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In this contribution, the classification of protein binding sites using the
physicochemical properties exposed to their pockets is presented. We
recently introduced Cavbase, a method for describing and comparing
protein binding pockets on the basis of the geometrical and physicochem-
ical properties of their active sites. Here, we present algorithmic and
methodological enhancements in the Cavbase property description and in
the cavity comparison step. We give examples of the Cavbase similarity
analysis detecting pronounced similarities in the binding sites of proteins
unrelated in sequence. A similarity search using SARS Mpro protease
subpockets as queries retrieved ligands and ligand fragments accommo-
dated in a physicochemical environment similar to that of the query. This
allowed the characterization of the protease recognition pockets and the
identification of molecular building blocks that can be incorporated into
novel antiviral compounds. A cluster analysis procedure for the functional
classification of binding pockets was implemented and calibrated using
a diverse set of enzyme binding sites. Two relevant protein families, the
a-carbonic anhydrases and the protein kinases, are used to demonstrate the
scope of our cluster approach. We propose a relevant classification of both
protein families, on the basis of the binding motifs in their active sites. The
classification provides a new perspective on functional properties across a
protein family and is able to highlight features important for potency and
selectivity. Furthermore, this information can be used to identify possible
cross-reactivities among proteins due to similarities in their binding sites.
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Introduction

Protein function, in particular that of enzymes, is
often intimately connected with the recognition and
chemical modification of endogenous ligands, such
as agonists, antagonists, effectors and substrates.
This recognition usually occurs in well-character-
ized cavities or binding sites on the protein surface.
Due to the functional importance of protein binding
sites, there are several important applications of
their similarity analysis: (i) several studies have
demonstrated that there is not necessarily a
correlation between the fold and function of
proteins.1–4 Accordingly, similarity analysis of
binding sites can complement methods based only
on information about sequence and fold in the
d.
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functional annotation of protein structures. (ii) With
respect to the development of novel leads, the
knowledge about ligands and ligand fragments that
bind to structurally and physicochemically similar
(sub-) pockets in other proteins can provide import-
ant ideas for drug discovery, in particular with
respect to de novo design or the bioisosteric replace-
ments of molecular building blocks. (iii) We showed
recently that binding site similarities detected
between unrelated proteins can help to rationalize
and predict cross-reactivities.5 Different proteins
with similarities in their binding site recognition
properties may bind the same drugs. (iv) Further-
more, a classification of proteins based on the
similarities between their active sites can be derived.
This alternative taxonomy provides another perspec-
tive on the protein space and possibly highlights
relationships between proteins, including confor-
mational adaptations, that might not be apparent
using the well-established comparative tools.

There are several methods published in the
literature that compare protein structures and
detect common patterns between them. These
methods can be divided into two categories:
methods based on predefined common three-
dimensional templates comprised of several
amino acids,6–10 and methods that operate inde-
pendently of any reference template, mutually
comparing entire protein structures or predefined
regions of interest.11–31 Template-based methods
usually represent the amino acids by several
pseudo-atoms that encode the properties of the
amino acids. Based on these descriptors, they are
able to retrieve protein structures exhibiting similar
patterns. However, the search results will be biased,
to some extent, by the choice of predefined query
template. Methods that use the entire protein
structure or a predefined portion can range from
simple (e.g. Ca coordinates) to rather complex
descriptors such as Connolly surface points con-
taining geometric information (surface shape
descriptors) or physicochemical information
(amino acid type, hydrophobicity, electrostatic
potential). To identify common substructures
between assigned descriptors, different algorithms
such as geometric hashing,8,11–22 genetic algo-
rithms,27,28 graph matching algorithms,6,7,25,26,29–31

string matching,23,24 and searches in multi-index
structures10 have been used.

We recently introduced Cavbase, a method for
describing and comparing protein binding pock-
ets.32 Binding pockets on the protein surface are
detected automatically, and their physicochemical
properties are encoded by five generic descriptors
(assigned pseudocenters). A clique algorithm
detects similar arrangements of pseudocenters
between two cavities. Here, we present the optim-
ization of the physicochemical representation of a
binding pocket validated against experimental data
using an improved set of pseudocenter definitions,
we retrieved further examples showing structurally
and functionally related cavities independent of
fold and sequence homology. A similarity search
based on the individual subpockets of SARS Mpro

protease is used to demonstrate the scope of
Cavbase to characterize protein binding pockets
with respect to bound ligands and ligand frag-
ments. Once appropriate ligand fragments are
detected in subpockets of similar proteins, their
geometry may serve as guidelines for further
inhibitor design. All of the above-mentioned
methods for comparing protein structures focus
on the comparison of selected binding pockets or
query patterns against a database of protein binding
sites. Here, we extend themutual similarity analysis
by clustering a sample of protein cavities to
discover relationships between binding sites of
protein families. Such criteria will be used to
differentiate between protein families and, at the
same time, to detect similarities among entries
originating from the same protein family. To achieve
such a classification, a clustering procedure was
implemented and optimized. Finally, the classifi-
cation of two pharmaceutically relevant protein
families, the a-carbonic anhydrases and the eukary-
otic protein kinases, in terms of the Cavbase
taxonomy are presented.
Results and Discussion

Optimization of Cavbase property description

To assess the quality by which the pseudocenters
and surface patches in Cavbase describe the
interaction properties exposed to a binding site, the
Isostar database was consulted.33 In this database,
crystallographic data from the CSD34 and PDB35

have been collected in terms of scatter plots contain-
ing the distribution of certain contact groups around
a central group of interest, e.g. a functional group
found in an amino acid. This information was
evaluated to derive the definitions of the pseudo-
center positions, during the design of Cavbase.32

Since a stringent pseudocenter definition allowing
for fast binding site comparisons should be
achieved, the properties of some residues were not
described in full detail in our first implementation.
Therefore, we have reassigned the pseudocenter
definitions in amore elaborate fashion. For example,
the hydrogen bonding properties of cysteine were
not considered; nevertheless, the sulfhydryl group
can be involved in hydrogen bonding. McDonald
and co-workers found that cysteine rarely serves as
hydrogen-bond acceptor but often acts as hydrogen-
bond donor.36 Furthermore, cysteine is often
found as a catalytically relevant residue in protein
active sites.37 To account for its hydrogen bonding
ability, a donor center was added at the sulfur atom
of cysteine (Figure 1). In the case of methionine,
there seems to be no significant involvement of the
sulfur atom in hydrogen bonding. Accordingly, its
side-chain remains represented by one aliphatic
pseudocenter only .

The side-chains of asparagine, glutamine, aspar-
tate, glutamate, and arginine are able to form p–p



Figure 1. The expanded definition of pseudocenters in Cavbase. A donor pseudocenter (blue sphere) was introduced
at the side-chain of cysteine to account for the hydrogen bond donor properties of cysteine. Pi pseudocenters (orange
spheres) were introduced at terminal side-chains of asparagine, aspartate, glutamine, glutamate, and arginine, reflecting
their ability to form p–p interactions with neighboring functional groups, including those of ligands. Hydrogen bond
acceptor and aliphatic pseudocenters are shown as red and white spheres, respectively.
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interactions with neighboring functional groups,
including those of ligands. Such interaction proper-
ties are evident from the analysis of amino acids
exhibiting aromatic moieties,38,39 or from consulting
Isostar. The distribution of aromatic contact groups
around terminal amide groups shows a clear
preference for interactions perpendicular to a best
plane defined by the atoms of the amide group. To
represent these interaction properties, a pi pseudo-
center located at the carbon atom of the carboxylate,
carboxamide and guanidine group has been intro-
duced (Figure 1). The ability of carboxylate groups
to form p–p interactions is regarded to be weaker
than that of carboxamide groups.38 Nevertheless,
the analysis of crystal data gives clear evidence that
this type of interaction occurs. As a result, two of
the three pseudocenters assigned to the terminal
group of e.g. glutamine and glutamate, are recog-
nized as similar (Figure 1).
Overall validation of the Cavbase descriptors
using Drugscore

To further validate and assess the quality of the
pseudocenter and surface patch description in
Cavbase, a comparison with hotspots obtained by
Drugscore was performed.40,41,42 For this purpose,
Drugscore pair potentials were selected that corre-
spond to the physicochemical properties of the
pseudocenters. Gohlke et al. used the atom types
listed in Table 1.40 A set of 214 proteins obtained
from CCDC/Astex was used to compare the spatial
location of Drugscore hotspots with the Cavbase
surface description.43 The correspondence between
the Drugscore hotspots and the analogous cavity
surface patches in Cavbase was examined visually.
To evaluate the fit, the Drugscore hotspots were
projected onto the cavity surface. Good agreement
of the two descriptions was found. In Figure 2, the
cavity of a dihydro-orotate-dehydrogenase (PDB
code 1d3h) is displayed as a dotted surface together
with three different Drugscore hotspot regions
using three probe atoms (Drugscore atom type
N.3 (Figure 2-II), O.2 (Figure 2-III) and C.ar
(Figure 2-IV)). It is particularly notable that the
hotspots for directional interactions (hydrogen
bond donors and acceptors) are in very good
agreement with the Cavbase property description,
suggesting satisfactory representation by our
pseudocenter description.
Representation of the p interaction property
of aromatic amino acids

Our initial implementation of Cavbase con-
sidered the interaction properties of aromatic
moieties insufficiently, because the possible edge-
to-face interactions of aromatic moieties in amino
acid side-chains were neglected. To assess the
accessibility of residues to the cavity surface, the
angle enclosed by the two vectors v and r serves as
a criterion to decide whether a particular pseudo-
center is considered or discarded. The original cut-
off value of 608 assigned to p-interactions of
aromatic moieties was set too low to properly
account for edge-to-face interactions. Therefore,
two cut-off values were introduced, depending on
the origin of the pi pseudocenter. In the case of pi
pseudocenters originating from an aromatic side-
chain, the cut-off value was set to 1008, whereas in
the case of the pi pseudocenters originating from
peptide bonds, the 608 value still appeared valid.
The changes resulting from the readjustment of the



Table 1. Drugscore probe atoms used to analyze the corresponding physicochemical property in Cavbase

Drugscore atom type Cavbase property Hydrophobic/hydrophilic Physicochemical interaction type

C.3 Aliphatic Hydrophobic Aliphatic
C.ar Aromatic Hydrophobic Aromatic
O.3 Donor acceptor Hydrophilic Hydrogen bond acceptor and donor
O.2 Acceptor Hydrophilic Hydrogen bond acceptor
N.3 Donor Hydrophilic Hydrogen bond donor
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cut-off value are shown, using a hydrolase as an
example (Figure 3).

Searching for similar binding sites

Several examples of structural and physico-
chemical similarities between binding sites of
proteins unrelated in sequence are described in
the literature.20,23,28,32,44 The most prominent
example of functional similarities between pro-
teins from two distinct fold families is that of the
serine proteases trypsin and subtilisin. The two
Figure 2. Validation of property surface patches in Cavbase
Drugscore hotspots with the Cavbase binding site descripti
dehydrogenase (PDB code 1d3h). In (I) the Cavbase surface p
properties of the neighboring pseudocenters, are shown as do
bond acceptor (red), ambivalent donor/acceptor (green), hyd
(IV) display three types of Drugscore hotspots, together wit
corresponds to that of the related Cavbase properties (Drugsc
IV)). Drugscore hotspots that describe directional interactions
patches. The contour levels are calibrated for each atom type in
most favorable interaction areas.
proteins show low levels of sequential and
structural homology.32,45,46 However they catalyze
the same chemical reaction, which requires a
similar distribution of physicochemical properties
in their binding sites. As described in our
previous communication on Cavbase,32 the
approach is able to retrieve a cavity of the
trypsin family from a large set of diverse binding
pockets using a subtilisin cavity as a query, or
vice versa. In the following, we present further
examples of the retrieval of cavities from proteins
with similar function but distinct fold.
by comparison with Drugscore maps. A comparison of the
on is shown for the binding pocket of dihydro-orotate-
atches, annotated with respect to the five physicochemical
tted surfaces (color scheme used: H bond donor (blue), H
rophobic aliphatic (white) or aromatic/pi (orange)). (II) to
h the Cavbase surface. The color coding of the hotspots
ore atom type N.3 (red, II), O.2 (blue, III) and C.ar (orange,
match very well with the corresponding Cavbase surface
such away that 0.6% of the grid points are assigned to the



Figure 3. Consideration of edge-to-face interactions of aromatic moieties in the Cavbase binding site description and
similarity searches. The binding pocket of a hydrolase (PDB code 1tum) is used to demonstrate the influence of different
parameter settings for pseudocenters describing hydrophobic aromatic interactions, with respect to their exposure onto
the protein surface (color coding as in Figure 2). Two phenylalanine residues (carbon atoms colored orange) can
potentially perform edge-to-face interactions towards the cavity surface. Using the original angular parameter settings
(left), no interaction towards the cavity surface would be considered for either ring (violet areas). Recalibrating the angle
between the standard vector r and the mean orientation vector v to 1008 (right) allows the recognition of edge-to-face
interactions, and both pi pseudocenters can now expose their property onto the cavity surface (orange areas).
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NAD(P)-binding enzymes

The search for NAD(P) sites in a diverse set of
proteins is presented as an additional example of the
retrieval of binding pockets that bind the same
cofactor for a chemical reaction, but for which the
binding involves different amino acids. The bind-
ing site in UDP-galactose-4-epimerase (PDB code
1xel)47 was compared against dataset I (seeMaterials
andMethods). It is relatively large and encompasses,
besidesNADH, a binding site forUDP-galactose. The
epimerase catalyzes the conversion ofUDP-galactose
to UDP-glucose, simultaneously reducing NADC.
The product UDP-glucose is bound together with
NADH in the query structure. As expected, binding
sites hosting NADH were found amongst the most
highly scored cavities. The similarity across the entire
cofactor-binding site is quite pronounced, since the
same amino acids are involved in cofactor coordi-
nation and little structural variation is observed. As
an example, Figure 4 depicts the areas detected as
similar in the binding sites of the UDP-galactose-4-
epimerase and acyl-CoA-dehydrogenase (PDB code
1e6w). At subsequent positions in the cavity ranking,
binding pockets that accommodate related cofactors
such as S-adenosyl-methionine (SAM) and flavine
adenine dinucleotide (FAD) are detected.

Interestingly, the nucleotide-binding site of a
glucose oxidase (PDB code 1gal) is placed at rank
149 with bound FAD. The glucose oxidase shows no
sequence identity (19.7%) or structural fold simi-
larity to the query protein; however, the two
proteins possess similar sequence motifs, which
are involved in the coordination of the phosphate
backbone of the nucleotide.48 The UDP-galactose-4-
epimerase adopts a Rossmann fold, whereas the
glucose oxidase exhibits an FAD/NAD(P)-binding
domain fold. The amino acids involved directly in
cofactor binding are entirely different; nevertheless,
they expose similar physicochemical properties to
the cofactor binding site, successfully recognized by
Cavbase (Table 2). Figure 4 depicts areas detected as
similar in the two binding cavities.
SARS-coronavirus Mpro

The severe acute respiratory syndrome (SARS) is
an atypical pneumonia that originated in Southern
China and spread over 30 countries in the first half
of 2003. It is caused by a novel coronavirus (CoV),
the SARS CoV.49,50 The virus secretes the protease
Mpro (3C-like, 3CL), which exhibits an important
function in the viral life-cycle.51 Its inhibition
provides a promising therapeutic principle for the
development of anti-viral drugs against SARS. The
folding pattern of the CoVMpro is related to the fold
of serine proteases (chymotrypsin type),52,53 which
consist of two domains (I and II). Additionally, the
SARS CoVMpro exhibits a third helical domain. The
binding pocket at the interface between domain I
and domain II, comprising the residues of the
catalytic dyad (His45 and Cys145), is detected by
Ligsite. This pocket has been used for a subsequent
similarity search with Cavbase against dataset I. In
the reference crystal structure of SARS-CoV, a
peptidic inhibitor (1) (PDB code 1uk4)54 is bound.
Cavbase retrieves the human homologues of SARS
CoV Mpro, which are most highly ranked, followed
by other viral proteases such as human CoV,
transmissible gastroenteritis virus (TGEV) and the
tobacco etch virus. Interestingly, the rhinovirus 3C
protease with the bound inhibitor AG7088 (2) is
found at rank 13.55,56 In Figure 5, the superposition
of the SARS CoV Mpro and the latter rhinoviral
protease is shown. The residues comprising the
catalytic site and the main-chain substrate recog-
nition site are detected as similar in the two pockets.
Analogous side-chains of both inhibitors address



Figure 4. The nucleotide cofactor binding sites in UDP-galactose-4-epimerase (PDB code 1xel, grey carbon atoms) and
acyl-CoA-dehydrogenase (PDB code 1e6w, yellow carbon atoms) detected as similar by Cavbase. The NADH binding is
performed by virtually identical amino acids. In (I), the matching pseudocenters (color coding as in Figure 2) in both
binding pockets are shown, together with NADH. In (II), the matching amino acids are displayed in addition, suggesting
pronounced structural conservation between the two binding sites. The comparison of the UDP galactose with a glucose
oxidase (PDB code 1gal, yellow carbon atoms) reveals a case where the nucleotide cofactor binding is performed by
entirely different amino acids, although their physicochemical interactions are similar, and this is detected by Cavbase.
The matching pseudocenters and cofactors (NADH (1xel) and FAD (1gal)) in the two binding sites are shown in (III). In
(IV), the amino acids superimposed on the matched pseudocenters, are displayed.
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corresponding subpockets in the proteases,
and matching pseudocenters are superimposed
convincingly (RMSDZ1.046 Å). Even though the
Cavbase approach does not consider any coordinate
of bound inhibitors, the resulting alignment indi-
cates analogous side-chains of the two inhibitors
Table 2.Matched pseudocenters and amino acids in the bindin

UDP galactose-4-EPimease (1xel)

Pseudocenter type Corresponding amino acid

Donor Ile12 p
Pi Leu30 p
Acceptor Leu30 p
Acceptor Asp31 s
Acceptor Asp31 s
Donor Asn32 p
Donor Asn32 s
Donor Asn35 p
Donor-acceptor Ser36 s
Acceptor Gly57 p
Donor Ile59 p
Acceptor Gly82 p
Donor Lys84 p

The three-letter code is used for the amino acid, the number of the ami
or from the peptide bond (p).
addressing corresponding subpockets in the pro-
teases.

Over the following 200 ranks, cavities from
members of the serine protease family are fre-
quently found. The binding pocket of an a-lytic
protease (PDB code 6lpr) was the most highly
g sites of UDP-galactose-4-epimerase and glucose oxidase

Glucose oxidase (1gal)

Pseudocenter type Corresponding amino acid

Donor Leu29 p
Pi Ile49 p

Acceptor Ile49 p
Acceptor Glu50 s
Acceptor Glu50 s
Donor Ser51 p

Donor-acceptor Ser51 s
Donor-acceptor His78 s

Donor Gly99 p
Acceptor Gln248 p
Donor Val250 p

Acceptor Ala289 p
Donor Ala292 p

no acid and the origin of the pseudocenter, from the side-chain (s)



Figure 5. The superposition of the matched protein side-chains, pseudocenters and bound inhibitors from the
comparison of SARS Mpro (grey carbon atoms) and rhinovirus 3C protease (yellow carbon atoms). The SARS Mpro

inhibitor peptide 1 and the rhinoviral inhibitor AG7088 2 superimpose convincingly. On the left, the surface patches
found by Cavbase for the SARS protease are shown; on the right, those of the rhinovirus 3C protease are displayed. The
surface patches are color-coded according to the corresponding physicochemical properties (see Figure 2).
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ranked non-viral protein, at rank 14. The residues of
the catalytic dyad/triad, parts of the main-chain
recognition region and residues forming the oxya-
nion hole are matched. Accordingly, the areas
responsible for peptide cleavage reaction are
matched between the two proteases.

Similarity searching using SARS CoV Mpro

subpockets

The previous functional comparison was per-
formed using the complete binding site of SARS
CoV Mpro. To focus the analysis on subpocket
properties of SARS CoV Mpro (PDB code 1uk4), the
various subpockets were dissected and used as
individual query cavities (subpocket labeling
according to the human CoV Mpro structure (PDB
code 1p9u)).52 Once related subpockets were
matched in other proteins, the information about
ligand fragments bound in these structures can be
used to assist in the design of novel antiviral drugs.
The pseudocenters describing the properties of the
various subpockets were selected visually and their
accessibility was verified. The S1 subpocket is
described by a set of pseudocenters assigned to
the amino acid residues Phe140, Leu141, Ser144,
His163, Met165, Glu166, and His172, and the S2
subpocket is described by a set of pseudocenters
assigned to the amino acid residues His41, Met49,
Met165, Asp187, Arg188, and Gln189 (Figure 6). The
S1 subpocket of the SARS protease exhibits a polar
character, whereas the S2 subpocket possesses a
more aromatic and aliphatic character. The S3
pocket has been ignored, as it is highly solvent-
exposed. Since the S4 pocket is partially solvent-
exposed and forms a rather shallow subpocket, it is
not well suited for a similarity analysis using
Cavbase. Accordingly, it has not been considered
in the similarity searching. The S1 and S2 subpock-
ets were compared against dataset I.
The first 250 ranked cavities of each similarity

search were inspected visually and the bound
ligands of the matched binding sites were classified
into seven generic groups according to their



Figure 6. Representation of the SARS CoV Mpro S1 (I) and S2 (II) subpockets, with the physicochemical properties of
the adjacent pseudocenters mapped onto the surface (color coding as in Figure 2). The considered pseudocenters were
selected in such a way as to fully characterize each subpocket. The S1 subpocket exhibits a stronger polar character,
whereas the S2 subpocket exhibits an aliphatic-aromatic character.

‡ The protein kinases from the serine/threonine
(2.7.1.37) and the tyrosine subfamily (2.7.1.112) are
regarded as one enzyme family.
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chemotype (Figure 7): ligand fragments with an
alcohol/acid group, with a basic group (e.g. amine,
guanidine), with a phosphate group, with a sugar
group, with an aliphatic group, with an aromatic
group, or with heme groups (Table 3). This strategy
allows classification of the subpockets in terms of
the physicochemical properties of the ligand
fragments that are found in each subpocket.

In case of the S1 subpocket search, 87 binding
sites that host a ligand fragment that spatially
superimposes on the side-chain of glutamine of the
peptidic SARS inhibitor could be identified within
the first 250 ranks. The majority of the retrieved
ligand fragments exhibit a polar character, rep-
resented by sugar or phosphate groups or by ligand
moieties with basic character (e.g. amino or
guanidino groups). The physicochemical properties
of the detected ligands match well the cleavage
preference of the SARS CoV Mpro. Substrates to
be cleaved by CoV Mpro have glutamine in this
position.51

A total of 118 cavities could be identified within
the first 250 hits of the S2 subpocket search that
contained a ligand fragment that spatially super-
imposes on the side-chain of the peptidic SARS
inhibitor. The analysis of the chemotypes of the
retrieved ligands reveals that, in this subpocket, the
bound ligands possess predominantly aliphatic and
aromatic character, e.g. alkyl chains, phenyl, imida-
zole, or pyrimidine rings. According to the cleavage
preference of the SARS protease, leucine is pre-
ferred at this position. In the SARS CoV Mpro

structure used as a reference, the peptide inhibitor
adopts an unusual binding mode. The P3 amino
acid residue (threonine) fills the S2 pocket, whereas
the P2 residue (leucine) points towards the solvent.
Interestingly, in our cavity search 12 ligands
composed of serine-like or threonine-like fragments
are discovered, and all superimpose convincingly
on the threonine residue found at this position in
SARS CoVMpro. The additional polar alcohol group
seems to be tolerated at this position.
The affinity of 2, and analogous compounds,
towards SARS CoV Mpro was determined. Whereas
2 shows no inhibition, closely related analogs of 2
exhibit IC50 values in the two-digit micromolar
range.57 Analysis of the fragments that occupy the
S2 subpocket in the most active members of this
series reveals phenyl and isopropyl groups at this
position. Additionally, Yang et al. could solve the
crystal structures of SARS CoV Mpro with several
inhibitors based on the skeleton of 2, with
phenylalanine or leucine side-chains filling the
corresponding S2 pocket.58 The results from the
similarity analysis performed by Cavbase are in
excellent agreement with these subsequently pub-
lished experimental findings.

We could further utilize the results of the Cavbase
similarity search and subpocket characterization in
the design of a library of peptide aldehydes.84 The
most potent compounds show IC50 values in the
one-digit micromolar range.
Classification of protein families
Validation of clustering procedure

A cluster analysis based on Cavbase similarities
can be performed using different combinations of
clustering algorithms, with appropriately set clus-
tering parameters, and the three Cavbase scoring
functions. First, an optimal clustering setup had to
be found. A dataset of 105 cavities from 13
functionally diverse enzyme families was used to
calibrate the clustering procedure. In Table 4, the
PDB codes, the considered protein families and the
EC codes, together with the SCOP superfamily and
family, are listed‡. All entries from one enzyme
family belong to the same SCOP subfamily;



Figure 7. Analysis of the ligands and ligand fragments found in the 250 best ranked binding pockets that could be
superimposed with the peptidic SARS inhibitor using the SARS CoV Mpro S1 and S2 subpockets as query cavities in a
Cavbase similarity search. The ranking was performed using the R1 scoring function. The binding pockets are classified
according to seven generic chemotypes, by which the bound ligand is characterized (Table 3).
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therefore, similarities in sequence and in the folding
pattern are found across the family members. Each
protein entry was checked carefully to include only
the “catalytic” cavity into the dataset; i.e. the
cavities comprising the known catalytic residues.

The Cavbase similarity scores do not obey the
prerequisites for an optimal similarity metric,
which requires reflexivity (cavity A is similar to
itself), symmetry (if cavity A is similar to cavity B,
then cavity B is similar to cavity A), and transitivity
(if cavity A is similar to B and cavity B is similar to
cavity C, then cavity A is also similar to cavity C).
Therefore, their suitability for a cluster analysis
should be investigated. Whereas the first two
properties are met, the transitive term is not
necessarily met. In total, 12 different combinations
of algorithms and scoring functions (four clustering
algorithms together with three Cavbase scoring
functions) were systematically evaluated as setup
for clustering. One crucial parameter in clustering is
the definition of the number of predefined output
clusters. This value defines the level of detail to
which the clustering process will analyze the data.
A low number of clusters will merge dissimilar
cavities into one cluster, whereas too large a number
will likely obscure the detection of patterns in a
dataset, and lead to the generation of many
singletons. In principle, any completed hierarchical



Table 3. Statistics on the chemotype of the ligands and ligand fragments found in highly scored binding pockets, taking
the S1 and S2 subpockets of SARS CoV Mpro as queries

Occurrence

Bound ligand chemotype S1 subpocket S2 subpocket

Ligands with basic groups (amines) 16 4
Aliphatic ligands 4 28
Ligands with phosphate groups 19 2
Ligands with sugar groups 21 8
Aromatic ligands 6 49
Ligands with heme groups or derivatives 8 15
Ligands with alcohol or acid functional group 13 12
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clustering allows the determination of the optimal
number of clusters by interactive slicing of the
clustering tree. The current test set covers 13
different protein families; therefore, to determine
an optimal number of clusters, the following 13
values were tested: 8, 10, 12, 13, 14, 15, 16, 17, 18, 20,
22, 26, and 30. In total, 156 clustering setups (12
clustering schemes with 13 different numbers of
clusters) were evaluated, and the Rand statistic
scores (see equation (3)) were computed for all
cases. The clustering results based on different
clustering algorithms and Cavbase scoring func-
tions were very similar overall. Accordingly,
virtually all clustering setups were able to dis-
tinguish between the 13 different protein families.
A cluster analysis based on sequence similarities,
with 13 clusters, reveals clear separation of the 13
protein families (data not shown). In sequence
space, this result appears self-evident; however, a
high level of sequence similarity is not necessarily
accompanied by a high level of structural similarity
of binding sites. Even entries from the same protein
Table 4. Test set of 105 proteins from 13 diverse protein fami

EC number SCOP family SCOP pro

1.1.1.21 Aldo-keto reductases Aldose re

1.1.1.42 Dimeric isocitrate & isopropylmalate
dehydrogenases

Isocitrate

1.14.13.2 FAD-linked reductases, N-terminal
domain

p-Hydrox

2.7.1.37 Protein kinases, catalytic subunit Kinases (s

2.7.1.112 Protein kinases, catalytic subunit Kinases (t
2.7.4.9 Nucleotide and nucleoside kinases Thymidyl

3.4.21.62 Subtilases Subtilisin

3.4.23.20 Pepsin-like Acid prot

4.2.1.1 Carbonic anhydrase Carbonic

4.4.1.11 Cystathionine synthase-like Methionin
5.3.1.5 Xylose isomerase D-Xylose i

5.4.2.1 Cofactor-dependent phosphoglycerate
mutase

Phosphog

6.3.2.3 Eukaryotic glutathione synthetase Glutathio
6.3.2.9 MurCD N-terminal domain D-Glutam

The EC code, the SCOP family and protein annotation and the PDB
can have dissimilar binding pockets, e.g. if different
conformational states are observed.

Two clustering setups (rb/R1 and agglo/R2)
achieve an optimal clustering solution, reproducing
the external clustering exactly (Table 5). Both
Cavbase clusterings show a clear separation in
different subfamilies, and all of the 13 clusters
contain cavities from only a single enzyme family
(Figure 8). If a higher number of clusters is used,
enzyme families are separated into different sub-
groups (e.g. different protein kinase subfamilies,
thymidylate kinase), while still separating the
different enzyme families. The clustering solutions
do not depend strongly on the individual scoring
schemes applied, with all three scoring schemes
producing consistent results. In the analysis of the
current dataset, the R1 and R3 scoring schemes
perform slightly better than the R2 scoring scheme.
With respect to the various clustering algorithms,
the agglo and the partitional methods perform very
well, whereas the graph-partitioning (graph) is
slightly worse (Table 5). However, 154 of the 156
lies used to validate the Cavbase clustering procedure

tein PDB codes

ductase 1ads 1ah0 1ah3 1ah4 1az1 1az2 1ef3
1eko 2acr 2acs 2acu

dehydrogenase 1ai2 1ai3 1bl5 1cw1 1gro 1grp 8icd 9icd

ybenzoate hydroxylase 1bf3 1cj2 1cj3 1d7l 1ius 1pxa 1pxb

erine/threonine) 1bkx 1atp 1cdk 1ydr 1hck 1ckp 1b38
1gol 1phk 1csn 1fin 1fin 1erk 3lck 1p38

yrosine) 2src 1ir3
ate kinase 1e9a 1e9b 1e9c 1e9d 1e9e 1gtv 1tmk

2tmk 3tmk 4tmk 5tmp
1au9 1bfu 1bh6 1c3l 1c9j 1sua 1sud
1sue

ease 1apt 1apu 1apv 1apw 1bxo 1bxq 2wed
3app

anhydrase 1cil 1g52 1g54 1i90 1azm 1bzm 1flj 1keq
1urt

e gamma-lyase 1e5e 1e5f
somerase 1xii 1xyc 1xym 5xim 5xin 6xia 6xim

9xia 9xim
lycerate mutase 1bq3 1bq4 1e58 1e59 1qhf 4pgm

ne synthetases 1glv 1gsa 1gsh 2glt
ate ligase MurD 1eeh 1uag 2uag 3uag 4uag

codes for each family are listed.



Table 5. Summary of the 20 best combinations of Cavbase
scoring function, cluster algorithm, and number of output
cluster according to the Rand statistic score

Rand
statistic

Cavbase scor-
ing function

Clustering
algorithm

Number of out-
put clusters

1.000 R1 rb 13
1.000 R2 agglo 13
0.998 R3 rb 13
0.997 R3 agglo 14
0.997 R2 agglo 14
0.997 R1 agglo 14
0.997 R1 rb 12
0.997 R1 rbr 13
0.996 R3 agglo 15
0.995 R2 rb 13
0.995 R3 rbr 13
0.994 R3 rb 12
0.994 R2 agglo 12
0.994 R1 agglo 12
0.993 R3 rbr 12
0.993 R1 rbr 12
0.992 R1 agglo 15
0.991 R3 agglo 16
0.991 R1 agglo 13
0.990 R3 agglo 17
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clustering setups yield Rand statistic scores greater
than 0.90, showing a significant congruence
between the Cavbase and the expert classification.
On the basis of the results obtained using this test
set, and considering the experience with other data
sets (see below), it is suggested that the partitional
clustering (rb and rbr) or the agglomerative (agglo)
algorithms together with either Cavbase scoring
function R1 or R3 provide optimal results. The latter
method tends to produce one very large cluster
comprised of cavities from different protein families
if the number of output clusters used is too low.
However, it performs best in conjunction with a
high number of clusters (e.g. greater than 17). As a
rule of thumb, the predefined number of presumed
clusters should be set close to the expected number
of protein families in a dataset.

Obviously, Cavbase is able to differentiate
between heterogeneous protein families. In the
following case study, the scope of our approach in
classifying homologous protein families is investi-
gated using a-carbonic anhydrases and eukaryotic
protein kinases.
§CA isozymes and corresponding PDB codes used in
the present study: CA-I (1azm, 1bzm, 1czm.2, 1hcb), CA-
II (1cil, 1g52, 1g54, 1i8z, 1i90, 1a42, 1if4, 1if8, 1bcd, 1ca2),
CA-III (1flj), CA-IV (1znc, 2znc, 3znc), CA-V (1dmx,
1dmy, 1urt, 1keq), CA-XII (1jcz, 1jd0).
Classification of a-carbonic anhydrases

At present, the carbonic anhydrase (CA) gene
family contains 14 active members. Their basic
physiological function is linked to the conversion of
carbon dioxide to bicarbonate. They participate in a
variety of physiological processes that include
pH regulation, carbon dioxide and bicarbonate
transport, as well as water and electrolyte balance.59

CAs originating from the animal kingdom are all of
the a-type. The different CA-a isozymes possess
a similar architecture of a twisted ten-stranded b
sheet. However, they show different levels of
sequence identity. The active site is formed by a
large cone-shaped cavity with a zinc ion at the
bottom. The metal ion is coordinated tetrahedrally
by three histidine residues and, most likely due to a
pKa shift, a hydroxide ion. The residues involved in
the zinc binding are invariant.59 Crystal structures
are available for six of the 14 families.
According to the SCOP database (version 1.65) a

total of 173 CA structures belonging to the CA a
superfamily have been deposited with the PDB. The
majority of these entries are part of the CA II class.
A dataset of 24 catalytic cavities was extracted from
the PDB, including examples of all six isozyme
classes§. A consistent classification of these entries
is obtained a priori, by consulting the SCOP and
ENZYME databases together with general infor-
mation about CA isozymes.
In good agreement with the previously described

overall enzyme classification, the results for the CA
dataset show the best separation using the R3

scoring function, together with rb clustering.
Nevertheless, the other scoring functions and
clustering algorithms also suggest a similar classi-
fication (Figure 9). Convincing clustering on the
subfamily level is achieved. The classifications
obtained differ mainly with respect to the assign-
ment of the only CA-III cavity (PDB code 1flj) in the
dataset. By defining a sufficiently large number of
expected output clusters, this entry would form a
singleton.
Following strategies I, II and III, cavities from

different CA-II crystal structures are grouped into
two distinct clusters. This separation originates
from different conformers adopted by these CA-II
entries. Cavities found in the two clusters differ
with respect to the conformation of His64. It is
known that this residue is mobile and plays an
important role in the catalytic mechanism of CAs as
a proton shuttle.60 It can adopt distinct “in” and
“out” conformations, and Cavbase distinguishes
between the CA-II entries showing the two
alternative conformations. In the present dataset,
1bcd and 1ca2 exhibit the out conformation.
Four CA-I cavities are included in the dataset;

however, one of them (PDB code 1hcb) performs
differently from the other three. It is separate in
terms of the Cavbase similarity score from the other
three CAs. Seemingly, the automatically extracted
cavity for this entry is considerably larger than that
for the other three; this is indicated by a very
high self-similarity score. Nevertheless, all four
combinations of clustering strategies suggest this
cavity to be very close to the CA-I cluster formed by
1azm, 1bzm, and 1czm (Figure 9 I–III).
The binding sites of CA-IV (PDB codes 1znc,

2znc, 3znc) exhibit a general similarity to other CA
isozymes (e.g. CA-II); however, there are some



Figure 8. An optimal Cavbase clustering solution of the enzyme test dataset. Optimal clustering is achieved based on
13 predefined output clusters. The rb clustering algorithm and scoring function R1 were used. The mutual similarity of
the binding cavities, computed by the scoring function R1, is indicated by the intensity of the red color (dark red,
pronounced similarity, white, no similarity). Cavbase separates entries from the different protein families into distinct
clusters.
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differences. Most notably, the residues of the Val131
to Asp136 loop adopt a conformation pointing
towards the solvent in CA-IV, whereas an a-helical
conformation is found in other CA isozymes. This
helix is directed towards the binding site.
A Cavbase comparison of CA-II and CA-IV cavities
reveals no similarity in that region. Out of the three
CA-IV cavities in the present dataset, one originates
from humans (PDB code 1znc) and two are of
murine origin (PDB code 2znc and 3znc). They



Figure 9. Clustering results for the a-CA isozymes, using four different parameter settings. In all cases, the number of
output clusters was set to eight. In (I), (II), and (III), the clustering algorithm rb was used, together with the scoring
schemes R1, R2, and R3, respectively. Mutual similarities are expressed by the intensity of the red color (see Figure 8). The
different scoring schemes produce consistent results and suggest a reasonable clustering. In (IV), the clustering based on
the agglo algorithm, in combination with scoring scheme R1, is shown. It tends to produce several singletons early and
seems to merge many entries into one large cluster. By predefining a larger number of clusters, this large cluster would
be decomposed into several smaller clusters.
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share a sequence identity of 56%. Several substi-
tutions are found in the active sites (e.g. K91V,
M67E, S65T, I141F) of the different species. Further-
more, the cavity from 1znc is significantly smaller
than the other two. Despite these deviations,
scoring scheme R3 places all three CA-IV cavities
into the same cluster (Figure 9).

Cavbase detects similarities among all four
considered CA-V cavities (PDB codes 1dmx,
1dmy, 1urt, 1keq). Depending on the clustering
strategy, the CA-V cavities end up in different
subclusters (Figure 9). The dataset comprises
two wild-type CA-Vs (1dmx and 1dmy) and two
double mutants (1keq (F65A/Y131C) and 1urt
(Y64H/Y131A)). The areas detected to be similar
in the two wild-types and in the wild-type and the
mutant cavities are shown in Figure 10. The
different physicochemical properties of the mutated
amino acids cannot be matched. Nevertheless, all
CA-V binding sites have enough similarity to be
clustered together.

Classification of protein kinases

Protein kinases form a huge gene family and
account for 1.7% of all entries in the human
genome.61 Their catalytic domains share sequence
and fold homology (protein kinase fold); never-
theless, they exhibit a rich diversity of regulation
modes and substrate specificities.62–64 The ATP-
binding site is located at the interface between
the two kinase fold subdomains (lobes). Since



Figure 10.Areas matched between the binding sites of two CA-V wild-type entries (left) (PDB codes 1dmx and 1dmy)
and between a wild-type and a mutant isozyme (right) (PDB codes 1dmy and 1keq). For reasons of clarity, only the
corresponding pseudocenters, the bound zinc ions (violet spheres) and the sulfonamide inhibitor (1dmy), together with
the three histidine residues involved in zinc binding, are shown (color coding as in Figure 2). Additionally, on the left, the
phenylalanine and tyrosine residues are displayed (carbon atoms in magenta), that were mutated to alanine and
cysteine, respectively. The pseudocenters of the mutated amino acids cannot be matched; but Cavbase still detects
pronounced similarities in the binding site.
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kinases are involved in the regulation of many cell
signaling pathways, they provide attractive targets
in disease therapy, e.g. cancer, angiogenesis, neuro-
logical diseases, and inflammation.65–67 In 2001, the
first low-molecular-mass ATP-competitive inhibitor
(Imatinib, Gleevecq) was introduced to the market
as a potent agent against chronic myelogenous
leukemia (CML). This success underlines the fact
that, even though ATP pockets are rather homolo-
gous, they can be addressed selectively by small
molecules. Currently, a vast number of medicinal
chemistry projects are being carried out in industry
to target the ATP-binding site of different kinases
with ATP-competitive inhibitors.67–70 To analyze
the performance of our Cavbase cluster analysis, the
dataset used by Naumann and Matter71 was used
and extended by additional MAP kinases to
comprise 30 kinase cavities in total¶.

The classification obtained by Cavbase, using the
R1 scoring function, the rb clustering method and
predefining six clusters, is shown in Figure 11. The
clusters (along the diagonal from the bottom-left
to the top-right) consist of cavities extracted
from the mitogen-activated protein kinases (MAP)
of the p38a (cluster A) and Erk2 (cluster B),
¶ The dataset comprised the kinase ATP binding sites
from the following proteins: PKA (1bkx, 1atp, 1cdk, 1bx6,
1stc, 1ydt, 1yds, 1fmo, 1ydr), different Ser/Thr kinases
(1phk,1csn), Tyr kinases (1ir3, 1fgi (chain A and chain B),
2src, 3lck), CDK2 (1ckp, 1b38, 1hck, 1fin (chain A and C),
and MAP kinases (1gol, 1erk, 1p38, 1pme, 3erk, 4erk,
1bmk, 1a9u,1bl7).
cyclin-dependent protein kinases (CDKs) and src
kinase (cluster C), the fibroblast growth factor
receptor kinases and tyrosine kinases (cluster D),
the serine/threonine kinase subfamily (cluster E),
and the cAMP-dependent protein kinase subfamily
(cluster F) (Figure 11). Cavbase is able to separate
the different kinase subfamilies automatically,
notably considering structural information about
the kinase binding sites only, and not about the
entire proteins.

Our Cavbase clustering results match well with
the landscape analysis of Naumann and Matter
using a GRID/cPCA approach. Furthermore, our
results are in good agreement with classifications
based on CATH or SCOP and with additional
information based on multiple sources accom-
plished by manual intervention. A similar cluster-
ing based on sequence similarities separates all 30
entries into different protein kinase subfamilies.
However, besides the overall agreement of the
clustering in sequence and cavity space, there are
some important differences. One notable discre-
pancy concerns the consideration of distinct acti-
vation states of the kinases. These can be captured
in cavity space but remain unresolved in sequence
space.

For example, the activation of CDKs requires two
steps: binding of cognate cyclin, followed by
phosphorylation of a threonine residue (Thr160) in
the activation loop. Cavbase is able to distinguish
between CDKs in the two activation states. The five
CDK cavities present in the dataset are grouped
into one cluster, which further divides into one



Figure 11. Cavbase clustering for a kinase dataset of 30 cavities (see Figure 8). The R1 scoring function and the rb
clustering algorithm were used to generate six distinct clusters. Cavbase differentiates between the 30 kinases at the
subfamily level. The clusters (along the principal diagonal from bottom-left to top-right) comprise cavities from the
mitogen-activated protein kinases (MAP) of the (a) p38a and (b) Erk2 subfamilies, (c) the cyclin-dependent protein
kinases (CDKs) and src kinase, (d) the fibroblast growth factor receptor kinases and tyrosine kinases, (e) the serine/
threonine kinase subfamily, and (f) the cAMP-dependent protein kinase subfamily.
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subcluster containing active CDKs (1fin chain A
and chain C) and one containing inactive CDKs
(1b38, 1ckp, 1hck). Such differences cannot be
detected in sequence space.

The Cavbase analysis helps to establish relation-
ships between different protein kinase families in
terms of binding site regions that are common
and those that differ between families. For
example, similarities among the MAP kinase
cavities from the Erk2 and p38a subfamilies are
detected convincingly. However, differences are
also well captured. Figure 12 shows a super-
position of two different MAP Erk2 kinase cavities
and of a MAP Erk2 and MAP p38-a cavity. The
two Erk2 kinases exhibit a high level of similarity.
The areas detected as similar comprise almost
the entire cavities, including the ATP-binding
pockets, and extend towards the activation loop.
In contrast, the similarity between the Erk2 and
p38-a structures is substantially smaller and
limited to the adenine-binding region. In particu-
lar, areas next to the hinge-binding region are
found to be similar. They are addressed by
recurring hydrogen bonding motifs in small-
molecule inhibitors targeting the ATP pocket.
Accordingly, the Cavbase analysis intuitively
helps to locate the selectivity-discriminating
regions among binding pockets from related
proteins. Of particular interest in this respect are
spatial similarities across binding pockets that
reside in proteins with low levels of sequence
identity. The criteria for comparison in Cavbase
focus on the spatial arrangement of physicochem-
ical properties, and not on the actual amino acids
along the polypeptide chain. For example, the
cavities of two cAMP-dependent kinases (1cdk
and 1atp) from pig and mouse are more distinct
in sequence space than in cavity space (Figure 11);
in the latter they are closely related. The
phosphorylase kinase (1phk) shares only a low
degree of sequence identity with the cAMP-
dependent kinases (w23%). Interestingly, in cavity
space its binding pocket shows pronounced
similarity to the cAMP-dependent kinases
(Figure 13). Furthermore, it shows similarities to
the sequentially unrelated casein kinase (1csn).



Figure 12. Superposition of MAP kinase binding sites. On the left, a superposition of two Erk2 kinases (PDB code 1erk
and 1gol) is shown. Large portions of the binding sites are recognized as being similar. On the right, a superposition of an
Erk2 kinase (PDB code 3erk, carbon atoms colored gray) and a MAP p38a kinase (PDB code 1bl7, carbon atoms colored
yellow) is displayed. In both pictures, the matching pseudocenters and the hinge backbone protein atoms are displayed
(color coding as in Figure 2). Based on the similar hinge binding region, Cavbase superimposes both inhibitors
convincingly. In both cases, the hinge coordination via the hydrogen bond from the pyrimidine nitrogen atom of the
inhibitor to Asp104 (Erk2) and His107 (p38a) is detected.
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Such analyses can support the design of selective
inhibitors and suggests sets of kinases among
which ligand cross-reactivity can be expected.
Figure 13. Superposition of phosphorylase kinase (PDB
code 1phk) and cAMP-dependent kinase (PDB code
1atp). The matching pseudocenters and bound ATP
molecules are displayed (color coding as in Figure 2).
The two cavities show extensive similarities in the entire
ATP binding pocket, comprising areas next to the hinge
region and the adenosine binding site, as well as the DFG
motif and parts of the activation loop.
Conclusion

Here, we present important algorithmic and
methodological enhancements of Cavbase. The
approach compares and classifies proteins in
terms of binding-site exposed physicochemical
properties responsible for the recognition of poten-
tially bound ligands. For this purpose, Cavbase
assigns to all binding-site residues pseudocenters
that encode the recognition properties of the
residue’s functional groups in the binding pocket.
Furthermore, surface patches are assigned to the
pseudocenters to measure their accessibility by
potentially bound ligands. The quality of the
attempted binding pocket comparison in Cavbase
relies highly on the completeness, relevance and
reliability of the spatial placement of the pseudo-
centers. To enhance this description, pi pseudocen-
ters representing p interactions putatively
performed by the amino acids containing terminal
carboxy, carboxamide, and guanidino groups were
introduced. Furthermore, the hydrogen bond donor
capabilities of cysteine are now considered. In order
to account for the edge-to-face interactions of
aromatic moieties, the angular parameters for the
exposure of pi centers were adjusted. Enhance-
ments to the clique algorithm for the binding site
comparisons resulted in a significant reduction of
the time needed for binding site analysis, thereby
facilitating large-scale comparisons of binding
pockets. Additional examples of the discovery of
functional similarity of proteins, despite low levels
of sequence and fold homology, are presented. In a
case study, the potential of Cavbase as a design tool
has been demonstrated. Antiviral leads targeting
the SARS cysteine protease have been assembled on
the basis of the results of a Cavbase similarity search
using the individual subpockets of the target
protease as input query. Interesting hits are
suggested as putative occupants of the protease
subpockets. The retrieval of ligands and ligand
fragments bound in a similar physicochemical
environment permits a better characterization of
the SARS protease recognition pockets. Com-
pounds that were selected using this information
and subsequently synthesized showed micromolar
inhibition of the protease. 84

Furthermore, it is demonstrated here that
Cavbase provides a novel taxonomy to classify
proteins. A selected set of cavities is clustered in
terms of their mutual cavity similarity. A clustering
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procedure that allows for the fast and automatic
classification of large datasets has been
implemented. Using a test set of various enzyme
structures, optimal settings for clustering could be
determined. Cavbase clustering reveals a reliable
separation of various dataset entries into individual
clusters representing different protein families. The
novel technique is applied to two pharmaceutically
relevant protein families: the a-carbonic anhydrases
and the eukaryotic protein kinases. Cavbase dis-
tinguishes successfully between different protein
subfamilies and produces a meaningful clustering.
In the case of the CAs, Cavbase achieves full
separation into single subfamilies. Manually ana-
lyzing the indicated relationships across the CA
subfamilies elucidates clustering in terms of con-
formational states and mutational differences. The
classification of the protein kinases also resulted in a
clear differentiation between the distinct kinase
subfamilies. Furthermore, Cavbase succeeds in
separating kinase subfamily structures into distinct
activation states. This again emphasizes the sensi-
tivity of our approach towards conformational
differences among binding pockets. Relationships
between kinase subfamilies, such as the Erk2 and
p38a subfamilies of the MAP kinases, could be
established; regions of the binding sites that are
common to the different subfamily cavities, and
regions where the essential features differ, are
identified. The detection of structurally similar
areas of the binding sites of sequentially unrelated
kinases helps to identify examples where cross-
reactivity due to these structural similarities could
be expected.
Materials and Methods
Cavity detection and property description

Cavbase is a method for describing and comparing
protein binding pockets in terms of exposed physico-
chemical properties.32,72 It is a modular extension of the
protein-ligand database RelibaseC,73–75 and the version
used in this study contains data for 80,661 binding
pockets extracted from 22,885 proteinss. Protein binding
sites are detected using the Ligsite algorithm.76 The
protein under consideration is embedded into a regularly
spaced Cartesian grid with 0.5 Å spacing. Any grid
points, represented by 1.5 Å diameter probe spheres,
that penetrate into the van der Waals sphere of protein
atoms are discarded and classified as solvent-inaccessible
grid points. For the remaining points, the degree of burial
in the protein binding pocket is determined, and
neighboring grid points with a high degree of burial are
merged together to form contiguous cavities, following
the procedure described by Schmitt et al.32 All surface-
contacting grid points of such a cluster, apart from the
sRelibase is accessible on the web from http://
relibase.ccdc.cam.ac.uk, http://relibase.ebi.ac.uk, or
http://relibase.rutgers.edu. RelibaseC and Cavbase are
distributed by the Cambridge Crystallographic Data
Centre (CCDC), Cambridge, UK, www.ccdc.cam.ac.uk
non-buried ones oriented towards the solvent, are used to
approximate the cavity surface. Any amino acid with at
least one atom closer than 1.1 Å to a surface-contacting
grid point is defined as a cavity flanking residue.
The physicochemical properties of the amino acid

residues flanking the cavity are encoded in terms of
pseudocenters, which represent appropriate 3D descrip-
tors. Each of these pseudocenters is defined as a point in
3D space and is associated with one of the following
properties determinant for molecular recognition: hydro-
gen bond (HB) donor, HB acceptor, mixed HB donor/
acceptor, hydrophobic contact, aliphatic contact or
aromatic contact. This condensed representation allows
for efficient similarity searching on the basis of a reduced
set of input variables.
In a subsequent filtering step, only the pseudocenters

that can expose their property onto the cavity surface are
retained. Two vectors, v and r, are calculated for each
pseudocenter. The first vector, v, reflects the mean
orientation along which a particular interaction could be
formed, whereas the second vector, r, points towards the
cavity surface. The angle enclosed by the two vectors
serves as a criterion for determining whether a particular
pseudocenter is considered in the analysis or discarded.
Pseudocenters for which this angle is greater than the
predefined cut-off value (donor and acceptor, 1008;
donor/acceptor, 1208; aromatic (pi), 608)32 are considered
unable to expose their property towards the cavity
surface, and are discarded from the set of pseudocenters
that define the cavity. Finally, all surface-contacting grid
points describing the cavity surface are assigned to the
nearest pseudocenter (providing this is within 3 Å). Thus,
the properties of the pseudocenters are mapped onto
surface patches describing the exterior of the cavity.
Increasing the speed of computational binding
site comparisons

One prerequisite for the large-scale clustering analysis
of protein cavities is an algorithm that is able to compute
similarities between binding sites in a fast and efficient
way. In principle, Cavbase can perform such compari-
sons. However, even though a mutual comparison of two
binding cavities is easy to compute, a large-scale
comparison across huge cavity datasets will be very
demanding and hardly feasible. A clique algorithm is
applied to detect common substructures between two
cavities.77 The clique algorithm operates on the product
graph P, which has to be constructed beforehand. A node
(u,v), consisting of a pair of pseudocenters from two
binding sites, is inserted into P if the two pseudocenters
have comparable labels (pseudocenter types).32 Two
nodes (u,v) and (u 0,v 0) in P are connected if the
corresponding pseudocenter pairs fulfill the following
conditions:

ðiÞ dðu; vÞ%dmaxodðu0; v0Þ%dmax

the distance between both pseudocenters in each cavity
has to be smaller than dmax (default value: 12 Å, thus
considering, in particular, local patterns) and:

ðiiÞ jdðu; vÞKdðu0; v0Þj%ddiff

the difference between both distances has to be smaller
than a predefined tolerance value ddiff (2 Å in the original
approach). Since the computing time of the clique
algorithm depends strongly on the number of connected
nodes in the product graph P, one strategy to accelerate
binding site comparisons is the reduction of the number

http://relibase.ccdc.cam.ac.uk
http://relibase.ccdc.cam.ac.uk
http://relibase.ebi.ac.uk
http://relibase.rutgers.edu
http://www.ccdc.cam.ac.uk


Table 6. During the clique detection the shorter distance
of two pseudocenter pairs is used to adjust the value for
the acceptance tolerance (ddiff) in a distance-dependent
manner

Shorter distance between the two
pseudocenters pairs (Å)

Tolerance distance
ddiff (Å)

10.0–12.0 2.0
8.0–10.0 1.6
4.0–8.0 1.2
2.0–4.0 0.8
!2.0 0.6

a http://pymol.sourceforge.net/
bG. Karypis (2002). CLUTO—a clustering toolkit

(release 2.1 http://glaros.dtc.umn.edu/gkhome/views/
cluto). Technical Report 02-017, University of Minnesota,
Department of Computer Science.
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of connected nodes in P. The tolerance value ddiff is
therefore assigned in a distance-dependent fashion. The
shorter distance of the two pseudocenter pairs is used to
adjust the value for ddiff. It adopts lower values if at least
one of the distances is small, thereby reducing the number
of connected nodes.
A predefined number (default 100) of the largest clique

solutions is accepted and further evaluated by scoring them
according to the degree of spatial overlap between
corresponding cavity surface patches. The following
scoring procedure is applied to every accepted clique
solution: The two binding sites are superimposed based on
the matching pseudocenters found in the clique detection
(Table 6). In addition to the matching pseudocenters
detected in the clique detection, every pseudocenter pair
assigned to the same physicochemical property is analyzed
in terms of the surface patch overlap. This is done to
potentially improve the initial clique solutions. The surface
patch overlap for each pseudocenter pair is calculated by
summing the relative frequency of surface grid points of
both surface patches that fall next to each other below a
distance threshold of 1.0 Å. A match is considered to
contribute to the overall binding site similarity only if at
least 70% of the surface points of the matching surface
patches are shared in common, toavoid the considerationof
strongly fragmented surface patches. The R1 scoring value
for the comparison of two binding sites is calculated by
summing all surface patch overlap values of the pseudo-
center pairs that pass the overlap criterion. These pseudo-
centers represent the physicochemical properties shared by
both cavities. Only themost highly scored clique solution is
considered further.32 Approximately 80% of the compu-
tational effort in a binding site comparison is spent on the
scoring process. Accordingly, we sought to accelerate the
evaluation of the degree of overlap of two surface patches.
Since the surface patch overlap is determined for all
pseudocenter pairs assigned to the same type, it is even
determined if both patches are very distant from each other
and cannot be superimposed fulfilling the criteria
mentioned above. Obviously, this is the case if the distance
between the corresponding pseudocenters is too large;
these comparisons have to be avoided. Therefore, only the
surface patches corresponding to pseudocenters that fall
within 4 Å of each other are considered further. Using these
heuristics, the speed of a binding site comparison could be
enhanced 40-fold.
Two alternative scoring schemes have been used to

rank the best scored superposition according to R1.
Scoring scheme R2 (equation (1)) reflects, in addition,
the root-mean-square deviations (RMSD) of the coordi-
nates of the n matching pseudocenters.32 It disfavors
fragmented non-contiguous clique solutions that obtain
an artificially high R1 score. Scoring scheme R3 (equation
(2)) is calculated analogously to the Tanimoto index.78
It accounts for the number of matched pseudocenters,
nmatch, but normalizes the score with respect to the total
size of the cavities, expressed by the total number of
pseudocenters npseu1 and npseu2, respectively.

R2 Z
R1K0:7n

RMSD
(1)

R3 Z
nmatch

npseu1 Cnpseu2Knmatch

(2)

This latter score is further normalized to a value in the
range zero to 1; accordingly, it adopts a value of 1 if a
cavity is compared with itself.
For the graphical analysis of cavities and superposi-

tions of two cavities, Cavbase has been equipped with an
interface to Pymola.
Cavity clustering procedure

Each cavity in the dataset is compared to all other
cavities. For each one-to-one comparison, Cavbase
returns three similarity scores, according to the three
schemes described above. The resulting scores are stored
in a similarity matrix that serves as input for various
clustering algorithms. Four different clustering algor-
ithms, as implemented in the clustering toolkit CLUTOb,
were used. These consisted of two partitional (rb and rbr),
one agglomerative (agglo), and one graph-partitioning
(graph) method. The rb and rbr methods split the dataset
into two groups. These groups are then repeatedly split
further, until a predefined number of output clusters is
obtained. The rbr method incorporates, in addition to the
procedure of the rb method, a final global optimization
step. The agglo method initially regards each single object
as an individual cluster (“singleton”), and sequentially
merges the two most similar clusters into a new cluster.
The similarity of the newly created cluster with respect to
all the others is calculated using the unweighted pair
groupmethod with arithmetic mean (UPGMA) approach,
which evaluates the distance between two clusters by
averaging over the similarities of all the pairs of objects
that can be formed between the two clusters. In the graph
method, the objects are described as nodes of a graph.
Nodes are connected if they are nearest neighbors. During
clustering the graph is dissected into subgraphs, whilst
attempting to minimize the number of edges that are
broken. In combination with the different clustering
algorithms, agglomerative merging schemes can be
applied to obtain a hierarchical tree structure for the
different clustering solutions. This allows for an intuitive
navigation through the clustered solutions and supports
the detection of relationships. All methods were used
with the default settings provided by CLUTO.
In total, 12 different combinations of clustering options

were evaluated, combining four different clustering
algorithms with three different Cavbase scoring schemes.
In this initial validation study, the quality of the different
Cavbase clusterings has to be assessed. To allow for an
independent assessment of the quality and relevance of
the obtained clustering of our method, we considered
enzyme structures: In this case, we can refer to the

http://pymol.sourceforge.net/
http://glaros.dtc.umn.edu/gkhome/views/cluto
http://glaros.dtc.umn.edu/gkhome/views/cluto
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enzyme classification (EC) code to estimate the function
of a protein.79 The four-part EC code contains information
about the catalyzed reaction and the substrates or
cofactors used, and therefore classifies enzymes accord-
ing to their biochemical function. To compare the quality
of a cluster model A with a reference model B, so-called
external evaluation measures can be used.80,81 In our case,
the reference model B corresponds to a grouping defined
by the external (expert) classification in terms of EC
numbers.
Awell-known and frequently used evaluation measure

is the Rand statistic, which is defined as follows:

QðA;BÞZ
Nss CNdd

Nss CNsd CNds CNdd

(3)

whereNss is the number of pairs of elements (x,y) that are
put in the same cluster in both A and B. Likewise, Nsd is
the number of pairs (x,y) that are put in the same cluster in
A but in different clusters in B, Nds is the number of pairs
(x,y) that are put in different clusters in A but in the same
cluster in B, and Ndd is the number of pairs (x,y) that are
put in different clusters in both A and B. In other words,
Q(A,B) is simply the fraction of pairs on which the two
partitions A and B agree. The Rand statistic scores can
adopt values between zero and 1, where higher values
mean a higher level of similarity between A and B.
SCOP-based and sequence-based clustering

The Cavbase classification was compared to sequence-
based and SCOP(Structural Classification of Proteins,
version 1.65)-based classification schemes, in order to
assess the relevance of our clustering. The SCOP database
classifies proteins using sequence-comparison and fold-
comparison techniques; however, this is accomplished by
manual annotation.82 A hierarchical classification is
constructed to reveal relationships between different
proteins. Since SCOP classifies proteins at the domain
level, the corresponding domain entries for the protein
cavities were determined, and the SCOP superfamily and
family annotations were used to assess the Cavbase
classification.
For the sequence-based clustering, the sequences of the

considered proteins were extracted using RelibaseC.
Subsequently, they were mutually aligned using FASTA
3.5 with standard settings.83 Sequence identity values
provided by FASTA were normalized to values between
zero and 1, and used to construct a similarity matrix.
Subsequently, the same clustering procedures as those
used for the Cavbase similarity scores were applied.
Cavity datasets used for similarity searching

Cavbase detects multiple depressions on the protein
surface that might serve as ligand binding sites. To focus
on relevant binding sites only, the following pragmatic
filter was applied. Only cavities with a bound ligand
comprising between five and 75 non-hydrogen atoms
were considered further. This filter enhances the prob-
ability that the sites considered are relevant to the binding
of small-molecule ligands. Such sites consist, in particular,
of catalytic cavities, which usually have co-factors,
substrates or inhibitors bound. Applying these criteria
to the Spring 2003 version of the PDB database returned
9446 binding pockets (dataset I).
Drugscore analysis and contour level adjustment

To validate the spatial assignment of physicochemical
properties in Cavbase, a validation set of 214 protein
complexes was compiled. The bound ligand was
extracted from the original PDB protein file, stored in
MOL2 format and used as input for Drugscore (version
1.2). The binding site was defined as being comprised by
the residues surrounding the bound ligand within a 6 Å
radius. To allow for a comparison of the binding site
properties in terms of the exposed physicochemical
properties described by Cavbase or Drugscore, the
original grid defined by Ligsite was used to calculate
Drugscore hotspots.40 Since the same grid has been used
for both evaluations, a superposition of the results of both
binding analyses is given. For each protein in the
validation set, Drugscore hotspots were calculated and
compared visually with the Cavbase surface patch
description. Drugscore hotspots were scaled to values
between zero and 100, where 100 denotes areas of
favorable interaction. To allow for a comparison of the
different hotspot fields, an iterative procedure was
applied to determine an appropriate contour level for
each probe. Starting from a contour level of 100, this value
was decreased gradually until 0.6% of the total grid
points were considered for contouring. This level was
adjusted empirically and revealed contoured regions that
are probably larger than those used for a hotspot analysis
in inhibitor design. However, the hotspot analysis
indicates regions in space suited to accommodating a
ligand functional group.
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