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A computational 
model of the epidermis 
with the deformable dermis and its 
application to skin diseases
Kota Ohno1,7, Yasuaki Kobayashi2,7, Masaaki Uesaka3, Takeshi Gotoda4, Mitsuhiro Denda5, 
Hideyuki Kosumi6, Mika Watanabe6, Ken Natsuga6 & Masaharu Nagayama2*

The skin barrier is provided by the organized multi-layer structure of epidermal cells, which 
is dynamically maintained by a continuous supply of cells from the basal layer. The epidermal 
homeostasis can be disrupted by various skin diseases, which often cause morphological changes not 
only in the epidermis but in the dermis. We present a three-dimensional agent-based computational 
model of the epidermis that takes into account the deformability of the dermis. Our model can 
produce a stable epidermal structure with well-organized layers. We show that its stability depends 
on the cell supply rate from the basal layer. Modeling the morphological change of the dermis also 
enables us to investigate how the stiffness of the dermis affects the structure and barrier functions 
of the epidermis. Besides, we show that our model can simulate the formation of a corn (clavus) by 
assuming hyperproliferation and rapid differentiation. We also provide experimental data for human 
corn, which supports the model assumptions and the simulation result.

Skin is a pivotal organ that prevents water loss and protects us from various external pathogens and stimuli1,2. 
Stem cells in the basal layer continuously supply cells into suprabasal layers, consisting of the spinous, granular, 
and cornified layers from below. The cornified layer, the outermost part of the skin, consists of flat, regularly 
stacked cornified cells and the lipids filling the spaces between them, and its organized structure is responsible 
for epidermal barrier functions. Therefore, to understand epidermal homeostasis and its barrier function, one 
has to elucidate how the organized layer structure is maintained.

Mathematical modeling is a valuable tool to investigate the emergence of epidermal homeostasis as a complex 
phenomenon. Among others, agent-based models have been widely adopted to study homeostatic properties of 
the epidermis3–6. One advantage of using agent-based models is that they can easily incorporate various features, 
such as stem cell dynamics, differentiation, lipid production and secretion, and cell morphology. Pathological 
states of the skin can also be easily created, enabling one to study wound healing7–9 and the development of 
psoriasis10. An integrated model of the epidermis that includes all features relevant to epidermal homeostasis 
would be desired to simulate various skin diseases and understand their mechanisms.

One factor that needs to be taken into account to have such an integrated model is a localized layer of calcium 
ions beneath the cornified layer, which could affect barrier functions11–18. Mathematical models were proposed 
for the calcium gradient in the epidermis19,20, as well as localized calcium excitation in cultured keratinocytes21, 
and the effect of the calcium layer on the epidermal structure was investigated22,23. The effect of calcium was 
further studied by using agent-based models24,25. By introducing an agent-based model of the epidermis, we 
suggested that the acceleration of differentiation due to calcium ions could stabilize the boundary between the 
granular and the cornified layers26.

Another important factor is the shape of the dermis, which could affect the spatial patterns of cell supply 
from the basal layer. The effect of dermal shape on the thickness of the epidermis was studied using a rigid, 
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undulating dermis27, which suggested that an increase of the surface area due to dermal undulations could lead 
to an increase of epidermal thickness; This effect has been supported by an experiment28. Dynamical processes of 
dermal deformation were also studied: We proposed an agent-based model with the deformable dermis, which 
successfully simulated upward protrusions of the dermis starting from a flat dermis29, as observed in real human 
epidermis. It is well known that growing tissues can develop a spatial structure due to the buckling instability30–38; 
our model has revealed that the structure could also affect the spatial patterning of stem cells.

Our two previous models mentioned above are complementary: the epidermal model26 has not taken into 
account deformability of the dermis; The dermal deformation model29 has taken into account only the dermis, 
the basement membrane, and the basal layer, disregarding the suprabasal layers. In this work, we integrate these 
two models into a unified model that can simulate epidermal homeostasis with the deformable dermis. This 
model includes important aspects for simulating the maintenance of the epidermis, such as cell division in the 
basal layer, calcium-dependent cell differentiation, flattening of cell shape during differentiation, secretion of 
lipids, desquamation, and the development of a spatial structure of the dermis due to cell division. By numerical 
simulations, we demonstrate that the model can produce a stable epidermis with well-organized layer structures. 
Extensive numerical investigations reveal that the stability of the layer structure depends on the supply rate of 
cells from the basal layer. Besides, by controlling the stiffness of the dermis, we show how the hardening of the 
dermis affects epidermal homeostasis. Finally, we show that our model can be used to simulate a skin disease that 
causes morphological changes in both the epidermis and the dermis, such as the corn (clavus). We also show an 
experimental result of the corn formation and compare it with the simulation result.

Results
Overview of the computational model.  We consider the system composed of the dermis, the basement 
membrane, and the epidermis. The dermis is a soft elastic substrate, which is modeled by particles adhesive to 
each other. The stiffness of the dermis is controlled by modifying the adhesion strength. The basement mem-
brane is modeled by particles connected in the form of a triangular lattice. The lattice edges are assigned stretch-
ing and bending energies so that the membrane exhibits elasticity. Membrane particles are adhesive to dermal 
particles. Epidermal cells are represented by spheroids, whose flattening rate depends on differentiation.

The basal layer is defined as a monolayer of basal cells, which are stem cells or transit-amplifying (TA) cell. 
Stem cells are strongly bound to the basement membrane, whereas TA cells are weakly bound. Cells passively 
move due to the pressure created by repeated cell division, which causes TA cells to leave the basement mem-
brane. Stem cells divide an infinite number of times, whereas TA cells divide a finite number of times, Ndiv . 
Both cells follow a stochastic cell cycle, with the deterministic period Tdiv . TA cells not bound to the basement 
membrane are regarded as differentiated, which constitutes the suprabasal layer. Continuous cell division in the 
basal layer causes the migration of cells towards the upper layers.

A cell is assigned a state variable; it starts to increase when differentiated, with the increase accelerated by 
calcium ions and stimulants released by the cornified cells. Cell type changes as spinous, granular, or cornified 
in this order as the state variable increases. Lipids are produced inside granular cells and released when calcium 
ions increase, which typically occurs at cornification. After cornification, the cell undergoes desquamation, i.e., 
peels off from the bulk (computationally, it is removed from the system) controlled by corneodesmosomes, cell-
junction structures specific to cornified cells.

Hence, the model consists of equations of motion for dermal particles, membrane particles, and epidermal 
cells; cell division cycle; cell differentiation process; cell flattening during differentiation; lipid production; des-
quamation; and dynamics of calcium ions and stimulants. A schematic illustration is shown in Fig.  1(a). A full 
description of the mathematical model is given in Supplementary Information.

The scales of length and time in this model were determined so that the cell diameter is 10 µm and the time-
span between cornification and desquamation is 14 days, whereby the turnover time for the whole epidermis is 
approximately 28 days.

Maintenance of epidermal homeostasis.  In the real epidermis, the barrier function is often evaluated 
by transepidermal water loss, the loss of body water through the epidermis. It is known that the water loss is 
prevented by regularly stacked cornified cells and intercellular lipids filling the spaces between them. Therefore, 
the barrier function requires a well-organized layer structure and sufficient lipid content. Hence we first checked 
whether the present model could produce an epidermis serving as a barrier both in terms of the structure and 
the lipid production.

We performed simulations with two different conditions by changing the maximum number of cell divisions 
Ndiv and the cell division period Tdiv , which affects the cell supply rate from the basal layer. The results are shown 
in Fig. 1. Cell types and cell layers are depicted in Fig. 1(b). When a sufficient number of cells are continuously 
supplied from the basal layer, a fully developed epidermis was formed with clearly separated layers, consisting 
of spinous, granular, and cornified cells [Fig. 1(c)], The thickness of each layer was fairly uniform in space and 
stable in time [Fig. 1(c), (d); see also Fig. 4]. Columnar structures of vertically stacked cells were also observed 
in the granular layer and the cornified layer [Fig. 1(c), (d)]. The epidermal development was accompanied by 
the creation of upward protrusions in the initially flat dermis, with stem cells located at the tip of the protru-
sions [Fig. 1(d)]. We compared this result with another simulation in which the cell supply rate was reduced by 
choosing a smaller Ndiv value and a larger Tdiv value. In this case, we observed not only a decrease of thickness, 
as expected, but also the destabilization of the layer structure [Fig. 1(f)]. In particular, the boundary between 
the granular layer and the spinous layer became blurred due to isolated granular cells away from the bulk layer 
[Fig. 1(g)]. The effect of reduced cell supply was also found in the lipid production: When the cell supply is suf-
ficient, intercellular lipids were sufficiently released from cornified cells [Fig. 1(e)]. When the cell supply was 
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reduced, however, we observed insufficient lipid productions in a fraction of cells [Fig. 1(h)]. These results sug-
gest that our model can produce a stable epidermal structure when cell supply from the basal layer is sufficient 
and that the reduced cell supply could affect both structural stability and the internal cell dynamics like lipid 
production.

Evaluation of epidermal conditions by changing cell supply rate.  Then we investigated the effect 
of the cell supply rate on the epidermal structure and the lipid production more systematically by varying the 
parameters Ndiv and Tdiv . We focus on the granular and the cornified layers. To evaluate the structure of these 
layers, we introduce the following measures: For each cell layer (granular or cornified), we define the thickness 
H; the dispersion G, and the spatial variation of the thickness E. A schematic illustration of these measures is 
given in Fig. 2(a) (Precise definitions are given in the Method): H is the thickness of the bulk; G expressed the 
largest vertical deviation of isolated cells from the bulk; and E represents the magnitude of modulations of the 
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Figure 1.   Simulation for the development of the epidermis. (a) Modeling of cell dynamics. (b) Schematic 
representation of the dermis, the basement membrane, and different layers of the epidermis. (c)–(h) Simulation 
snapshots for two different sets of Ndiv (maximum number of cell divisions) and Tdiv (cell division period): (c–e) 
(Ndiv ,Tdiv) = (14, 4.0) , (f–h) (Ndiv ,Tdiv) = (8.0, 4.4) . (c), (f) Overview of the epidermal model, colored in the 
same way as (b): the dermis (white), the basement membrane (light pink), stem cells (green), TA cells (blue), 
spinous cells (purple), granular cells (dark magenta), cornified cells (dark pink). (d) and (g) are the same as (c) 
and (f), respectively, with only the basement membrane, stem cells, and granular cells are visualized. (e) and 
(h) are the same as (c) and (f), respectively, with cells colored according to the ratio of the lipid content to the 
maximum lipid production.
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Figure 2.   Evaluation of the epidermal structures and the lipid production as functions of Ndiv (maximum 
number of cell divisions) and Tdiv (cell division period). (a) Schematic illustration of the definition of the mean 
thickness H, the dispersion G, and the spatial variation E. (b) Thickness H, relative dispersion G/H normalized 
by thickness, and relative spatial variation E/H normalized by thickness for the granular layer. (c) H, G/H, 
and E/H for the cornified layer. (d) Ratio of the lipid content released from cornified cells to the maximum 
lipid production (left) and the number of lipid-deficient cornified cells with inadequate lipid production (less 
than 50% of the maximum) (right). All values in (b)–(d) are time-averaged over 280 days (approximately 10 
turnovers). See Methods for precise definitions of the evaluation functions.
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bulk thickness. These measures can capture different features: A cell layer with uniform thickness and a well-
defined boundary with the adjacent cell layer should have small G and E.

Figure 2 shows the evaluation measures as a function of Ndiv vs Tdiv . In the granular layer, the parameter 
space can be divided into two regions [Fig. 2(b)]: In the lower-right region, where the cell supply rate is large 
(with large Ndiv and small Tdiv ), the thickness H is high and both the dispersion G and the spatial variation E 
(normalized by the thickness H) are small, indicating a spatially uniform, well-defined granular layer. On the 
other hand, in the upper-left region, where the cell supply rate is small (with small Ndiv and large Tdiv ), the 
opposite tendency is observed, with small H, large G/H, and large E/H, indicating a thin bulk layer with large 
spatial variation of the thickness and with many isolated cells from the bulk. The same tendency is seen in the 
cornified layer [Fig. 2(c)]: in the lower-right region, the cornified layer also has large H and small G and E. We 
note, however, that the parameter region that produces large G and E values is narrower in the cornified layer 
than in the granular layer and that the magnitude of G and E is the larger in the granular layer, which suggests 
that the maintenance of the granular layer is more crucial for epidermal homeostasis. The same tendency is also 
found in the intercellular lipids. As shown in Fig. 2(d), the upper-left region of the Ndiv-Tdiv space shows both 
the decrease of the mean lipids released from individual cells (normalized by maximum lipid production) and 
the increase of the number of lipid-deficient cornified cells, defined as cells with lipid production less than 50% 
of the maximum. The appearance of lipid-deficient cells is also visible in Fig. 1(h). These results suggest that 
sufficient cell supply is required for lipid production, as well as structural stability.

We directly confirmed the relation between the cell supply from the basal layer and the parameters Ndiv and 
Tdiv . Figure 3(a) shows the mean frequency of cell division events in the basal layer per day, which is low in 
the upper-left region, as expected. Note that the frequency is approximated by the number of proliferative cells 
divided by Tdiv . The number of proliferative cells depends on the surface area of the basal layer, which also varies 
by these parameters. Figures 3(b) and 3(c) show the number of basal cells, which is proportional to the surface 
area of the basal layer, and the number of proliferative cells, respectively, which indicates that both the surface 
area and the number of proliferative cells increase as Ndiv increases. Note that the increase of Tdiv , implying 
the reduced division frequency, does not necessarily reduce the surface area. On the contrary, the surface area 
increases as Tdiv increases for large Ndiv values, presumably because TA cells are more easily crowded out from 
the basal layer when cell division occurs more frequently.

Effect of the stiffness of the dermis.  Next, to see how the structure and the barrier function would be 
affected by the deformability of the dermis, we performed a simulation by increasing the stiffness of the dermis 
and compared the result with the previous simulation in Fig. 1(c–e) as a normal condition. By stiffening the 
dermis, we observed that the layer structure was worsened and that lipid production was impaired [Fig. 4(a–c)]. 
Differences were especially notable in the granular layer [Fig. 4(d)]: the thickness H was greatly reduced, More 
isolated cells were observed (large G/H), and spatial variations were more enhanced (larger E/H). The differences 
become small but still recognizable in the cornified layer [Fig. 4(e)]. Temporal fluctuations of these quantities 
were also enhanced, as indicated by error bars in Fig. 4(d) and (e). Deficient cornified cells with inadequate 
secretion of lipids were also found [Fig. 4(f)].

The stiffening of the dermis directly affected the dermal shape, as diminished dermal undulations observed in 
Fig. 4(b). The vertical deformation of the basement membrane, defined by the difference between the maximum 
and the minimum vertical displacements, became small for the stiffened dermis [Fig. 4(g)]. Since the diminished 
undulations reduce the surface area, fewer basal cells are accommodated by the basement membrane, which 
results in the reduction of the cell supply rate. These results suggest that the stiffening of the dermis disrupts the 
epidermal structure and barrier functions because of the reduction of the cell supply rate.

Simulation of the formation of a corn.  We wondered if our mathematical modeling could simulate 
human diseases by adjusting parameters. A corn (also termed clavus) is a well-demarcated and painful callus 
and typically develops on the plantar skin where the repeated friction or pressure is applied. We hypothesized 
that modulation of one stem cell is sufficient for corn development. We performed a simulation with the follow-
ing modifications: We selected one stem cell as an abnormal cell; Those cells produced from this abnormal stem 
cell would divide twice as fast in the basal layer and differentiate twice as fast in the suprabasal layer as those 

(b)

 6  8  10  12  14  16
 460
 480
 500
 520
 540
 560
 580
 600
 620
 640
 660

#TA cells

Ndiv

 6  8  10  12  14  16
 300

 350

 400

 450

 500

 550

 600
#Proliferative cells

Ndiv

(c)

T di
v [

da
y]

Ndiv

Frequency [/day](a)

 6  8  10  12  14  16
 3.4
 3.6
 3.8

 4
 4.2
 4.4
 4.6
 4.8

 5

 45
 50
 55
 60
 65
 70
 75
 80
 85
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produced from a normal stem cell. The system size was made larger than the previous simulations. As shown in 
Fig. 5(a), we found an inward intrusion of the cornified layer above the abnormal stem cell, where the intruding 
part of the cornified layer was mainly composed of cells produced by the abnormal stem cell [Fig. 5(a), colored 
red]. In the basal layer, fast-dividing cells formed a cluster around the abnormal stem cell [Fig. 5(b)], making a 
well-defined lesional area. Upward protrusions of the dermis were not observed in this lesional area, as in the 
non-lesional area, and the dermis in the lesional area was pushed downward, compared with the non-lesional 
area [Fig. 5(c)].

Human corn morphology.  Then we asked if the human corn reproduces the dynamics of proliferation and 
differentiation seen in the mathematical model (Fig. 5). We analyzed three corn specimens that were developed 
on the patients’ soles, and all of the samples shared similar findings. Hematoxylin and eosin (H&E) staining 
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Figure 4.   The effect of dermal stiffness. (a–c) Simulation with the stiffened dermis, presented in the same 
way as in Figs. 1(a–c) and (d–g). Comparison of the evaluation functions between the normal dermis and the 
stiffened dermis. (d) Evaluations of thickness H, normalized dispersion G/H, and normalized spatial variation 
E/H for the granular layer. (e) H, G/H, and E/H for the cornified layer. Note that the vartical scales for G/H 
are different between (d) and (e). (f) Number of cells with inadequate lipid production (less than 50% of the 
maximum). (g) Amplitude of the basement membrane deformation, defined by the difference between the 
maximum and minimum vertical displacements. Each violin plot contains 4001 data points within simulation 
time span T = 280 days (approximately 10 turnovers). Mean values and standard deviations are shown by black 
dots and black vertical lines, respectively.
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showed a massive hyperkeratosis (thickening of the cornified layer) in the lesional area of the corn [Fig. 6(a)], 
and the underlying epidermis was thinner than that of the non-lesional area (arrowheads). Parakeratosis (reten-
tion of the nuclei in the cornified layer) was also noted in the corn lesional area [Fig. 6(b)], suggesting the pre-
mature differentiation in the corn epidermis. Keratin 6 (K6) has been known to show an alternate expression 
in the palmoplantar epidermis39 [Fig. 6(c), non-lesional area, white arrowheads], but this pattern was absent 
in the corn [Fig. 6(c), lesional area]. Ki-67+ proliferative cells were more abundant in the corn than in the sur-
rounding normal epidermis [Fig. 6(d)]. Besides, the epidermal differentiation markers (keratin 1 (K1) and 10 
(K10) were absent, while the basal cell marker keratin 14 (K14) was retained even in the cornified layer in the 
corn [Fig. 6(e–g)]. This disturbed keratin pattern indicates that the corn epidermis does not have sufficient time 
to induce typical differentiation markers due to its fast differentiation. These data demonstrate that the math-
ematical model (Fig. 5) recapitulates human corn morphology as well as epidermal hyperproliferation and rapid 
differentiation of the corn. Although these experiments do not measure dynamic data as in the mathematical 
model due to the static images that could be retrieved in the histological sections, the findings are consistent with 
the model (Fig. 5), where the proliferation and differentiation dynamics are pathological in a subset of keratino-
cytes, accounting for the corn development.
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Figure 5.   Simulation for the formation of a corn. (a) Cross-section. One stem cell (red) has an abnormality 
among normal stem cells (green). Cornified cells are colored white when produced from the abnormal stem 
cell and pink when produced from normal stem cells. (b) Top view of the basal layer. Yellow and blue cells 
are transit-amplifying (TA) cells that are originated from the abnormal stem cells and normal stem cells, 
respectively. (c) Top view of the basement membrane. The color indicates the vertical displacement of the 
baement membrane, measured from the lowest point. Stem cells are colored violet.

Figure 6.   Histopathology of human corn (a, b) H&E staining. Scale bar: 1 mm (a) and 100 µm (b). (c) K6 
labeling. Scale bar: 300 µm . (d) Quantification of Ki-67+ cells in the epidermis. (e–g) K1, K10, and K14 labeling. 
Scale bar: 1 mm (low magnification) and 500 µm (high magnification).
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Discussion
The numerical results presented above are compatible with our previous results: Using the previous model with 
a flat, rigid dermis, we have already reported both the stable epidermal structure as in Fig. 126 and the cell supply 
dependence of the stability of the suprabasal layer40. Also, the shape of the dermis, as well as the spatial distri-
bution pattern of stem cells, is qualitatively the same as in the dermal deformation model29. These features are 
preserved in the present integrated model. The reduction of undulation magnitude in the dermis by stiffening 
is also consistent with the previous model29. More importantly, the present integrated model has also revealed 
that the stiffness could affect the suprabasal layers, as shown in Fig. 4, which can be studied only by treating the 
epidermis and the deformable dermis simultaneously.

How dermal protrusions arise has been studied in the previous work29, where it has been shown that a flat 
shape of the basement membrane destabilizes due to a buckling instability, and resulting upward protrusions 
and stem cell distributions are determined by differential adhesion of basal cells. This can be explained as fol-
lows: The basement membrane has stretching and bending elasticity. Since cells are adhesive to the basement 
membrane, cell division on the basement membrane exerts tangential forces on it, creating negative surface ten-
sion. Thus a flat shape becomes destabilized due to a buckling instability. To understand why protrusions direct 
upward and why stem cells are on the top of protrusions, we need to consider differential adhesion. When a cell 
strongly adhesive to the membrane divide, upward bending (a convex shape) would require a smaller energy 
cost (because of smaller stretching) than downward bending (a concave shape). The same argument applies to 
a cell weakly adhesive to the membrane, but since it can also leave the basement membrane, it is energetically 
more preferable for strongly bound cells to occupy the place with upward protrusions. This scenario has been 
numerically confirmed29.

We have made two major modifications to the previous epidermal model26. First, the previous model did 
not consider the shape change of cells during differentiation. By taking this into account, we have succeeded in 
producing columnar structures in granular and cornified cells, as shown in Fig. 1, which was not found in the 
previous model. It is well known that the granular and the cornified layers have columnar structures made of 
flattened cells41,42. We note that the flattening process was also introduced in a different model5. Second, in addi-
tion to calcium ions, we have assumed that a second factor is released from cells undergoing cornification. In the 
previous model, we have shown that a localized layer of calcium ions could maintain a well-defined boundary 
between cornified cells and granular cells. Both the previous and the present models assume that calcium ions 
released at the time of cornification accelerate cell differentiation, which causes stabilization of the boundary of 
the cell layer. How this mechanism works has been analytically confirmed by using a reaction-diffusion-advection 
model43. Since the previous model did not distinguish the granular and the spinous cells, however, an additional 
mechanism is needed to create another boundary between the granular and the spinous layers. Hence we intro-
duced the second factor that can modify differentiation speed differently from calcium ions. The two factors 
work together to form two boundaries separating the spinous, granular, and cornified layers, as shown in Fig. 1.

In this work, we have modeled proliferative cells by stem cells and TA cells. In order that stem cells do not 
leave the basal layer, we have assumed that stem cells are bound to the basal layer more strongly than TA cells. 
Different cell division scenarios, such as a single progenitor compartment model44, where a single population 
of basal cells can divide indefinitely and differentiate with a certain probability, would require a different model 
for the adhesion of basal cells to the basement membrane. There are studies using agent-based models on the 
comparison of different stem cell hypotheses4 and the mechanism for the maintenance of stem cell niche45. It is 
worth investigating to what degree these modifications to our model would change the stability of the epidermal 
homeostasis.

Our result on the stiffness of the dermis (Fig. 4) may shed light on photoaging, a physiological senescence 
process induced by ultraviolet exposure: Ultraviolet destroys elastic fibers in the dermis, leading to dermal 
stiffness. Photoaging causes changes in the dermal structures, such as flattening of the basement membrane 
and thinning of the epidermis46, accompanied by the decrease in the number and the activity of stem cells47. 
This phenomenon can be accounted for by our model: When the elasticity is lost in the dermis by photoaging, 
undulations in the basement membrane would be suppressed, with the surface area diminished. Then the cell 
supply would decrease, resulting in the thinning of the epidermis.

In summary, we have presented an integrated framework for simulating epidermal homeostasis by combin-
ing the epidermal structure model26 and the dermal deformation model29. The previous epidermis model26 had 
already found applications in simulating a thick epidermis equivalent on an undulating substrate28 or the epider-
mal proliferation under the reduced adhesion of progenitor cells to the basement membrane48. In this work, by 
considering the deformation of the dermis, we could also simulate the formation of a corn, which was consistent 
with the experimental results. Furthermore, our model allows us to infer dynamics that the experiments could 
not directly observe, which is one of the major advantages of mathematical modeling. Our model is expected to 
be applied for simulating various diseases entailing structural changes of the dermis.

Methods
Histology of human samples.  H&E staining and immunohistochemistry for formalin-fixed paraffin-
embedded samples were performed on three human corn specimens. The following antibodies were used for 
immunohistochemistry: anti-K1 (ThermoFisher, Waltham, Massachusetts, USA; 34B4), anti-K6 (ThermoFisher; 
LHK6B), anti-K10 (Santa Cruz Biotechnology, Dallas, Texas, USA; LHP1), anti-K14 (ThermoFisher; LL002), 
and anti-Ki-67 (Santa Cruz Biotechnology; MIB-1). Images of immunohistochemistry and H&E sections were 
captured with a BZ-9000 microscope (Keyence, Tokyo, Japan). For quantification of Ki-67+ cells in the epi-
dermis, the whole areas of the specimens were analyzed using ImageJ (NIH, Bethesda, Maryland, USA). The 
number of Ki-67+ cells was normalized by the length of the epidermis in each section. The institutional review 
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board of the Hokkaido University Graduate School of Medicine approved all human studies described above 
(ID: 14-063). The study was conducted according to the Declaration of Helsinki Principles. Participants pro-
vided written informed consent.

Evaluation functions.  We define the measures H, G, and E for the granular layer as follows (the same quan-
tities are defined for the cornified layer in the same way). First, we divide the region 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly 
into M1 ×M2 subregions, with i,  j-subregions defined as (i − 1)�x ≤ x < i�x and (j − 1)�y ≤ y < j�y 
( i = 1, . . . ,M1 , j = 1, . . . ,M2 ) with �x = Lx/M1 and �y = Ly/M2 . Then we define the thickness Hij(t) in the 
i, j-subregion as the total (approximated) volume occupied by the cells divided by the area of the subregion:

where nij(t) is the number of granular cells. Note that we ignore cell flattening for computing Hij(t) . Also, we 
define the dispersion of cell distribution in the z direction is defined as

where zmax
ij (t) and zmin

ij (t) are the maximum and the minimum z value of granular cells in the i, j-subregion, 
respectively. The mean thickness H and the dispersion G(t) of the whole cell group are given by

The spatial modulation of the thickness E is defined as the standard deviation of Hij:

Code availability
The code used in the simulation is available at https://doi.org/10.5281/zenodo.4722355.
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