN2 vacuolar degradation to suppress
auxin-mediated primary root elongation [47]. In addition, high-level H2O2 can affect
actin dynamics and thus modulate ARF-GEF-dependent trafficking of PIN2 [48]. Recently,
protein phosphatase 2A (PP2A) was found to be a target of SA. SA binds to the subunit
of PP2A to repress its dephosphorylation activity toward PIN proteins, leading to the
hyperphosphorylation of PIN and a decrease in PIN activity, which subsequently decreased
auxin export and attenuated plant growth [34]. Further study has shown that the M3
phosphorylation site was required for the trafficking and biological roles of PIN1, 2 and
7 [49]. Therefore, PP2A possibly affects the phosphorylation state of PIN2 and then regulates
its trafficking. During pathogen-host interaction, SA showed inhibitory effects on PIN
endocytosis and influenced PIN-modulated root architecture in a concentration-dependent
manner [15,16,21,32]. A recent study also showed that SA induced membrane nanodomain
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compartmentalization and then suppressed clathrin-mediated PIN2 endocytosis [32]. We
found that 200 µM SA-induced clusters of PIN2 were not co-localized with CLC2 but
apparently co-localized with Rha1, suggesting that SA-induced PIN2 endocytosis might be
independent of the clathrin-mediated endocytosis pathway under higher SA conditions
(Figure 5A,B). A previous study suggested that the danger-associated peptide pep1 could
bind with the membrane-localized leucine-rich repeat receptor kinase PEPR1 and mediate
the trafficking of PEPR1 to the vacuole independent of TGN/EE [50]. The pep1 peptide
also induced the endocytosis of PIN2 [51]. Therefore, it is very possible that pep1 induced
the endocytosis of PIN2 independent of the clathrin-mediated endocytosis pathway.

Sphingolipids (SLs) are an important class of components on the membranes of
eukaryotic cells. Studies on human skin fibroblasts have shown that two glycosphin-
golipid (GSL) analogues were selectively internalized via a clathrin-independent pathway,
whereas another SL, sphingomyelin (SM), was internalized by both clathrin-dependent
and -independent mechanisms [52]. In myocytes and adipocytes, insulin increased glu-
cose transporter 4 (GLUT4) exocytosis through both clathrin-dependent and -independent
endocytosis pathways [53]. We found that PIN2 entered PVC in a clathrin-independent
manner and then entered the vesicle for degradation. Combined with a previous report that
PIN2 was endocytosed in a clathrin-dependent manner, our findings demonstrated that
PIN2 was endocytosed in both clathrin-dependent and non-dependent endocytosis [21].
These results all suggest that a class of substances or proteins can be endocytosed in both
clathrin-dependent and -independent manners.

Taken together, a high concentration of SA treatments not only inhibited root growth,
root hair development upon gravity stimulus and PIN2 transcription in the nucleus but also
modulated the vacuolar degradation of PIN2, possibly independent of clathrin-mediated
endocytic protein trafficking. Under low SA conditions, PIN2 is homogeneously distributed
on PM [32]. High SA directly inhibits the transcription of PIN2 and induces the compart-
mentalization of membrane nanodomain composed of a lipid-raft structure, which restricts
the lateral diffusive movement of PIN2. SA also binds to PP2A, which in turn, affects the
phosphorylation of PIN2. The constrained lateral movement of PIN2 causes its clustering
and suppressed endocytosis, independent of the clathrin-mediated membrane trafficking
pathway during gravitropism. SA can also cross-talk with ROS, which affects the actin
dynamics to modulate ARF-GEF-dependent trafficking of PIN2. Finally, PIN2 is sorted
from the plasma membrane to vacuolar independent of the clathrin-mediated membrane
trafficking pathway (Figure 6). The new mechanism of SA affected gravitropic root growth
and development via the regulation of PIN2 protein endocytosis provides a perspective
potential for the improvement of economic efficiency of economically important parasitic
crop plants [54].
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Figure 6. A speculative model of SA regulated auxin transport. High SA directly inhibits the
transcription of PIN2 and induces the compartmentalization of membrane nanodomain, which
restricts the lateral diffusive movement of PIN2. SA also binds to PP2A, which in turn affects
the phosphorylation of PIN2. The constrained lateral movement of PIN2 causes its clustering and
suppressed endocytosis independent of the clathrin-mediated membrane trafficking pathway. SA also
cross-talks with ROS, which affects the actin dynamics to modulate ARF-GEF-dependent trafficking
of PIN2. Finally, PIN2 is sorted from the plasma membrane to the vacuoles.

4. Materials and Methods
4.1. Plant Materials

Arabidopsis thaliana ecotype Col-0, the transgenic marker lines DR5-GFP [35], DII-
VENUS [36], ProPIN2:PIN2-GFP [37], CLC2-mCherry [38], Rha1-mCherry [39], and the gen-
erated PIN2-GFP×CLC2-mCherry and PIN2-GFP×Rha1-mCherry cross lines were used.

4.2. Growth Condition

Arabidopsis seeds were surface-sterilized and sown on 1/2MS medium containing 1%
(w/v) sucrose and 1.1% phytoblend (Caisson Labs, PTP01) agar (w/v). After vernalization
for 2 days at 4 ◦C, seeds were germinated at 22 ◦C under a 16:8 h light:dark period with
a light intensity of 150 µmol s−1m−2. Five-day-old seedlings were used for experiments,
except for those with specific indications.

4.3. Root Gravitropism Assay

Seedlings were vertically cultured for 3 days or 5 days on 1/2MS medium, and changes
in the angle of the root tip beyond the direction of vertical growth was measured using the
imageJ software.

4.4. Confocal Microscopy Analysis

Images were taken using an LSM-710 confocal microscope (Zeiss) equipped with an
argon/krypton laser. The excitation wavelengths for the GFP and mCherry signals were 488
and 587 nm, respectively. For the quantitative fluorescence intensity, the confocal pictures
were acquired using strictly identical acquisition parameters (laser power, photomultiplier,
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offset, zoom factor, and resolution) among each experimental seedling. For co-localization
analysis, the Co-localization Finder plugin of ImageJ was used.

4.5. Quantitative Real-Time PCR (qRT-PCR)

Total RNA was isolated from the Col-0 seedlings using Trizol reagent (Invitrogen).
Complementary DNA was synthesized using the M-MLV Reverse Transcriptase (Promega).
qRT-PCR was conducted using the SYBR Green I Master kit (Cham Q Universal SYBR
qPCR Master Mix, Vazyme) on a CFX Connect Real-Time System (Bio-Rad). All individual
reactions were carried out in triplicate. ACTIN2 (AT3G18780) was used as an internal
control. The primers used for qRT-PCR are listed in Table S1.

4.6. Statistical Analysis

All data were analyzed with Origin 8 and SPSS19. Two-tailed Student’s t-test was
used for statistical analysis.

5. Conclusions

The gravitropic root growth and root hair development of Arabidopsis seedlings under
high SA stress conditions were investigated. Exogenous application of a high concentration
of SA inhibited the gravitropic root growth and root hair development in a dose-dependent
manner. The inhibition resulted from both the down-regulated PIN2 transcription and
up-regulated PIN2 endocytosis. Further protein localization analyses in transgenic marker
lines indicated that the vacuolar PIN2 degradation might be independent of clathrin-
mediated endocytic protein trafficking. Our findings in this study reveal a new underlying
mechanism of SA-affected gravitropic root growth and root hair development regulated by
the endocytic trafficking PIN2 protein.
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