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Abstract

In this work we show how global self-organized patterns can come out of a disordered

ensemble of point oscillators, as a result of a deterministic, and not of a random, cooperative

process. The resulting system dynamics has many characteristics of classical thermody-

namics. To this end, a modified Kuramoto model is introduced, by including Euclidean

degrees of freedom and particle polarity. The standard deviation of the frequency distribu-

tion is the disorder parameter, diversity, acting as temperature, which is both a source of

motion and of disorder. For zero and low diversity, robust static phase-synchronized pat-

terns (crystals) appear, and the problem reverts to a generic dissipative many-body prob-

lem. From small to moderate diversity crystals display vibrations followed by structure

disintegration in a competition of smaller dynamic patterns, internally synchronized, each of

which is capable to manage its internal diversity. In this process a huge variety of self-orga-

nized dynamic shapes is formed. Such patterns can be seen again as (more complex) oscil-

lators, where the same description can be applied in turn, renormalizing the problem to a

bigger scale, opening the possibility of pattern evolution. The interaction functions are kept

local because our idea is to build a system able to produce global patterns when its constitu-

ents only interact at the bond scale. By further increasing the oscillator diversity, the dynam-

ics becomes erratic, dynamic patterns show short lifetime, and finally disappear for high

diversity. Results are neither qualitatively dependent on the specific choice of the interaction

functions nor on the shape of the probability function assumed for the frequencies. The sys-

tem shows a phase transition and a critical behaviour for a specific value of diversity.

Introduction

Whereas atomic and sub-atomic physics is moved by the quest of the fundamental building

block, chemistry and biology have collected and studied many cases of self-organization [1],

[2]. Self-organization is a process in which a global pattern emerges from interactions among

lower-level components of a system by solely means of local information, without reference to

the global pattern. Such process is observed in many different circumstances, ranging from

systems under thermodynamic control (spontaneous processes with a negative free-energy

change), such as supramolecular complexes [3], crystallization [4], surfactant aggregation [5],
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certain nano-structures [6], to protein folding [7], protein assembly [8], and DNA duplexing

[9], as well as in systems under kinetic control (biological systems with genomic, enzymatic

and/or evolutionary control), such as virus assembly [10], formation of beehive and anthill

[11], tissue formation [12], swarm intelligence [13]. Out-of-equilibrium systems (non-linear

dynamic processes), such as the Zhabotinsky-Belousov reaction [14] and other oscillating reac-

tions, as well as convection phenomena [15] show self-organization of the pattern formation.

Other examples of self-organization phenomena have been investigated, such as biological

rithms [16], pattern formation and collective behaviour of neurons and in neuron networks

[17], [18], [19], [20], patterns in excitable media [21], [22], [23], [24], quantum gravity [25],

mobile networks [26]. Social systems also stem from self-organizing processes [27], e.g. human

enterprises that form out of self-imposed rules, such as business companies, political parties,

families, tribes, and spontaneous forms of collective arts as theater or dance.

The above examples, in a global view, show that self-organization is a ubiquitous and inter-

disciplinary process, and address the general question about how the self-assembly (auto-catal-

ysis) of ordered structures, with growing complexity and emergent properties, takes place. If

on one side noise and fluctuations were found to have a constructive role respect to pattern

formation [28], [29], [30], on the other side diversity was recently found to be able to produce

coherent collective pulsations out of a disordered ensemble of coupled oscillators [31], [32].

Diversity indeed appears to be a crucial ingredient for self-organization and the reason is that,

if the elements are all equal to each other, there is no basis to self-organize, because no flux of

information is necessary, and no criteria exists for a choice [33]. Whereas many unexplained

collective behaviors—e.g. self-assembled chirality [34]—seem to stem from a transfer of infor-

mation to the bond-length scale of size, many social patterns stem from relational choices

based on affinity [35].

In this work, we explore the possibility of building a thermodynamics based on diversity, with

emphasis on the self-organization properties and pattern formation. To do that we take profit of

a theory that set a link between diversity and phase transitions, i.e., the Kuramoto model.

The Kuramoto model [36], first proposed by Yoshiki Kuramoto, is a mathematical model

used to describe synchronization in a large set of coupled oscillators. It was found representa-

tive for the behavior of chemical and biological oscillators [37], and it has found widespread

applications, e.g., in neuroscience or oscillating flame dynamics [38]. Kuramoto model set a

link between collective synchronization and phase transitions. Indeed, the Kuramoto order

parameter vs. oscillators natural frequency diversity shows a behavior parallel to spin magneti-

zation in ferromagnetic media vs. temperature. Oscillators diversity acts as the temperature,

for being a source of disorder.

In this work we consider a mechanics of interacting material points in a Euclidean space,

each given an additional degree of freedom, a phase. Each phase-point is driven by an internal

frequency which is the source of motion and a local parameter. Assuming a statistical distribu-

tion of such frequencies, a source of disorder is included, when many points are considered.

Moreover, as a further element of novelty respect to Kuramoto, we include polarity in the

model. The reason is that polarity is a natural characteristic of the large majority of observable

systems, from physical to chemical to biological and social systems. Polarity is an intrinsic geo-

metric richness, that allows the unfolding of complex structures, by alternating complemen-

tary elements. For low diversity in the local frequencies, oscillator phases synchronize, and

a static global pattern (crystal) of synchronized points is the global attractor. By increasing

oscillators diversity, desynchronization occurs, parallel to Kuramoto theory. Such transition

takes place as follows: the crystal starts to vibrate, developing self-organized internal pulsations

that lead to structure disintegration in a competition of dynamic smaller patterns, which are

internally synchronized and show robustness and adaptability. By further increasing the
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oscillators diversity, the patterns finally disappear. Results are neither qualitatively dependent

on the specific choice of the interaction functions nor on the shape of the probability function

selected for the frequencies. The interaction function is kept local because our idea is to build a

system able to produce global patterns when its constituents interact at the bond scale. Such

global patterns can be regarded as self-organized structures. The system shows a phase transi-

tion and a critical behavior for a specific value of diversity.

Results

The model

Each point i = 1, . . .N is described by a position vector xi embedded in an Euclidean space, a

phase ϕi embedded in a circle S1, as dynamic variables, and by a frequency ωi as local parame-

ter. The proposed model reads

_x i ¼
XN

j¼1

fijðxi; xjÞ cosð�j � �iÞ; ð1Þ

_� i ¼ oi þ
XN

j¼1

gijgijðxi; xjÞ sinð�j � �iÞ; ð2Þ

and since we want particles to interact at the bond scale, we choose local interactions, and one

possible choice is

fij ¼ rije
� r2

ij ; ð3Þ

gij ¼ e� r2
ij ; ð4Þ

rij ¼ xi � xj; ð5Þ

rij ¼ jxi � xjj; ð6Þ

where the exponential decay defines a characteristic interaction length L = 1. The coefficients

γij = ±1 express the particle polarity. In this context polarity means that two different kinds of

particles are considered: when particles of the same kind are interacting, the Kuramoto force

in Eq (2) is repulsive (i.e. γij = 1 thus ϕi and ϕj are pushed to synchronize in phase), while when

particles of different kind are interacting, the Kuramoto force in Eq (2) is attractive (i.e. γij =

−1 thus ϕi and ϕj are pulled to synchronize out of phase). Polarity is a characteristic that

emerges when two or more particles interact. It is a local property, but it shows up in the inter-

action with other elements. We refer to these types of particles as “circles” or “squares”. This is

similar to the electric charge, since one cannot say if an isolated particle has a positive or a neg-

ative charge. In the following we will show that, when no disorder is included, the effect of

polarity is indeed the same as for the electric charge in Newton’s dynamics, i.e, it determines

the sign of the interaction forces in Eq (1), making them attractive or repulsive.

Two particles

The simplest case is that of two particles in one spatial dimension. Eqs (1) and (2) yield

_x ¼ xe� x2 cos ð�Þ; ð7Þ
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PLOS ONE | https://doi.org/10.1371/journal.pone.0188753 December 8, 2017 3 / 15

https://doi.org/10.1371/journal.pone.0188753


_� ¼ D � ge� x2 sin ð�Þ; ð8Þ

where

x ¼ x2 � x1 ð9Þ

� ¼ �2 � �1 ð10Þ

D ¼ o2 � o1; ð11Þ

are the relative variables, and γ = −1 or γ = 1 if a circle and a square or two squares (two circles)

are considered, respectively. For small relative displacement x� 1 Eqs (7) and (8) decouple

and the phase Eq (8) takes the form of the well known Adler equation [39]

_� ¼ D � g sin ð�Þ: ð12Þ

For small diversity in the frequency difference (Δ< 1) the phases of the two particles synchro-

nize, i.e. Eq 12 shows two static solutions ϕin = arcsin(Δ) and ϕout = arcsin(Δ) + π, that we call in-
phase and out-of-phase solutions, respectively. If γ = −1 the fixed point x = 0, ϕout results to be a

stable solution, so the two particles glue together out-of-phase (by π, for Δ = 0), as shown in Fig 1;

Fig 1. Two particles synchronization dynamics. Relative position dynamics (upper panel) and relative phase dynamics

(lower panel) for a two particle system with no diversity (blue) and low diversity (Δ = 0.5, red) and different polarity (γ = −1).

Particles glue together in an out-of-phase synchronization. Since identical starting conditions have been selected (x = 0.2,

ϕ = 2), in the upper panel the curves are perfectly superposed.

https://doi.org/10.1371/journal.pone.0188753.g001
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if γ = 1 the (limit) fixed point x!1, ϕin results to be a stable solution, so the two particles repell

each other in-phase. It is interesting to observe that the dynamics does not significantly change

for low, non-zero, diversity (Δ< 1). This can be appreciated from Fig 1, where we have selected

the same starting conditions for Δ = 0 and Δ = 0.5, getting identical evolution for position, and

similar evolution for phase.

When Δ> 1 phase desynchronization occurs and the fixed points disappear via saddle

node bifurcation, leading to oscillations in the relative position x and relative phase running,

as shown in Fig 2. We have implemented other (polynomial) types of interaction decay depen-

dences on distance, obtaining the same scenario.

In conclusion, in the case of two particles, we found them glue together (a molecule) for dif-

ferent polarity, while they repel and separate for identical polarity. The particles of the mole-

cule oscillate with respect to each other as diversity increases. The results shown in Figs 1 and

2 do not depend on initial conditions, even though the transient may be different.

For a larger number of particles the complexity of the problem quickly grows.

Many body problem. A diversity induced thermodynamics

Considering many particles including a statistical distribution of the local frequencies ωi, the

system exhibits many properties of classical thermodynamics. Local frequencies are both a

source of motion and of disorder, parallel to noise terms in Langevin formulation. If all

Fig 2. Two particle desynchronization dynamics. Relative position dynamics (upper panel) and relative phase

dynamics (lower panel) for a two particle system with high diversity (Δ = 3). Particles oscillate while the relative phase is

running (initial conditions: x = 0.4, ϕ = 4).

https://doi.org/10.1371/journal.pone.0188753.g002
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frequencies have the same value (that can be set to zero, i.e. ωi = 0 8i) the system drops into the

synchronization manifold, which represents the “zero temperature” configuration, when no

diversity is included in the system. In the synchronization manifold the effect of polarity (i.e.

the coefficients γij) is the same as the electric charge in Newton’s dynamics, i.e. it determines

the sign of the forces in Eq (1), making them attractive or repulsive. Indeed, ϕi − ϕj = 0 if γij = 1

while ϕi − ϕj = π if γij = −1, and Eqs (1) and (2) can be written as

_x i ¼
XN

j¼1

gij f ij; ð13Þ

i.e., a generic many body dissipative mechanical problem where some interactions are attrac-

tive and some repulsive. If diversity in the local frequencies is included, phases start to desyn-

chronize and the rotating terms cos(ϕj − ϕi) in the space equation alter the interaction forces

fij producing a loosening in the spatial bondings and a subsequent phase transition, that mim-

ics the thermodynamic transition from solid to liquid, to gas. In the following we assume a

zero mean Gaussian distribution for ωi with standard deviation σ, which acts as the system

“temperature”.

Fig 3. Even crystal formation. Phase dynamics. Even crystal formation, starting from random initial conditions spread in

the plane (xj(0) > 1 8j), with no diversity (σ = 0). After a transient in which odd and even crystal compete, phases reach their

static values. Different color represent different particles, only five colors have been used. N = 50.

https://doi.org/10.1371/journal.pone.0188753.g003
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We first consider the case in which σ = 0, i.e. identical oscillators, having the same local

frequency, set to zero. In the following, we have assumed a neutral or quasi-neutral system

(i.e, the number of circles and squares is equal, or differs only by 1), as it is reasonable to

describe standard matter, and either spread or narrow intial conditions (i.e., large or small

initial distances with respect to L = 1), corresponding to a relatively dilute or more con-

densed ensamble of particles. We have considered two spatial dimensions. Numerical simu-

lations of Eqs (1) and (2) produce different solutions, depending on the number of particles

N and on initial conditions, and remarkably including, for a large parameter set, the forma-

tion of static patterns, i.e. regular spatially extended structures (crystals), and a correspond-

ing synchronization of local phases. Numerical simulations show the emergence of a

competition between two kind of patterns, a first kind, we call Even (because it is the typical

solution for even N), is made of glued couples of circles and squares, the second kind, we call

Odd (because it is the typical solution for odd N), is made of strains of spatially separated

alternating squares and circles. Both patterns show an out-of-phase synchronization, i.e., all

squares have the same phase, all circles have the same phase, and between any square and cir-

cle there is a phase difference equal to π. To cover all relevant cases, in Figs 3 to 7, we show

results for different values of N. In Figs 8 and 9, instead, results for the same N = 100 are

shown.

In all figures we present in the following, and in movies, we have assumed uniformly dis-

tributed random initial conditions and Gaussian distributed oscillator frequencies. However,

we have tested also uniform probability distribution for the natural frequencies, as well as

Fig 4. Phase dynamics for small diversity. Odd crystal dynamics for non zero, but low, diversity (σ = 0.25). Phases start

to oscillate, synchronization is deteriorated (N = 21).

https://doi.org/10.1371/journal.pone.0188753.g004
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polinomial instead of exponential interaction functions, finding the same scenarios. In figures,

different colors represent different particles, with repetition, because only five colors have

been used. In movies, instead, colors represent the phase evolution, i.e. same color means the

same phase (mod 2π). In general, the actual shape of the obtained spatial patterns strongly

depends on starting conditions. However, the general scenario does not change.

Movie S1 Video shows the numerical simulation of a population made of N = 50 particles,

with wide initial distances (xj(0) > 1 8j), ending up in a static Even-crystal. Fig 3 shows phase

dynamics vs. time for the same simulation.

Movie S2 Video shows the self-organization of a system made by N = 21 particles, where we

have assumed (uniformly) random initial phases and small initial distances (xj(0)� 18j)
among the elements, so that all interact at t = 0. Phase dynamics (not shown) is very similar to

the previous case. The result is a strainded Odd-crystal.

For non-zero, but small, σ (σ< 0.3) pattern vibrations take place, spatial structures deterio-

rate their regularity and phases start to oscillate. Now each particle is different so that the pat-

tern has to adjust its structure, in order to accomodate each particle to a suitable place to

sustain the collective structure. Movie S3 Video shows an example of such adaptability. The

degree of diversity is still low, so the pattern can maintain a quasi-static integrity. Phase

dynamics for this case is shown in Fig 4, exhibiting phase vibrations.

In order to investigate pattern robustness, we have implemented the following numerical

experiment. After the pattern is formed, one element is moved away from the pattern, by

increasing its position and phase of an arbitrary value. Movie S4 Video shows how the pattern

Fig 5. Example of phase dynamics in diversity induced collective pulsations. Evolution of phase vs. time for

moderate diversity, with phase unlocking of one oscillator (N = 17 and σ = 0.4).

https://doi.org/10.1371/journal.pone.0188753.g005
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(with no diversity) quickly reacts, by reincluding the perturbed element in a newly adapted

structure. This characteristic persists in presence of small diversity.

Increasing diversity, the dynamic activity also increases and crystals loose stability. Many

scenarios are possible. As a general trend, a single aggregation pattern is not sustainable if

diversity becomes too large. Indeed, pattern disintegration takes place through the emergence

of collective pulsations. Movie S5 Video shows an example of such collective pulsations, which

are due to partial unlocking of one or more oscillators (Fig 5), which however remain spatially

bounded, until the pattern eventually breaks. At this point, because of the complexity of the

dynamics, the simple classification Even/Odd does not apply. We thus present selected numer-

ical examples.

Indeed, we found that spontaneous internal oscillations lead to pattern separation into

smaller structures, able to manage their internal diversity, and a huge variety of dynamically

interacting shapes is formed. Movie S6 Video shows a realization in which a pattern spontane-

ously separates in two parts. Each part shows internal synchronization to the average fre-

quency of its constituents. Phase dynamics for this situation (Fig 6) shows that the two

patterns are made of synchronous elements. The so formed patterns are able to compete with

other patterns in a complex dynamics, as shown in movie S7 Video and in Fig 7.

As σ further increases, progressively less organized dynamics take place. Elements move

erratically, phases are desynchronized, the resulting patterns have short lifetimes, and finally

no pattern emerges for very high σ. Still, the dynamics is deterministic.

Fig 6. Phase dynamics for pattern breaking. For larger diversity, a single pattern is no longer sustainable, and diversity

induced pulsations lead to pattern separation in two—internally synchronized—populations. (N = 13 and σ = 0.5).

https://doi.org/10.1371/journal.pone.0188753.g006

Self-organization in a diversity induced thermodynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0188753 December 8, 2017 9 / 15

https://doi.org/10.1371/journal.pone.0188753.g006
https://doi.org/10.1371/journal.pone.0188753


It is worth noticing that, when synchronized patterns are formed, each of them can be seen,

on its turn, as a (more complex) oscillator, able to synchronize again to affine structures, toler-

ating a certain amount of diversity, and so forth. A sort of Chinese box of synchronized shapes

can form out spontaneously, opening the possibility of having renormalized layers of evolution,

with increasing complexity. As a matter of fact, once patterns are formed they can be renorma-

lized, i.e. considered as new points of a new point-like description on a larger scale, where they

undergo the same process (synchronization) that previously created them, and so forth. Thus,

starting from any arbitrary distributed and disordered point-like description, pattern forma-

tion gains growing complexity, moving up through evolutive layers. In this way a myriad of

interacting dynamic shapes (morphogenesis) is spontaneously created by the cooperative syn-

chronization process, especially where diversity is moderate, the equivalent of the “liquid”

phase.

Kinetic energy and phase transition

The existence of a phase transition between more and less organized patterns (crystal and liq-

uid) can be confirmed by calculating the dynamic activity of the oscillators as a function of σ,

which acts as the system temperature. Parallel to thermodynamics, we consider the kinetic

energy of the system given by

T ¼
1

N

XN

i¼1

< vi
2 >; ð14Þ

Fig 7. Phase dynamics for multiple patterns competition. Still larger diversity (i.e., still higher “temperature”), causes

most phases to desynchronize. (N = 29 and σ = 0.7).

https://doi.org/10.1371/journal.pone.0188753.g007
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where< v2
i > are the time averaged particle square velocities and N the number of particles.

For low diversity, the particles have fixed positions inside the crystal, their velocity is zero and

the kinetic energy is also zero. A critical behavior appears at a special value of σ as shown in

Fig 8, indicating the presence of a phase transition, where the crystal dissolves and particles are

free to move. This transition is abrupt, as the melting of a real crystal. This finding is similar to

what predicted by the Ising model [40], [41] describing the peculiar behavior of the specific

heat of solids and of magnetization for low temperature.

Fig 8 suggests that, when considering a large number of oscillators, the global dynamics can

be seen in terms of phase transitions, driven by the oscillators diversity. In the following, we

better address this point and show that the complete evolution we have outlined in this paper

can be found for constant N. In Fig 9 we have drawn the occupation matrix for N = 100 oscilla-

tors, with the same starting conditions, and four increasing values of diversity. In the occupa-

tion matrix, each element represents the probability of finding one oscillator in a small

element dxdy, regardless it is a circle or square, along the full time dynamics. As starting condi-

tions, we have chosen a regular 10x10 arrangement alternating circles and squares, separated

by a distance equal to half the interaction length L (L = 1), with linearly increasing starting

phases from ϕ1 = 0 in the left up corner, to ϕN = 2π in the right bottom corner. Panel a) shows

the occupation matrix for zero diversity, where a static (even) crystal is formed. Panel b) shows

the occupation matrix for σ = 0.5, i.e., on the left of the transition shown in Fig 8, and the result

is a vibrating crystal with oscillators diffusion, and the structure still shows some regularity.

Panel c) shows the occupation matrix for σ = 2, above the critical value, where a sort of “liquid”

Fig 8. Average kinetic energy versus diversity. Critical behaviour of kinetic energy of the system vs. σ, showing a phase

transition. N = 100.

https://doi.org/10.1371/journal.pone.0188753.g008
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phase takes place, oscillators smoothly tend to occupy the interstitial spaces, and regularity is

lost. Finally, panel d) shows the occupation matrix for high diversity σ = 3. The dynamics is

now characterized by a high degree of disorder, resambling the motion of a gas.

Conclusion

We have considered a mechanics of interacting material points, each given an additional degree

of freedom, i.e. a phase. Each point is characterized by an internal frequency which is the source

of motion. We have assumed a statistical distribution of those frequencies when many points

are considered, and the standard deviation of such distribution as the global disorder parame-

ter: diversity. For zero and low diversity, static patterns (crystals) appear. For moderate diversity

Fig 9. System evolution for N = 100. Occupation matrix for N = 100 and a) σ = 0, b) σ = 0.5, c) σ = 2, d) σ = 3, showing the complete system evolution for

constant N and increasing diversity. The occupation matrix resolution is 100x100 pixels, and the total simulation time is T = 20000 for each panel. Clearer

(darker) colors mean larger (smaller) occupation probability (increasing from black: 0, to white: 1, in a standard ‘hot’ color map).

https://doi.org/10.1371/journal.pone.0188753.g009
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the crystals start to vibrate, developing self-organized internal pulsations that lead to structure

disintegration, progressively melting in a competition of dynamic patterns. When moderate

diversity is included, a single static global pattern is no longer sustainable, and it breaks into

smaller patterns, each of which is capable to manage its internal diversity. In this process a huge

variety of self-organized dynamic shapes is formed. Moreover, when synchronized patterns are

formed, each pattern can be seen again as a (more complex) oscillator able to synchronize in

turn to similar structures, tolerating a certain amount of diversity, and so forth. From a concep-

tual point of view, the fact that self-organized patterns emerge as a result of a process, and not

by mere chance, gives a significance to morphogenesis, because here the existence of a form

means that an underlaying cooperative synchronization process is taking place.

Increasing further the oscillators diversity the dynamics ends being erratic and disorga-

nized, dynamic patterns show short lifetime and finally disappear.

Results are neither qualitatively dependent on the specific choice of the interaction func-

tions nor on the shape of the probability function chosen for the frequencies. The interaction

functions are kept local because our idea is to build a system able to construct global patterns

when its constituents interact at the bond scale. Such global patterns can be regarded as self-

organized structures. The system shows a phase transition and a critical behavior for a specific

value of diversity.

Supporting information

S1 Video. Even crystal formation with no diversity. Numerical simulations starting from

(uniformly) random wide spread initial conditions for a population of N = 50 identical oscilla-

tors, σ = 0, with different polarity. Colors follow phase evolution: particles with the same color

have the same phase value in a [0, 2π] range.

(AVI)

S2 Video. Odd crystal formation with no diversity. Numerical simulations starting from ran-

dom narrowly distributed initial condition for a population of N = 33 identical oscillators, σ =

0 with different polarity.

(AVI)

S3 Video. Adaptability to small diversity. The movie shows crystal growth as in S2, but with

small diversity. Particles exchange takes place in order to adapt the pattern to diversity. N = 21,

σ = 0.25.

(AVI)

S4 Video. Robustness to perturbation. One element is perturbed after pattern formation.

The structure quickly reacts and accomodate the perturbed element in a new similar pattern.

No diversity is present in this simulation, though this feature persists in presence of small

diversity. N = 21.

(AVI)

S5 Video. Diversity induced collective pulsations. Diversity makes the structure vibrate;

under certain conditions, the structure remains oscillating in a pseudo-regular fashion, as in

the present movie. N = 17, σ = 0.4.

(AVI)

S6 Video. Meiosis. Increasing diversity the pattern splits and the resulting subforms relate

each other as independent entities. N = 15, σ = 0.5.

(AVI)
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S7 Video. Dynamic pattern competition and disorder. Further increasing diversity the

dynamic activity grows and pattern lifetimes decrease. N = 29, σ = 0.7.

(AVI)
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