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Abstract

Background: Model-based virtual screening plays an important role in the early drug discovery stage. The
outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such
models. Besides a strong performance, the interpretability of a machine learning model is a desired property to
guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to
have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule
coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the
visualization approach colors each atom and bond of a compound according to its importance for activity.

Results: We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum
unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and
structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding
pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach
assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring
enables the identification of substructures important for the binding of an inhibitor.

Conclusions: In combination with heat map coloring, linear support vector machine models can help to guide the
modification of a compound in later stages of drug discovery. Particularly substructures identified as important by
our method might be a starting point for optimization of a lead compound. The heat map coloring should be
considered as complementary to structure based modeling approaches. As such, it helps to get a better
understanding of the binding mode of an inhibitor.

Background
High-throughput screenings (HTS) play an important
role in the early drug discovery stage. The data of these
HTS are a valuable, but challenging resource for
machine learning algorithms to infer predictive struc-
ture-activity relationship models for virtual screening
[1]. In later stages of drug discovery, a lead compound
is optimized for desired biophysical properties. However,
as a lead compound becomes increasingly tailored to a
target, there is generally less tolerance for introducing
changes without an intrinsic affinity penalty [2]. Thus,
besides a strong performance, the reasons that lead to a
prediction of a compound as active or inactive is impor-
tant for a medicinal chemist in lead optimization.

Recent examples of interpretable methods applied to
cheminformatic problems include Naïve Bayes, decision
trees, and k-nearest neighbor approaches. Bender et al.
[3] applied Bayesian learning to radial atom environ-
ments and used the information gain to assess the
significance of a substructure. Han et al. [4] trained
decision trees on several PubChem HTS data sets.
Swamidass et al. [5] introduced the Influence Relevance
Voter, an interpretable method based on a supervised
artificial neural network in combination with a k-nearest
neighbor approach. Recently, Mohr et al. [6] employed a
potential support vector machine (SVM) in combination
with a maximum-common subgraph kernel to predict
the genotoxicity of a compound.
Using a two step procedure, Mohr et al. labeled the

atoms of a compound as important or unimportant for
genotoxicity. First, the design of the potential SVM
allows for the assignment of weights to atoms. Second,
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based on the weights, an atom is classified as important
for genotoxicity if a predefined threshold is exceeded.
Linear SVMs in combination with sparse molecular

fingerprints showed a convincing performance on sev-
eral large-scale data sets [7]. In contrast to their non-
linear counterpart, linear SVMs are no black box
concerning interpretability because they do not perform
a nonlinear mapping from the input space to a high-
dimensional feature space. Linear SVMs learn a linear
discriminant function, which assigns a weight to each
fingerprint feature of the input space. Recent studies
[8,9] indicate that the interpretation of linear SVM mod-
els is possible for small regression data sets. Both
approaches exploited the weights of a linear support
vector regression model to extract patterns which are
important for activity or selectivity against a certain pro-
tein target.
The aim of this study is to present a visualization

method that allows for the interpretation of linear SVM
models of large-scale data sets. We use the weights of
the linear discriminant function to assign a score to
each atom or bond of a compound. Based on these
scores, a color is assigned to each atom or bond of a
compound. We tested the visualization approach on the
Kazius Ames toxicity data set [10], the chromosome
aberration data set compiled by Mohr et al. [6], and the
maximum unbiased validation data sets [11].
The results show that our method is able to sensibly

visualize the structure-property and structure-activity
information of a linear SVM model. The heat map
visualization can be combined with structure based
modeling approaches to gain a better understanding of
the binding mode of a compound and therefore help
medicinal chemists in lead optimization.

Methods
Nonlinear vs. linear SVM models
A virtual screening data set of l compounds can be
represented as a set of l labeled fingerprints of com-
pounds (xi, yi), i = 1, ..., l, xi = (xi1, ..., xim), xij Î ℝ, yi Î
{-1, +1}. In the case of binary substructure fingerprints,
each xij Î {0, 1} is an indicator for the presence or
absence of a pattern (or fingerprint feature) j in com-
pound i. Every compound is labeled either as active (yi
= +1) or inactive (yi = -1). SVMs learn a discriminant
function of the form

f (x) =
∑

xi∈SV

αik (xi, x) =
∑

xi∈SV

αiφ(xi)
Tφ (x) =

⎛
⎝ ∑

xi∈SV

αiφ (xi)

⎞
⎠φ (x) = wTφ(x), (1)

where SV = {xi|ai > 0} is the set of support vectors, k
is the kernel function and j is a mapping from the
input space to a high-dimensional feature space. In gen-
eral, the actual mapping j is unknown. The kernel k

implicitly performs the mapping and the calculation of
the dot product � (xi)

T � (x). Thus, in case of nonlinear
SVMs, it is impossible to assess how a certain training
set feature xij contributes to the kernel similarity k(xi ,
x). Hence, nonlinear SVMs are a black box concerning
interpretability.
In case of linear SVMs, the mapping j is the identity,

which results in a linear discriminant function of the
form

f (x) = wTx, (2)

where the weight vector w = (w1, ..., wm) is optimized
such that the separating hyperplane defined by f(x) has
maximum margin. The discriminant function is
employed to predict the class sign(f(x)) of an unknown
sample. The value of f(x) is called prediction value.
Compounds with a prediction value close to zero are
close to the separating hyperplane. Consequently, the
classification can be interpreted as less certain.
The weight vector w can be expressed by

w =
∑

xi∈SV

wi =
∑

xi∈SV

αiyixi. (3)

Hence, the weight vector w contains the weighted fea-
tures of the support vectors. The SVM assigns an a > 0
if the compound is necessary for class separation. Thus,
a compound i which contains no information for class
separation will have ai = 0. Its features xij will not have
a weight wj ≠ 0 unless another compound with an a > 0
also contains the pattern. Additionally, the weight wij =
aiyixij of a feature of a compound with ai > 0 is positive
if the class of a compound xi is labeled active (yi = +1)
and negative otherwise.
The linear discriminant function f(x) in combination

with binary substructure fingerprints is equivalent to the
Free-Wilson formulation in chemometrics [12,13]. The
Free-Wilson formulation assigns each pattern pj a
weight wj according to its contribution to activity. In
contrast to the Free-Wilson formulation, a linear SVM
model is a classification model and not a regression
model. Thus, the weight of a feature does not represent
the actual contribution to binding affinity, but the rela-
tive importance of a feature. Still, a linear SVM model
can in principle be interpreted in the same way as a
Free-Wilson model. A pattern with large positive weight
is expected to be important for activity of a compound
while a pattern with large negative weight should repre-
sent inactive or non relevant parts of a molecule. A pat-
tern with a weight close to zero should be unimportant
for class separation.
A more detailed description of maximum-margin

based classifiers can be found in Schölkopf and Smola
[14] for further reading.
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Molecular Encodings
For structure-based classifiers, it is common to encode
the molecular graph of a compound with binary finger-
prints for large-scale learning tasks in cheminformatics.
Each bit of a fingerprint indicates the presence or
absence of a fingerprint feature. The specific choice of
molecular encoding is crucial to obtain an interpretable
linear model. The employed encoding must ensure that
the set of atoms or bonds which a fingerprint feature
represents is available while calculating the molecular
encoding. Consequently, the weight of a fingerprint fea-
ture can be mapped back to those atoms or bonds. The
mapping from sets of atoms or bonds to fingerprint fea-
tures needs not to be injective. If a collision occurs, the
weight of a feature is mapped to all sets of atoms or
bonds that caused the collision. Common molecular
encodings that generate interpretable features are radial
atom environments [3], depth first search paths [15], or
extended connectivity fingerprints (ECFP) [16].
We employed a variant of the ECFP to encode the

molecules because ECFP features are intuitively inter-
pretable and can be mapped back to the topology of a
chemical graph. Each ECFP feature of a fingerprinted
compound represents a circular substructure around a
center atom. The algorithm starts with the initial atom
identifier (in our case Daylight invariants [17]) of the
center atom and grows a circular substructure around
this atom. This growing can be done implicitly, like in
the original algorithm, or explicitly, like in our variant.
In the original algorithm the identifiers of the alpha
atoms of a center atom are used to calculate an updated
identifier for the center atom. In each iteration, the
identifiers of the previous iteration are used as atom
identifiers. This iterative procedure implicitly grows a
circular substructure around the center atom because
with an increasing number of iterations the updated
identifier of a center atom contains information from
further and further away. Our variant does the growing
of a substructure explicitly by keeping the circular sub-
structures of the previous iteration and their possible
attachment points in memory. In each iteration the cir-
cular substructures are extended at their possible attach-
ment points using the initial atom identifiers (Figure 1).
Both ECFP variants generate an ECFP feature for each
possible center atom and iteration. We evaluated the
performance of both ECFP variants and could not
observe a significant difference. We employed our var-
iant because the information contained in a feature is
defined more precisely.
To be able to look up the substructure information of

an ECFP feature, we saved the mapping from fingerprint
feature identifiers to circular substructures while calcu-
lating the fingerprints of a data set. Due to the hashing,
which is conducted to assign a fingerprint feature

identifier, it is possible that a features identifier maps to
several different substructures. However, collisions can
be minimized by choosing a sufficiently large hash space.

Heat map molecule coloring
To allow a medicinal chemist to interpret a linear
model, it is intuitive to color each atom or bond of a
molecule according to its importance for activity. This
coloring is achieved by the heat map molecule coloring.
Another intuitive approach to interpret a linear model

is to select all patterns that exceed a certain weight
threshold, as done in a study by Fechner et al. [8]. Their
pattern selection approach proved to be useful on small
data sets which share a common scaffold. However, pre-
liminary experiments showed that the approach does
not lead to interpretable results on large, diverse chemi-
cal data sets of assay outcomes, especially for external
predictions. The top 5 ranked patterns (examples for
several employed data sets can be found in Additional
file 1) mostly had a significantly higher precision than
expected by chance. However, the chance to find a sig-
nificantly predictive pattern drops considerably with
decreasing rank. Even for data sets with a promising
performance (AUC > 0.9), the chance to find a singular
predictive pattern in the set of selected patterns (weight
≥ 3 × s) for the training set is small (p < 0.3). This
probability drops considerably for the test set. A reason
for this low probability might be that several patterns

Iteration 0 Iteration 2Iteration 1

Center atom

Figure 1 Illustration of the ECFP. Each circular substructure
around a center atom represents an ECFP feature. The circular
substructure is grown in each iteration at the attachment points A.
Any atom can be matched on an attachment point. Aromatic
bonds are marked by a dashed line.
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that by themselves cannot separate the two classes well
might separate the classes better if combined [18]. For
example, two patterns can perform perfectly random on
their own, but can perfectly separate both classes if
combined. However, combining patterns can not be
accomplished by a method that inspects single patterns
separately. Another reason can be the redundancy of the
ECFP. The SVM might split the importance (weight) of
a substructure among the redundant patterns that repre-
sent it.
Consequently, the patterns appear less important than

they actually are. This problem is circumvented by the
heat map coloring technique because it integrates the
information of all training patterns. Hence, the impor-
tance of all redundant patterns that represent a certain
substructure is fused in the coloring of a molecule.
Additionally, in a chemical compound, patterns with dif-
ferent weights might overlap, making the interpretation
unintuitive. In contrast, the information of overlapping
patterns is integrated and intuitively visualized by the
heat map coloring approach.
The inputs of our method are a previously trained lin-

ear SVM model, a list of compounds of interest and
possibly the whole training data set depending on the
employed normalization. Our method can be divided
into two separate steps. First, our algorithm assigns a
score to each atom and bond of a molecule based on
the weights of the linear SVM model. Second, the scores
are transformed to a color on a color gradient.
In this manuscript, we only performed bond coloring.

Thus, we only explain the calculation of bond scores.
The calculation of scores is analogous for atoms and
bonds. Hence, the presented calculation of bond scores
can be easily transferred to atoms if needed. We had
two reasons for solely using bond coloring. Firstly, the
ECFP focuses on connectivity information which can be
better visualized using bond coloring. Secondly, we
wanted to allow for easy element identification by using
element type atom coloring. For a different fingerprint-
ing algorithm, like radial atom environments, atom col-
orings might be more useful. To assign a score to each
bond, our algorithm fingerprints the compounds of
interest or the whole training data set again. Through-
out the fingerprinting process the information, which
bonds a fingerprint feature represents in a certain com-
pound, is stored. Based on the weights of the fingerprint
features, a score is assigned to each bond of a com-
pound. The score of a bond b is equal to the sum of
weights of the fingerprint features that contain the bond
(Figure 2). Thus, the score sb of a bond b is

sb =
∑

{f |b∈B(f )}
w

(
f
)
, (4)

where B(f) is the set of bonds a feature f represents
and w(f) is the weight of a feature f as found in the lin-
ear SVM model. In the case of ECFP features, the bonds
to attachment points are included in the set of bonds a
feature represents. Now, each bond of a processed com-
pound has a score according to the weights of a trained
linear SVM model. Therefore, the SVM model is
responsible for assigning sensible weights if a smaller
sub-fragment occurs in larger activating and non-
activating fragments.
The score of a bond can not be transformed to a color

directly. The score needs to be normalized to [0,1],
which is achieved by

s′b =
sb − smin

smax − smin
, (5)

where smax and smin are the maximum and minimum
score found, respectively. Two different normalizations
are possible depending on how smax and smin are chosen.
The first method (full set normalization) chooses smax

and smin to be the maximum and minimum score found
throughout the fingerprint calculation on the whole
training data set and the compounds of interest. The
second approach (single molecule normalization) sets
smax and smin to the maximum and minimum score
found in the current compound.
Both normalizations have advantages and disadvan-

tages. The full set normalization keeps the information of

Bond b

w
j

-1.8 0.6 -0.5

p
j

...

s
b
= -1.8 + 0.6 - 0.5 + ...

Figure 2 Illustration of pattern to bond weight mapping. The
weight wj of a pattern pj is added to the score sb of a bond b if the
bond is contained in the pattern pj. Attachment points A can be
mapped on any atom. Aromatic bonds are marked by a dashed
line.
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the prediction value differences between compounds.
Generally, a compound with a larger prediction value has
larger atom and bond scores. The relative differences of
scores between compounds are not changed by the full
set normalization. Thus, the relative differences in their
prediction value are kept. A disadvantage of the full set
normalization is that small differences between scores of
a compound might not be visible. If the difference
between two scores of a compound is small compared to
the maximum score of the whole data set, then the differ-
ence is even smaller after normalization. Furthermore,
the whole training data set needs to be fingerprinted
again, which can take a considerable amount of computa-
tion time for large data sets. In contrast to the full set
normalization, the single molecule normalization visua-
lizes small differences in the scores of a compound bet-
ter. Furthermore, the computation time is fast because
only the compounds of interest need to be processed.
The main disadvantage of the single molecule normaliza-
tion is that the coloring does not contain any information
about the overall activity because only differences within
the molecule are taken into account.
Another normalization aspect concerns the calculation

of the bond score sb. In our implementation we do not
take the fragment size of a fingerprint feature into
account. To take the fragment size into account, the
contribution of a fragment to a bond score sb is divided
by the number of bonds in the fragment. Thus, the
weight of a feature is equally distributed among the
bonds associated with the feature. This weight distribu-
tion lowers the influence of large fragments on the bond
score sb. However, putting the focus on smaller frag-
ments might be less suited for large, diverse HTS data
sets, where the scaffold is most important. Additionally,
experiments (not shown) indicated that in case of the
ECFP, the colorings are smoother without equal distri-
bution of weights. Thus, we decided not to use equal
weight distribution for our visualization.
After normalization to [0,1], a score can be transformed

to a color on a color gradient. We use a color gradient
from red over orange to green, where red represents the
negative class and green represents the positive class. The
whole gradient can be divided into two sub-gradients, one
from red to orange and another one from orange to green.
The first sub-gradient is used if 0 ≤ s′b < 0.5, the second
one if 0.5 ≤ s′b ≤ 1. The two sub-gradients result in a
smooth gradient from red to green when combined. Each
sub-gradient is realized by mixing each color channel (R,
G, B) of the two sub-gradient colors according to the nor-
malized bond score s′b:

Rmix =
{(

1 − 2s′b
)

Rr + 2s′bRo if 0 ≤ s′b < 0.5
2

(
1 − s′b

)
Ro +

(
2s′b − 1

)
Rg else

, (6)

where Rr, Ro, and Rg are the values of the R color
channel of the respective gradient colors red, orange,
and green. The colors are mixed for each color channel
separately and the resulting color (Rmix,Gmix,Bmix) is
assigned to the respective bond.

Experimental
Virtual screening data sets
We conducted evaluation experiments on 17 maximum
unbiased validation (MUV) data sets, an Ames toxicity
data set (Kazius), and a chromosome aberration (CA)
data set. A detailed analysis was conducted for the
Kazius data set and two of the MUV data sets.
First, we employed the 17 MUV data sets compiled by

Rohrer et al. [11] with their corresponding background
data sets. Each of these data sets comprises 30 dissimilar
active compounds together with 15,000 inactive com-
pounds, which are similar to the actives with respect to
several simple descriptors like volume, solubility, or
mass. The MUV data sets are designed to avoid artifi-
cially high screening performance by inappropriate
decoys. Additionally, the common spread of actives can
have a positive impact on the interpretability of a model
because the chance of overfitting a model on a small
cluster of similar actives is minimized. Two of these
data sets, MUV548 and MUV846, were subjected to a
detailed analysis. MUV548 contains inhibitors of protein
kinase A as actives and MUV846 contains inhibitors
against factor XIa.
Second, we used the mutagenicity data set composed

by Kazius et al. [10]. It comprises 2401 mutagenic and
1936 non-mutagenic compounds based on the Ames
toxicity test. Kazius et al. derived 29 toxicophores from
the data. Using these toxicophores, they could predict
the toxicity of an external test set with an accuracy of
85% which is close to the theoretical limit of the Ames
toxicity test. The authors provide a list of well defined
toxicophores and demonstrate their predictive power on
several compounds.
Third, we employed the CA data set compiled by

Mohr et al. [6]. This data set consists of 351 positive
and 589 negative compounds with respect to the chro-
mosome aberration test. Mohr et al. achieved an accu-
racy of 89.5% on 10 predefined cross-validation folds.
The data set was included because the authors’ method
provides visual structure-activity information on several
compounds of the data set.

Experimental setup
All data sets were prepared according to the guidelines
by Fourches et al. [19]. The structures were canonica-
lized and transformed with JChem Standardizer [20].
The options of Standardizer were set to neutralize,
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tautomerize, aromatize, calculate clean 2 D coordinates,
and add explicit hydrogens. Explicit hydrogens were
added because CDK [21], the core library of the
employed fingerprinting algorithms, requires correctly
attached hydrogens bonded to an atom. Then, all
employed data sets were checked for duplicates and fin-
gerprinted using the ECFP variant with a depth of four
and a hash space size of 222 to minimize collisions.
To evaluate the performance on each data set, we

used a 5-fold two-deep cross-validation [22] which was
repeated two times. We employed the large-scale linear
SVM LIBLINEAR [23] to train a linear SVM model. On
the CA data set we also performed an evaluation on the
10 defined splits of Mohr et al. The SVM parameter C
and the weight of the negative class W-1 were searched
using a 2-fold cross-validation.
For C we chose the grid log2(C) Î {-5, -4, ..., 7, 8} and

for W-1 we used the grid log2(W-1) Î {-4, -2, 0}. We also
discarded uncommon features from the data before
building the model. A feature had to occur at least 3
times to be included in the training. For the detailed
heat map coloring analysis we used the whole data set
to train a model and only left the compound of interest
for analysis out. The same C and W-1 grids were used.
We employed two different measures to evaluate the

performance on the data sets. First, the accuracy (ACC)
was computed, which is the number of correctly pre-
dicted compounds divided by the total number of com-
pounds. The accuracy is only applicable for balanced
data sets like the Kazius and CA data set. Second, we
employed the area under the ROC curve (AUC). The
ROC curve plots the fraction of correctly predicted
actives (true positive rate) against the fraction of inac-
tives incorrectly predicted as actives (false positive rate)
for every possible threshold. The AUC is applicable for
all used data sets. The higher the value of both mea-
sures, the better is the performance.
All employed PDB structures were prepared with the

protein preparation wizard of Schrödinger 2010 [24].
The settings of the preparation wizard were set to the
default settings.

Results and Discussion
The results of the analysis of the 19 employed data sets
are organized as follows. First, we present the perfor-
mance on the employed data sets. Then, we briefly
explain, why we selected MUV548, MUV846, and the
Kazius data set for a detailed analysis and visualization.
Finally, we demonstrate and discuss the heat map mole-
cule coloring method on those three selected data sets.

Selection of data sets for visualization
We selected the three data sets of the detailed analysis
by two criteria. First, the performance of a linear model

trained on a data set must be reasonably good because
the predictive performance of a model should be crucial
to obtain sensible structure-activity relationships. Sec-
ond, to be able to validate the results of a visualization,
literature information on structure-activity relationships
of the target of a data set must be available.
The linear SVM could predict the CA data set on the

10 predefined splits with an accuracy of 72% (Table 1),
which is comparable to the nonlinear SVM performance
reported by Mohr et al. Although the performance of the
linear SVM is considerably worse than the method of
Mohr et al. (89,5%), we chose to further analyze this data
set because Mohr et al. provide visualizations of several
compounds of the CA data set. We predicted all com-
pounds that were illustrated in their study externally. All
of them were either predicted wrong or had a prediction
value close to zero and thus were not convincing predic-
tions. The heat map coloring showed few overlap with
the substructures identified by their visualization method,
which is presumably due to the 17% lower accuracy and
therefore more inaccurate model. Hence, the predictive
performance of a model seems to be crucial to obtain
sensible structure-activity relationships with our method.
On the Kazius data set, the linear SVM achieved an

accuracy of 84%, which is close to the theoretical limit
of the Ames toxicity test. The convincing performance
and the availability of defined toxicophores from Kazius
et al. make this data set an ideal choice for a more
detailed analysis.

Table 1 Performance of LIBLINEAR on data sets

Data set Target Class AUC ACC

CA Genotoxicity 0.765 0.724

Kazius Toxicity 0.912 0.842

MUV466 GPCR 0.644 -

MUV548 Kinase 0.900 -

MUV600 Nuclear Receptor 0.685 -

MUV644 Kinase 0.893 -

MUV652 RNAse 0.782 -

MUV689 Kinase 0.865 -

MUV692 Nuclear Receptor 0.584 -

MUV712 Chaperone 0.863 -

MUV713 PPI 0.784 -

MUV733 PPI 0.634 -

MUV737 PPI 0.687 -

MUV810 Kinase 0.822 -

MUV832 Protease 0.960 -

MUV846 Protease 0.958 -

MUV852 Protease 0.852 -

MUV858 GPCR 0.669 -

MUV859 GPCR 0.595 -

AUC and ACC performance of LIBLINEAR on the MUV, Kazius, and
chromosome aberration data sets.
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The performance on the different MUV data sets var-
ied between an AUC of 0.58-0.96. All data sets with
kinase, protease and chaperone targets showed a
promising AUC performance (0.82-0.96), whereas the
protein-protein interaction and reporter gene dependent
assays had a considerably worse AUC performance
(0.58-0.78). It would have been interesting to analyze
the data sets with a GPCR target because it is hard to
get crystal structures for those targets. Therefore, infor-
mation on structure-activity relationships can not be
obtained from structure based modeling for GPCR tar-
gets, which would make information from our visualiza-
tion valuable. However, the performance on these data
sets is close to random, and thus, a visualization would
not be sensible. We chose the MUV548 which can be
predicted with an AUC of 0.90 and the MUV846 with
an AUC of 0.958 for a detailed analysis and visualization
with the heat map coloring method. The linear models
of both data sets exhibit a top ranked performance com-
pared to all data sets and plenty of literature is available
for the protein targets. While the MUV832 has the best
performance (0.96), there are no crystal structures,
which contain a ligand similar to the data set, available.
Therefore, the MUV832 was not subjected to a detailed
analysis.

Visualization of Kazius Ames toxicity data set
Using a linear model of the Kazius data set, we exter-
nally predicted compounds 1028-11-1 (CA) and 146795-
38-2 (CB), and applied our heat map atom coloring
method with both normalization variants. Figure 3(A,B)
shows the heat map coloring of the correctly predicted
non-toxic compound CA. The toxic and the detoxifying
substructures described by Kazius et al. could be identi-
fied with our method. However, in addition to the
detoxifying sulfonamide our method also colored parts
of the aromatic ring structure red (non-toxic), which is
probably caused by the fact that the sulfonamide is
often attached to an aromatic ring in the data set. Com-
pound CB (Figure 3C,D) was correctly predicted as
toxic. The compound contains the same aromatic nitro
toxicophore as compound CA, which our method identi-
fied together with parts of the attached aromatic ring. In
contrast to CA, compound CB is toxic because it does
not contain a detoxifying sulfonamide. However, the
compound has a red colored chlorobenzene substruc-
ture, which is non-toxic and not detoxifying in case of
CB. The overall toxicity of both compounds is visualized
by the full set normalization. Compound CA (Figure 3B)
is more reddish compared to compound CB (Figure 3D)
and therefore has a lower prediction value.
The coloring of the compounds reveals weaknesses of

both normalization methods. When the single molecule
normalization is applied, one can not distinguish

between a non-toxic and a detoxifying substructure
because the normalization can only visualize differences
within the structure. Thus, it is impossible to decide if a
substructure is detoxifying or non-toxic without addi-
tional information on the toxicity. Given a compound
that only contains toxicophores, the most toxic sub-
structure would be colored green and the least toxic
weighted substructure would be colored red. However,
the information on the toxicity of a compound is avail-
able in form of the prediction value. Thus, this weakness
can be compensated. The visualization of compound CA

(Figure 3B) indicates the drawbacks of the full set nor-
malization method: While it captures the overall toxicity
of the compound, the aromatic nitro toxicophore and
the detoxifying sulfonamide are less distinguishable.

Visualization of MUV548 protein kinase A data set
We conducted external predictions for the ligands of the
PDB entries 3MVJ (LA), 3DNE (LB), and 3DND (LC)
using a model trained on MUV548. Then, we applied
our heat map coloring to the ligands. The employed
PDB entries were the most suitable ones of several crys-
tal structures available for protein kinase A because of
their similarity to the compounds contained in
MUV548. The ligands of other PDB structures are more
dissimilar and thus presumably not in the applicability
domain of a model trained on MUV548. The crystal
structures of LB and LC originate from a study by Orts
et al [25]. The authors used an NMR based method to
determine the binding orientation of low-affinity inhibi-
tors. The method allowed for selecting the correct bind-
ing orientation of both ligands from four different
orientations gained by rotation of the ligands in the
binding pocket. To elucidate if our coloring method can
also assist to select the correct binding orientation, we
applied our method to the ligands presented in the
study of Orts et al. and additionally ligand LA. The crys-
tal structure of LA stems from an analysis of selective
inhibitors against Akt1 (PKB) [26]. The ligand inhibits
PKA with an IC50 of 3.2 μM.
The coloring of the substructures of all three ligands

correlates with the substructure position in the binding
pocket (Figure 4). Especially the position of the green
colored basic aromatic ring deep in the binding pocket
is conserved for the three structures. If the ligands were
rotated by 180° around the y axis, the red colored
(unimportant) substructures would be located deep
in the binding pocket. Hence, our approach assists to
find the correct orientation of the ligands if rotated
around the y axis. This rotation excludes two of the pos-
sible four orientations described by Orts et al. However,
in case of the presented ligands our approach can not
help to discriminate between rotations around the z
axis. Yet, this limitation is not a real drawback for our
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method because it can be applied on the data of an HTS
without performing additional NMR experiments.
The external prediction value of ligand LC, as indi-

cated by the full set coloring (Figure 4), is lower than
the prediction value of the other two ligands. On the
ranked list of prediction values the ligands LA and LB
are under the top 1% while the ligand LC is at position
4, 206 of 15,003 compounds. Hence, the coloring of LC
could be inaccurate and changed if the ligands are
included in the training set. Thus, we added all three
ligands to the training set and applied the heat map
coloring again. As expected, the training prediction
values of all three ligands then were under the top 1%
of the ranked list of training prediction values. The
new position of the ligand LC in the ranked list was
reflected by the full set normalized coloring. However,
the single molecule normalized coloring did not
change considerably for any of the ligands. The change
in the full set normalized coloring was caused by a
positive weighting of a large substructure of ligand LC.
Re-weighting large substructures does not substantially
influence weight differences within the molecule.
Hence, in the case of LC the single molecule normali-
zation might be more robust than the full set
normalization.

The approach to compare the colorings of an external
prediction and an inclusion in the training set might be
a way to estimate the robustness of a coloring. While
test compounds should never be included in model
training when building predictive models, our intend is
to build a descriptive model to identify features crucial
for a molecule’s molecular behavior. In the later case,
inclusion of a compound for model building might be
beneficial because additional information for finding
important features is available. However, if the coloring
of a compound changes drastically after inclusion in the
model training, the descriptive model might not be sen-
sible or structural aspects of a certain scaffold were not
included. A robust model should not swap from com-
pletely meaningless features to sensible features by
inclusion of just one compound in model training.
To evaluate if our visualization colors those substruc-

tures important for the interaction between a ligand and
the target, we aligned the binding pockets of the crystal
structures of LA and LB using Schrödinger 2010 [24].
We chose LA and LB because the external prediction
values of the ligands were within the top 1% of the
ranked prediction value list. The important interactions
of the ligands can be illustrated in comparison to the
binding of ATP. The purine base of ATP is anchored in

Figure 3 Kazius data set example compounds. A heat map coloring of the non-toxic compound 1028-11-1 (CA) and the toxic compound
146795-38-2 (CB). Both compounds were predicted correctly. The color gradient ranges from green (toxic) to red (non-toxic). Both, the single
molecule normalization (A,C) and the full data set normalization were applied (B,D). Compound CA contains a correctly identified aromatic nitro
toxicophore. However, the compound has a detoxifying sulfonamide as well, rendering the compound non-toxic. The sulfonamide and parts of
the aromatic ring were identified as non-toxic. In compound CB the aromatic nitro toxicophore was also identified as toxicophore. Compound CB
is toxic because the red chlorobenzene substructure is not a detoxifying substructure.
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the binding pocket by hydrogen bonds to three protein
residues: Glu121, Val123 and Thr183 [27,28]. In both
compounds a basic aromatic ring substructure is marked
as important for activity by the heat map coloring
method (Figure 5). According to Schrödinger 2010,
Val123 establishes an H-bond with the N1 of the pyri-
dine of LB and the N1 of the pyrrolopyrimidine of LA.
In the structure of LB, an additional H-bond connects
Thr183 and the N1 of the indazole ring. In the structure
of LA, Glu121 establishes an H-bond with the N7 of the
pyrrolopyrimidine substructure. All H-bonds are
reflected by the heat map coloring of the ligands. Addi-
tionally, the N1 of the pyrrolidine is colored as impor-
tant for activity. While no interaction was detected for
nitrogen N1, all active compounds of MUV548 that are
based on a pyrrolopyrimidine scaffold also contain this
nitrogen. Furthermore, parts of the pyrrolopyrimidine
and the C5 attached methyl group of the ligand LA were
marked as unimportant suggesting that the protein
might be more flexible in this region. This flexibility
assumption is supported by the form of the binding

pocket of LC (Figure 4) which is not closed in the corre-
sponding region. Consequently, the most important sub-
structure, according to the heat map coloring approach,
might be a basic aromatic ring substructure which is
able to interact with Val123.

Visualization of MUV846 factor XIa data set
As with protein kinase A (MUV548), a plethora of crys-
tal structures with small compound ligands are available
for factor XIa. We tested our approach on the 6 ligands
of the PDB entries 1ZRK, 1ZSK, 1ZTL, 2FDA, 3BG8,
and 1ZOM. We trained a model on MUV846 and con-
ducted external predictions and heat map colorings on
the ligands. All external predictions were ranked
between position 3127 and 11762 on the ranked list of
the prediction values of 15,006 compounds. We
included all six compounds in the training set to esti-
mate the robustness of the colorings, analogously to the
setup for ligand LC on MUV548. All compounds, except
the ligand of PDB entry 3BG8, had a considerably differ-
ent coloring compared to the external prediction.

Figure 4 Orientation of different protein kinase A ligands. Binding orientation of the ligands of PDB entries 3MVJ (LA), 3DNE (LB), and 3DND
(LC). Compounds within the binding pocket were colored with the single molecule normalization, the compounds above with the full set
normalization. The color gradient ranges from green (important for activity) to red (unimportant or even decreasing for activity). The binding
pocket is indicated as an exclusion surface. Substructures, which are located at similar positions in the binding pocket, were colored similarly by
the heat map coloring approach.
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Hence, in the case of these five ligands the colorings
might not be robust and apparently do not reflect sensi-
ble structure-activity relationships.
PDB entry 3BG8 contains a natural product, Clavata-

dine A, which inhibits factor XIa with an IC50 of 1.3 μM
[29]. Clavatadine A (Figure 6) is cleaved by a nucleophi-
lic serine at the carbamate bond leaving only the carba-
mate side chain in the protein. Although the external
prediction value of Clavatadine A is not convincing
(position 3127 in the ranked list), the single molecule
normalized heat map coloring of Clavatadine A identi-
fies the carbamate bond as an important substructure
for activity. A closer look at the active structures of
MUV846 reveals that several active compounds also

contain a carbamate bond and thus might exhibit the
same binding mode. As with compound CA of the
Kazius data set the full set normalization does not yield
a useful coloring for Clavatadine A. The whole com-
pound is colored reddish, which obscures the slight dif-
ferences in coloring that are visible with the single
molecule normalization.

Conclusions
We presented a method to visualize structure-activity
and structure-property information of a linear SVM
model. The heat map coloring approach assigns a
color to each atom or bond of a certain molecule
according to the weights of a linear SVM model. The
visualization combined with linear SVMs provide an
information gain compared to black box machine
learning approaches like nonlinear SVMs. The method
does not only provide a prediction value to label a
compound as active or inactive, but also provides rea-
sons for the labeling. Although we only tested the
visualization with linear SVMs, it should in principle
not be limited to linear SVMs. The visualization only
requires a machine learning algorithm to assign
weights to molecular fingerprinting features. The bene-
fit of combining the visualization with linear SVMs is
their promising performance and fast computation
time on large-scale data sets.
We introduced two different normalization schemes.

The experiments revealed advantages and disadvantages
of both normalizations. However, the single molecule
normalization in combination with the prediction value
might be the most valuable representation for the visua-
lization of a compound.
We evaluated our approach on a toxicity data set, a

chromosome aberration data set, and the MUV data
sets. Overall, the experiments show that our method
sensibly visualizes structure-property and structure-
activity relationships of a linear SVM model. Thus, we
conclude that our method can help to guide the modifi-
cation of a compound in later stages of drug discovery.
On the Kazius data set, our method allowed for iden-

tification of the toxicophores of two example com-
pounds and therefore might help in lead optimization to
obtain a less toxic compound.

Figure 5 Aligned binding pockets of LA and LB. The binding
pockets of LA and LB were aligned and the ligands were colored
with the single molecule normalization. The color gradient ranges
from green (important for activity) to red (unimportant for activity
or even decreasing). The green protein residues belong to LA and
the orange ones to LB. The binding pocket is indicated as an
exclusion surface. H-bonds detected by Schrödinger are indicated
by a dashed line. Two similar basic aromatic rings located deep in
the binding pocket are identified as important for activity.

Figure 6 Clavatadine A. Clavatadine A colored according to a model trained on MUV846. The color gradient ranges from green (important for
activity) to red (unimportant for activity). The current molecule normalization (A) and the full data set normalization (B) were both applied. The
carbamate substructure is marked as important for activity.
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The results on the MUV data sets demonstrate that
our method is able to determine the correct orientation
of a compound in the binding pocket. Additionally, the
heat map coloring allows for the identification of impor-
tant substructures for ligand protein interactions or
binding mechanisms without having protein structure
information. Yet, it is impossible to elucidate the exact
binding mechanism or interactions without structure
based approaches. Thus, the heat map coloring should
be considered as complementary to structure based
approaches and as such help to get a better understand-
ing of the binding mode of an inhibitor.
The approach is not suited for identifying important

side groups of a common scaffold. This deficit is mainly
caused by the diversity of the employed large-scale data
sets. To allow the machine learning algorithm to focus
on side groups, it is necessary to employ data sets in
which all compounds share a common scaffold. How-
ever, those data sets are not in the scope of a classifier,
but require regression techniques.
A focus in future studies might be the combination of

heat map coloring with linear support vector regression
in order to elucidate the contribution of side groups to
activity or selectivity.

Availability
All employed programs are available free of charge as
executable jar and source code at http://www.ra.cs.uni-
tuebingen.de/software/ChemHeatmap/. This includes
the employed ECFP fingerprints, a modified Java version
of LIBLINEAR and a graphical user interface to perform
a heat map coloring of a compound. A short tutorial
showing the workflow to obtain the colorings of the two
compounds of the Kazius data set is also available.
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