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Radiation continues to play a major role in the treatment of almost every cancer

type. Traditional radiation studies focused on its ability to damage DNA, but recent

evidence has demonstrated that a key mechanism driving the efficacy of radiation in

vivo is the immune response triggered in irradiated tissue. Innate immune cells including

macrophages, dendritic cells, and natural killer cells are key mediators of the radiation-

induced immune response. They regulate the sensing of radiation-mediated damage

and subsequent radiation-induced inflammation. Given the importance of innate immune

cells as determinants of the post-radiation anti-tumor immune response, much research

has been devoted to identify ways to both enhance the innate immune response and

prevent their ability to suppress ongoing immune responses. In this review, wewill discuss

how the innate immune system shapes anti-tumor immunity following radiation and

highlight key strategies directed at the innate immune response to enhance the efficacy

of radiation.

Keywords: radiation therapy, innate and adaptive immune response, immunotherapy, macrophages, dendritic

cells, NK cells

INTRODUCTION

Radiation (RT) continues to play a major role in the treatment of cancer with more than 50% of all
cancer patients receiving RT sometime during their treatment course (1). Traditionally, the primary
mechanism of action for RT’s effect on tumors was thought to be RT-induced DNA damage to
malignant cells. However, recent evidence demonstrating the critical role of the immune system
in regulating the response to cytotoxic therapies such as RT has challenged this long-standing
assumption about how RT mediates its anti-tumor activity.

Early work from Stone et al. demonstrated that mice lacking T and B cells required more RT to
control the same size tumor compared to immune intact animals (2). Other groups have since gone
on to show the importance of IFN-γ producing cytotoxic CD8+ T cells (3, 4) as critical effectors in
the tumor response to RT. Thus, it has become clear that a T cell response is required for RT to attain
its maximal efficacy. However, T cell responses are the culmination of a multi-step inflammatory
response that begins with RT-mediated damage to a tumor and its microenvironment. The sensing
of this damage and transmission of the signals to generate a productive immune response is
the responsibility of the most ancient form of immunity, the innate immune system. The innate
immune system that includes natural killer (NK) cells, macrophages and dendritic cells (DCs)
serves as the early warning system of body and the gatekeeper to T cell responses. By virtue of its
early role in inflammation, innate immunity has the ability to shape the magnitude and character
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of the RT-induced immune response (summarized in Table 1).
We review here how the innate immune system regulates the
response to RT and highlight potential therapeutic approaches
that target innate immunity in combination with RT to enhance
the RT-mediated anti-tumor immune response.

Innate Immunity
The immune system is often separated into two categories:
innate and adaptive immunity. The key distinction between
the categories is antigen specificity, i.e., the ability of each
cell to uniquely recognize and respond to a single specific
molecular entity. Adaptive immunity consisting primarily of
B and T cells provide the diverse specificity of the immune
system through the essentially infinitely rearrangeable B and T
cell receptors. Innate immunity largely composed of dendritic
cells, myeloid/macrophages and natural killer (NK) cells provide
the context for an immune response through a specialized
set of receptors designed to distinguish when a given target
poses a danger and should be eliminated by the immune
system (22). Upon recognition of a common array of molecular
patterns called pathogen associated molecular patterns (PAMPs)
or danger-associated molecular patterns (DAMPs) which signal
the presence of pathogens or tissue-damage (“danger”), the
innate immune system initiates an immune response (23).
Cells of the innate immune system serve not only as early
responders to contain the source of inflammation, but also

TABLE 1 | Summary of immune cells in the tumor microenvironment.

Innate immune

cells

Interaction with radiation therapy References

Dendritic cells • Batf3-dependent DCs induced by RT

promote anti-tumor immune responses by

activating CD8 + T cells

• DCs upregulate MHC-I after RT, promoting

efficient tumor antigen presentation for better

anti-tumor immune responses

• RT enhances tumor antigen presenting

capacity of infiltrating DC

through type I IFN production

(5, 6)

(6–8)

(9)

Macrophages • RT induces TGF-ß and IL-4 leading to

production of alternatively activated/M2

macrophages which inhibit anti-tumor

immune responses

• Macrophages promote matrix remodeling,

vasculogenesis which support tumor

regrowth post-RT

• Inhibiting macrophages via CSF-1R, Axl,

Cd11b results in better anti-tumor

responses post-RT

(4, 10–13)

(14, 15)

(4, 16–18)

NK cells • RT enhances cytotoxic activity of NK cells

against various solid tumors including

pancreatic cancer and sarcoma

(19–21)

Innate and adaptive immunity play many roles in the context of tumor biology. Key

functions of each of the immune cells is listed.

as the gateway to a full and robust immune response by
transmitting critical signals to activate the adaptive immune
system. Once the combination of the earlier innate immune
response and the later adaptive response have eliminated or
contained the source of antigen, the innate immune system,
particularly the myeloid cells/macrophages, helps restore tissue
homeostasis by clearing dead cells, restoring the vasculature
and reconstituting the normal tissue structure (24). Thus, given
the innate immune system’s critical role in the initiation,
maintenance, and resolution of an immune response, it is no
surprise that the innate immune system plays an important role
in regulating the immunobiology of tumors affecting everything
from the progression of tumors to their response to therapy.

RADIATION THERAPY AND INNATE
IMMUNITY

Among cancer therapies, RT possesses unique biology as a
result of its ubiquity in the environment. Given the omnipresent
nature of radiation from natural sources such as naturally
occurring isotopes and cosmic radiation, all organisms from
bacteria to humans have had to develop methods to deal
with cells damaged by irradiation. Activation of the innate
immune system is one of those methods and likely serves
as one of the main mechanisms driving the extraordinary
efficacy of RT. Evidence of the importance of innate immunity
in the response to RT come from studies that demonstrate
reduced efficacy for RT in preclinical models of cancer which
are deficient in innate immune cells including NK cells (25),
macrophages (4, 16), and DCs (26). These findings are further
supported by numerous observations from patients; one study
in hepatocellular carcinoma, for example, showed that increased
numbers of circulatingmyeloid cells following RT correlated with
poorer responses (27). Thus, given that innate immunity has such
an important role in determining the response to RT, multiple
groups have explored the mechanisms by which RT interacts
with the innate immune system. We discuss the findings from
these studies below in the context of the different functions of
the innate immune system: initiation of inflammation, activation
of the adaptive immune response and resolution of an immune
response (Figure 1).

Role of Radiation in the Initiation of an
Anti-tumor Immune Response
As previously mentioned, one of the primary functions of the
innate immune system is to regulate the initiation of an immune
response. In the sterile environment of most tumors, innate
immune cells initiate an immune response following detection
of signals that indicate the presence of cell damage or danger.
Radiation activates the innate immune system by inducing both
tumor and normal cells to release specific danger signals that
leads to activation of multiple inflammatory pathways in innate
immune cells. These danger signals include high-mobility group
B-1 (HMGB1), calreticulin, complement, and cytosolic DNA all
of which act upon receptors on innate immune cells and lead to
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FIGURE 1 | Model of immune activation following RT. RT induces direct tumor

cell death which leads to release of various immunological mediators in the

form of ATP, HMGB1, calreticulin, and complement (A). This leads to innate

immune cell priming, where innate immune cells, such as dendritic cells and

macrophages, recognize these mediators through various receptors, migrate

to the tumor (B) and induce the production of inflammatory molecules such as

TNF-α, IL-1β, and type I IFN (C). Innate cells then migrate to the lymphoid

tissue (D) carrying antigens acquired from the tumor cell for presentation (E)

resulting in activation of the adaptive immune response and elimination of

tumors. Once tumors are eradicated, the RT-induced inflammation is

suppressed (F), and tissue damage associated with tumors and the immune

response is repaired (G).

release of mediators such as cytokine and chemokines that trigger
an immune response (28–30) (Figure 2).

The HMGB1 protein is a nuclear protein that is released
by damaged cells and binds to toll-like receptor 4 (TLR4),
the main receptor for lipopolysaccharide (LPS). Thus, HMGB1,
like its bacterial counterpart LPS, can stimulate macrophages
and dendritic cells which express high levels of TLR4 leading
to cytokine production and upregulation of molecules (MHC,
B7.1, B7.2) that lead to activation of T cells. It was one of

the first inflammatory molecules identified in the setting of
RT. Apetoh et al. demonstrated that RT releases HMGB1 and
that depletion of HMGB1 or loss of TLR4 reduced the efficacy
of RT (29). Interestingly, they also identified a variant in the
TLR4 gene that leads to less efficient binding and patients with
the variant seemed to do worse with standard of care therapy
which in many instances included a course of RT (28). In
addition to HMGB1, calreticulin (CRC) has also been shown
to be expressed on the surface of cells following RT leading
to better anti-tumor immunity (30). Calreticulin serves as a
phagocytic signal for macrophages which engulf the dying cells
and subsequently can present tumor antigens (31). TLR4 is highly
expressed on innate immune cells, thus the primary responders
to RT-associated HMGB1 are likely macrophages and DCs in
the tumor microenvironment (28, 30). Further, macrophages
as the primary cells responsible for the clearance of damaged
cells are responsible for recognizing calreticulin. Thus, for the
extracellular inflammatory signals produced by RT, the innate
immune system serves as the main conduit to conduct danger
signals to the rest of the immune system.

Recent studies have also identified cytosolic DNA as a critical
inflammatory signal induced by RT (32, 33). Of the various
cancer therapies, RT, in particular, damages DNA both directly
and indirectly within the nucleus and mitochondria and in doing
so generates DNA fragments both with the nucleus and cytosol.
Cytosolic DNA is recognized by an intracellular protein called
cGAS (cyclic GAMP synthase) which leads to production of
cGAMP (2′-5′ GMP-AMP). cGAMP activates the endoplasmic
reticulum (ER)-bound STING (stimulator of interferon genes)
pathway which further recruits and phosphorylates TBK1
(TANK-binding kinase 1), leading to phosphorylation and
activation of IRF3 (IFN-regulatory factor 3) and subsequent
production of Type I interferons like IFN-β (Figure 1) (34, 35).
cGAS and STING are highly expressed by a variety of innate
immune cells such as macrophages, dendritic cells, and others
and required for optimal production of type I interferons (36–
38). Recent evidence from several groups have shown that
the cGAS-STING pathway is responsible for detecting cytosolic
tumor–derived DNA after RT-induced damage to the DNA (32,
34, 39, 40). Subsequent production of type I interferons post-RT
are critical for generating the anti-tumor cytotoxic CD8+ T cell
response. Studies in murine B16 melanoma model revealed that
the surge of IFNβ production in irradiated tumors is associated
with enhanced RT-induced anti-tumor effects in IFN receptor
intact mice which is lost in mice lacking the IFN receptor
(IFNAR-1−/−) (9, 41). Other DNA damaging agents such as
anthracyclines have also been shown to signal through the cGAS-
STING-IFN pathway to produce anti-tumor immune responses
(42).

Recent observations have shown that a DNA exonuclease
called 3′ repair exonuclease 1 (Trex1) regulates RT-induced
activation of the cGAS-STING-IFN pathway. Using paired
RT-sensitive and resistant orthotopic breast cancers it was
revealed that RT-sensitivity depends in part on Trex1 levels.
Mechanistically, Trex1 cleaves the DNA that accumulates
in the cytosol following RT thereby abrogating IFN-β
production through the STING-cGAS pathway. Thus, high
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FIGURE 2 | Innate immune signals (“danger signals”) triggered by RT. RT induces the release and activation of multiple different inflammatory mediators from injured

cells including complement, heat shock protein 70 (hsp70), high-mobility group box protein 1 (HMGB1), cytosolic DNA, calreticulin, and adenosine triphosphate (ATP).

These molecules are sensed by innate immune cells such as macrophages or dendritic cells via toll-like receptor 4 (TLR-4), cyclic GMP-AMP synthase

(cGAS)-stimulator of interferon genes (STING), CD47 and NLR family pyrin domain containing protein 3 (NLRP3). Once sensed these receptors send signals via

nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3) leading to downstream cytokine production and subsequent inflammation.

levels of Trex1 prevent radiation-induced Type I interferon
induced inflammation thereby reducing the efficacy of RT (5).
Interestingly, multiple smaller fractions of radiation (8 Gy∗3) did
not induce higher levels of Trex1, rather it induced more IFN-β
production and activation of Batf3-dependent DCs, leading to
enhanced anti-tumor T cells responses. The induction of Trex1
by a single fraction of high-dose radiation dose but not with
a short-course of fractionated radiation suggests that it may
be essential to fractionate the radiation doses to improve the
immunogenicity of RT and its synergy with immunotherapy.
Preclinical studies and a recently reported clinical trial support
this notion demonstrating synergy between fractionated RT and
anti-CTLA (43). In the checkpoint-resistant breast TSA model
(mouse), it was observed that single high dose (20 or 30Gy) of RT
did not induce abscopal effects when used along with either anti-
CTLA-4 or anti-PD-1 while a short fractionated course (8 Gy∗3)
induced an abscopal systemic immune response when given in
conjunction with anti-CTLA-4 leading to prolonged/sustained
tumor regression. Fractionated lower doses (8 Gy∗3) induced
the production of IFN-I stimulated genes in mice followed by
enhanced number of CD8α+ tumor infiltrating DCs (with high
CD70) within the tumors and IFN-β in TSA cells in vitro but
interestingly 20Gy did not in part through in the induction of
Trex1 by high-dose single fraction RT. Trex1 knockdown in
TSA cells restored Type I interferon production with high doses
of radiation (20 Gy∗2) suggesting that induction of Trex1 is a
key mediator of RT-induced inflammation. Thus, to ensure an
optimal anti-tumor responses, short-course fractionated RT may

need to be employed in part to prevent Trex1 induction leading
to optimal sensing of the cytosolic DNA produced by RT.

By sensing an array of danger signals produced by irradiated
cells, innate immune cells serve as the primary sentinels of
the body to identify cells that have been damaged by radiation
(Figure 1). As such, the innate immune system plays an
outsized role in determining the response to radiation damage.
Macrophages and dendritic cells integrate the danger signals they
received from irradiated cells and their response to these signals
shapes the ensuing immune response. Thus, many strategies are
currently being explored to augment the response of the innate
immune system following RT to help create better anti-tumor
immunity.

Targeting Innate Immune Initiation of an
Anti-tumor Immune Response
Most of the strategies directed at augmenting the innate immune
response have focused on increasing signals that mimic the
danger signal sensed by the innate immune system. In preclinical
models, these strategies have shown much promise and are
beginning to be tested clinically. The oldest and most common
strategy that has been utilized to enhance the early innate
immune response typically targets toll signaling. While RT
naturally leads to release of HMGB1 which binds TLR4, other
toll agonists have also been utilized to augment the inflammatory
response triggered by RT. For example, addition of CpG, a
TLR9 agonist, showed synergy when combined with RT (44)
in a murine and canine models of melanoma and a murine
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model of breast cancer (45). Imiquimod, a TLR7 agonist, also
showed increased activity in conjunction with RT in several
different murine models of cancer (46, 47) with enhanced
immune activation noted in a trial of human breast cancer skin
metastases (48). In one preclinical study, topical application
of imiquimod to lesions in a murine breast cancer model in
combination with RT and low-dose cyclophosphamide led to
tumor regression for both the irradiated and distant lesions
and was further associated with an upregulation of IFN-α and
IFN-γ signaling and CD8+ T cell homing to the tumor site
(49). Similarly, systemic administration of another TLR7 agonist,
DSR-6434 resulted in enhanced radiation efficacy with prolonged
tumor regression in murine models of colorectal carcinoma and
fibrosarcoma with increased type I interferon production (47).

Other strategies to improve innate immunity have focused on
the calreticulin pathway. As mentioned previously, calreticulin
expression is induced by RT and is an important signal for
phagocytosis by macrophages (31). This process is regulated
in part by a molecule known as CD47 (integrin associated
protein) which interacts with signal regulatory protein-alpha
(SIRPα) expressed on myeloid cells. This interaction causes
phosphorylation of the SIRPα cytoplasmic immunoreceptor
tyrosine-based inhibition motifs and recruitment of Src
homology 2 domain-containing tyrosine phosphatases to
ultimately result in delivering an anti-phagocytic signal to
myeloid cells preventing a cell from being consumed (50).
While, not acting directly in concert, the phagocytic stimulation
provided by RT-induced calreticulin can be enhanced by
blocking the anti-phagocytic signal CD47 which leads to
increased dendritic cell andmacrophage activation and improved
anti-tumor immunity (51, 52). Trials are currently underway
testing this pathway in combination with RT (ClinicalTrials.gov,
NCT02890368).

One of the most promising newer strategies to augment
the RT-mediated activation of innate immunity has been
to target type I interferon production through the use of
STING agonists. Mostly structured as cyclic dinucleotides,
multiple groups have shown the efficacy of STING agonists in
combination with chemotherapy and various immunotherapies
(53–55). STING agonists in combination with RT have
also been examined (56, 57) and in these murine models
of pancreatic cancer and prostate cancer, STING agonists
in combination with RT showed significant synergy. In
this study using a murine model of pancreatic cancer,
Baird et al. found that RT along with STING agonist-
CDN displayed strong synergy significantly enhancing tumor
regression through augmented CD8+ T cell responses (57).
Similar synergy was also observed in murine models of lung
cancer (LLC) and colorectal cancer (MC38) (56). Like the
other agents targeting cancer by augmenting innate immune
activation, STING agonists are currently in early phase clinical
trials for multiple different cancer types (ClinicalTrials.gov,
NCT03172936).

While limited clinical information exists, there is substantial
preclinical data suggesting that augmenting the innate immune
activation triggered by RT can significantly enhance the anti-
tumor immunity produced following RT (Figure 1). However,

given the significant release of these innate immune activating
molecules following RT at baseline there may be other aspects of
how innate immune cells interact with tumors that can serve as
additional targets.

RT and Regulation of the Anti-tumor
Adaptive Immune Response
When cells of the innate immune system detect that there is
a problem, e.g., an infection or tissue damage, they activate a
program of inflammation that leads to activation of the adaptive
response (T and B cells). Activation of the adaptive immune
system requires maturation of dendritic cells or macrophages
into antigen-presenting cells (APC) which requires appropriate
expression of MHC molecules and co-stimulatory signals.
Interestingly, RT has been shown to upregulate MHC class I
and stimulate presentation of unique antigens (7, 8, 58) as
well as costimulatory molecules (58, 59) by dendritic cells.
The importance of DC in mediating the efficacy of RT was
shown Dewan et al., where fractionated radiotherapy along with
anti-CTLA4 had significant abscopal effects in part through
the generation of increased numbers of Batf3 DCs (43). Batf3
dependent DC cells are an important subset of dendritic cells
with their ability to efficiently cross-present antigens and regulate
tumor growth by enhancing CD8+ T cell migration to the tumor
microenvironment and fostering effective T cell response (6, 60).
Abscopal effects were abolished in the Batf3−/− mice consistent
with other observations demonstrating the critical role of Batf3
DC in regulating RT-induced anti-tumor immune responses (60–
62). In addition to its effects on DC, RT further contributes to
the adaptive immune response by encouraging innate immune
cells to establish an inflammatory milieu in irradiated tissue in
part through stimulating the release of complement and pro-
inflammatory cytokines and chemokines by innate immune cells
(63, 64).

Following innate recognition, one of the first proinflammatory
molecules activated by RT is complement, soluble effector
proteins that are produced by and regulate innate immune cell
function (65, 66). Surace et al. demonstrated that components
of the complement system are important for RT-induced anti-
tumor immunity both in murine and human tumors (66). They
showed higher levels of activated C3a and C5a (inflammatory
anaphylatoxins) in tumors within 24 h of RT and that these
mediate the response to RT-induced damage to tumor cells (66).
They went on to demonstrate that in a mouse melanoma model,
DC activation post-RT was dependent on these anaphylatoxins.
In their model, DC activation post-RT was only observed in wild-
type mice but not in mice lacking C3, the C3a receptor or the
C5a receptor. Previous studies have shown that anaphylatoxins
can bind on their own receptors (67, 68), thus, following RT it
was observed that DC increased the expression of some of the
complement factors including C3 and the C5a receptor within
24 h following RT and that expression of these complement
factors were critical for controlling DC activation and subsequent
T-cell responses following RT. As would be expected from a
complement response (69), RT-mediated complement activation
increased NK1.1+ (natural killer cells) but not NKp46+
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(invariant NK-T cell) cell populations which likely served to
enhance anti-tumor response of CD8+ T cells.

In addition to expression of complement, RT has been
shown to increase the expression of a number of cytokines
and chemokines. Aside from the previously mentioned type
I interferons, RT has been shown to induce immune cells
within the tumor including TAMs and CD8+ T cells and NK
cells and others to produce inflammatory cytokines including
tumor necrosis factor alpha (TNF-α) (70), interleukin-1 (71),
interleukin-6 (72, 73), interferon-gamma (IFN-γ) (3, 74),
macrophage colony stimulating factor 1 (CSF-1, M-CSF) (75),
and granulocyte macrophage colony stimulating factor (GM-
CSF) (76, 77). These cytokines are critical for establishing
inflammation at the irradiated site as well as induction of a
cytotoxic CD8+ T cell response. Genetic ablation or use of
agents that deplete or block the actions of theses cytokines
significantly reduced the response to RT across a number of
histologies including melanoma, sarcoma and breast in murine
models. These cytokines not only serve to attract circulating
immune cells, but also help establish inflammation by altering
the vasculature (78) and increasing the release of chemokines
including CXCL16 (79, 80), CCL2 (81), and CCL5 (82). These
chemokines serve to attract CD8+ T cells (CXCL16) andmyeloid
cells (CSF-1, CCL2, CCL5) to irradiated tumors.

Through the expression of various inflammatory molecules,
the innate immune system translates the danger signals they
sense in irradiated tissue into an anti-tumor immune response.
Multiple strategies have been employed combining RT with
various agents in attempt to enhance the innate immune response
to RT as we discuss below.

Enhancing Innate Regulation of the
Anti-tumor Adaptive Immune Response
In addition to targeting the danger signaling induced by
immunogenic cell death, multiple groups have sought to make
the downstream responses of the innate immune cells more
productive. Strategies to enhance the magnitude and efficiency
of antigen presentation and inflammation induced by RT are
currently being explored.

The primary target of the strategies to augment the innate
immune response following RT has been focused on dendritic
cells as they are the primary APC within tumors. Several
groups have shown that they can improve the response to RT
in murine models and early human trials by increasing the
growth and differentiation of dendritic cells. One way to increase
the number of DC is the cytokine granulocyte-macrophage
colony-stimulating factor (GM-CSF) which has been shown to
be a crucial pathway for the growth, maturation and migration
of DC (83, 84). Several human trials of GM-CSF in melanoma
and breast cancer have demonstrated the efficacy of GM-CSF
administration alone with improved survival compared to
historical controls (85) (86) and an increase in circulating DC
(87). Based on these successful early studies, trials of GM-CSF
and RT were initiated. In one trial of metastatic patients of
various histologies, exogenous administration of GM-CSF
with a course of fractionated RT (35Gy in 10 fractions) found

evidence of an abscopal, and hence systemic, anti-tumor immune
response in 27% of the patients (84). Currently, multiple trials
are underway to test the efficacy both locally and systemically
of combining GM-CSF with high-dose, short-course radiation
(stereotactic body radiation therapy, SBRT) in hepatocellular
carcinoma (ClinicalTrials.gov, NCT02946138) and lung
cancer (ClinicalTrials.gov, NCT02976740, NCT02623595,
NCT03113851) and standard fractionated RT in glioblastoma
(ClinicalTrials.gov, NCT02663440).

Another cytokine for DC-specific growth similar to GM-
CSF that has been shown to enhance the response to RT is
the FS-like tyrosine kinase 3 ligand (FLT3L) (88–90). FLT3L
binds and activates FLT3 on hematopoetic progenitors and
serves a critical role in steady-state maintenance of DC (91)
and increased levels of FLT3L during inflammation mobilizes
DC (92). Two studies using preclinical models of non-small cell
lung cancer demonstrated reduced tumor growth, metastases,
and improved survival with administration of RT and FLT3L
in a T-cell dependent manner (89, 90). Based on the success
of the preclinical data, FLT3L is currently being tested in a
phase II trial in non-small cell lung cancer in combination with
SBRT (ClinicalTrials.gov, NCT02839265). Preclinical data in a
murine model of hepatocellular carcinoma has also shown that
the efficacy of RT can be enhanced by augmenting DC function
through the use of exogenous IL-12 to help DCs better generate
cytotoxic T cells (93).

Instead of encouraging the creation of more or better DCs,
others have taken a more direct approach and have tested
combining dendritic cell vaccines with RT (94, 95). In two
trials for glioblastoma, DC loaded with tumor lysates were
administered either concurrently with chemoradiation (96) or
immediately following (97) demonstrated increased numbers
of tumor specific T cells, however neither showed correlation
between immune response and survival, though they were not
powered enough to determine such a correlation. Currently,
an open trial in brainstem glioma combines both of the
above strategies employing both DC vaccination, GM-CSF, and
standard RT for patients (ClinicalTrials.gov, NCT03396575).
Though previous trials have not been able to show significant
survival impact using the combination of DC targeting with
RT, as understanding of the underlying immune mechanisms
increases more combinations with various immune therapies as
well as different doses and timing of RT may further enhance the
response to DC vaccines and RT.

While none of these strategies have had tremendous
clinical responses to date, the advent of newer
immunotherapy approaches particularly those targeting
tumor immunosuppression such as checkpoint inhibitors
have generated renewed interest in RT and DC vaccination
combinations.

RT and Innate Immunity-Mediated
Immunosuppression
The recent success of agents known as checkpoint inhibitors
that block immunosuppressive pathways within tumors highlight
the importance of targeting the immunosuppressive tumor
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microenvironment to foster anti-tumor immunity. Cells of the
innate immune system particularly macrophages in conjunction
with tumor cells participate in establishing the suppressive
environment of tumors. Macrophages play a complex dual
role in the context of tumor immunobiology. They have pro-
inflammatory roles as outlined above, but more often exhibit
a pro-tumor phenotype that suppresses anti-tumor immunity
and supports tumor growth (98, 99). In the context of radiation
therapy, multiple groups have shown that macrophages play a
negative role in regulating the anti-tumor response after RT
thus reducing the efficacy of RT. Several groups have reported
increased numbers of myeloid-macrophages migration following
RT in models of head and neck cancer, glioma, pancreatic,
and breast cancer (4, 16, 81, 100, 101). Further, many of these
macrophages have been shown to have an immunosuppressive
pro-tumor phenotype, also known as the M2 or alternatively
activated phenotype, which limits the response to RT (4, 102,
103). Further, macrophages are one of the key cells within tumors
that express both PD-1 (104) and PD-L1 (105). Thus, given the
role of innate immune cells like macrophages as sources of tumor
immunosuppression, it is not surprising that many groups have
explored targeting the suppressive capacity of innate immune
cells to improve the efficacy of RT.

Targeting Innate Immunity-Mediated
Immunosuppression in Combination With
RT
With the recent recognition of the need to alleviate the intrinsic
tumor immunosuppression to allow anti-tumor immunity
to progress, much activity has been devoted to targeting
the pathways and cells that mediate immunosuppression.
Interestingly, many of the cellular targets are innate immune cells
such as macrophages. Since RT generates both an anti-tumor
immune response and the corresponding suppressive immune
control mechanisms, combinations of RT with agents that target
intratumoral immune suppression are thought to allow for an
enhanced anti-tumor immune response following RT. Preclinical
models strongly support this notion and clinical data is just
emerging that suggests that this strategy may also be efficacious
in the clinical setting.

One of the most successful regimens targeting intratumoral
immunosuppression has been targeting immune suppression
with checkpoint inhibitors which are agents that target the PD-
1/PD-L1 and CTLA-4 pathways. Innate immune cells are one
of the key sources of signal for the PD-1/PD-L1 pathway with
dendritic cells and macrophage serving as one of the primary,
non-tumor sources of PD-L1 in the tumor microenvironment.
Thus, the underlying mechanism of checkpoint blockade likely
involves disrupting the effects of innate immune cells on immune
response in tumors. To date, an increasingly large amount of
data has demonstrated the efficacy of using checkpoint inhibitors
in the preclinical and clinical setting in combination with RT.
As several excellent recent reviews have examined the role of
combining checkpoint blockade with RT in detail, we will not
discuss combinations with checkpoint blockade further here
though it should be recognized that including one of these agents

as a part of any immune-directed therapeutic regimen will be an
important consideration for the foreseeable future (106, 107).

Beyond checkpoint blockade, macrophages serve as
the main source of immunosuppression within the tumor
microenvironment following RT. As evidence of the importance
of macrophages, various studies have revealed a strong negative
correlation between the presence of macrophages and survival
in various solid tumors including breast, colon, bladder, and
lung cancer (10–12, 108). As we described above, macrophages
are often associated with resistance to radiotherapy and
chemotherapy by providing both pro-survival signals and tissue
repair functions that protect and/or repair the damage done by
these therapies. Various studies have shown that macrophages,
the most abundant cells of the tumor microenvironment, are
altered by RT to support tumor growth after being damaged
and sensing damage resulting from irradiation. For example,
Leblond et al. found an increase in density of pro-tumor M2
macrophages in the tumor microenvironment post-RT in
glioblastoma (109). Kioi et al. showed that the RT-recruited
macrophages help rectify the damage done by RT by promoting
vasculogenesis (14). Given, the pro-tumor role of macrophages
following RT multiple groups have shown that blocking
macrophage recruitment via targeting CD11b (16), CCL2
(81), or CSF-1R (4, 75, 100), enhance the efficacy of RT in
preclinical murine models. For example, in a squamous cell
carcinoma model Ahn et al. found that administration of
a CD11b antibody enhanced the efficacy of RT by blocking
myeloid cell recruitment to the tumor site after RT leading to
delayed regrowth in part through impaired angiogenesis (16).
Other studies have revelead that inhibition of macrophages
following RT increases both the anti-tumor immune response
(4) and prevents pro-tumor repair mechanisms such as
angiogenesis and matrix remodeling (14, 16). Thus, these
studies all demonstrate that targeting macrophages can
synergize with RT, however, given the potentially positive
role of macrophages in producing cytotoxic anti-tumor
immune responses, other groups have sought to preserve the
pro-inflammatory activation capacity of macrophages while
preventing their suppressive differentiation to even further
synergize with RT.

Given the successful preclinical models showing enhanced
responses to RT in combination with agents that target
macrophages including CSF-1R inhibitors and CD11b, several
trials are currently underway to test the validity of this
observation in human trials. Based on the work of Stafford et al. a
trial using the small molecule inhibitor of CSF-1R (Pexidartinib,
PLX3397, Plexxikon) in newly diagnosed glioblastoma in
combination with standard chemotherapy and RT was opened
and accruing (ClinicalTrials.gov, NCT01790503). Another group
is also testing the CSF-1R inhibitor in combination with
concurrent standard dose RT and androgen deprivation for
localized unfavorable risk prostate cancer (ClinicalTrials.gov,
NCT02472275). Interestingly, agents targeting tumor-associated
macrophages such as the CCL2 inhibitor carlumab have had
limited effect as single-agents (110) and in fact may only have
efficacy when combined with other agents such as RT that perturb
the tumor immune microenvironment (4, 111).
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In order to preserve the macrophage capacity to activate anti-
tumor immunity while preventing their differentiation into pro-
tumor, immunosuppressive phenotypes, several groups including
our own have examined the potential of targeting the pathways
that lead to pro-tumor phenotypes in macrophages including
IL-4 (4), arginase 1 (102), TGF-β (15), and Tyro3/Axl/Mer
(TAM) tyrosine kinases (18, 101) in combination with RT.
Targeting macrophage differentiation led to improved anti-
tumor immunity, particularly cytotoxic CD8+ T cells, resulting
in dramatically enhanced responses to RT. Though each of
these strategies targets a distinct pathway found in myeloid-
macrophages, they result in reduction but likely not elimination
of immunosuppressive differentiation suggesting that even
modest reductions in tumor-associated immunosuppression can
have profound effects on therapeutic responsiveness to RT.

The findings from these preclinical studies targeting
macrophage phenotype in combination with radiation are
just beginning to be explored in the clinical trial setting.
One promising target is TGF-β a cytokine for which
several inhibitors have been developed. Though TGF-β has
pleiotropic effects, its upregulation post-RT is one of the
primary drivers of immunosuppression in the irradiated tumor
microenvironment particular effects on the development of
regulatory macrophages and T cells. Using an agent that
binds all isoforms of TGF-β (fresolimumab, Sanofi-Aventis)
in combination with SBRT for patients with metastatic breast
cancer (ClinicalTrials.gov, NCT02538471), Formenti et al. found
that the highest dose combination led to improved survival and
systemic immune responses compared to lower doses (112).
Other clinical trials testing TGF-β inhibition with RT and/or
chemotherapy are currently underway in non-small cell lung

cancer (ClinicalTrials.gov, NCT02581787), glioblastoma
(ClinicalTrials.gov, NCT01220271), and hepatocellular
carcinoma (ClinicalTrials.gov, NCT02906397). Other pathways
targeting macrophage phenotypes have not yet been explored
clinically, but the experience with TGF-β suggests that strategies
that help create favorable macrophage phenotypes may mirror
the preclinical data in improving the efficacy of RT.

CONCLUSIONS

The innate immune system plays a critical role in regulating
the response to RT from the recognition of RT-mediated tissue
damage to shaping of the RT-mediated anti-tumor immune
response. Strategies to augment the innate immune response
have met with varying success clinically, however promising
new strategies based on our improved understanding of innate
immune biology such as STING agonists, adjuvants to enhance
DC activity and anti-macrophage agents will undoubtedly
shape future therapeutic approaches to combination therapies
with RT.
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