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Abstract

PDE9 inhibitors show potential for treatment of diseases such as diabetes. To help with discovery of PDE9 inhibitors, we
performed mutagenesis, kinetic, crystallographic, and molecular dynamics analyses on the active site residues of Gln453 and
its stabilizing partner Glu406. The crystal structures of the PDE9 Q453E mutant (PDE9Q453E) in complex with inhibitors
IBMX and (S)-BAY73-6691 showed asymmetric binding of the inhibitors in two subunits of the PDE9Q453E dimer and also
the significant positional change of the M-loop at the active site. The kinetic analysis of the Q453E and E406A mutants
suggested that the invariant glutamine is critical for binding of substrates and inhibitors, but is unlikely to play a key role in
the differentiation between substrates of cGMP and cAMP. The molecular dynamics simulations suggest that residue Glu406
may be protonated and may thus explain the hydrogen bond distance between two side chain oxygens of Glu453 and
Glu406 in the crystal structure of the PDE9Q453E mutant. The information from these studies may be useful for design of
PDE9 inhibitors.
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Introduction

Cyclic nucleotide phosphodiesterases (PDEs) hydrolyze the

second messengers cAMP and cGMP, and play crucial roles in

many physiological processes. Twenty one of the human PDE

genes encode about a hundred of PDE proteins that are

categorized into eleven families on the basis of their biochemical

and pharmacological properties [1–3]. PDE inhibitors have been

widely studied as therapeutics for treatment of various diseases [4–

9]. A well known example is the PDE5 selective inhibitor sildenafil

that has been used for the treatment of male erectile dysfunction

and pulmonary hypertension [4,10]. Selective inhibitors of PDE9

have demonstrated potentials for treatment of human diseases,

including insulin-resistance syndrome and diabetes [11,12],

cardiovascular diseases [13], obesity [14], and neurodegenerative

disorders such as Alzheimer’s disease [15–16].

PDE molecules contain an N-terminal regulatory domain and

a conserved catalytic domain at the C-terminus. Individual PDE

families display a preference for hydrolysis of the substrates

cAMP (PDE4, 7, 8), cGMP (PDE5, 6, 9), or both (PDE1, 2, 3, 10,

11) [1–3,17]. It has been a puzzle how the conserved active sites

of PDEs selectively recognize the subtle differences between

cAMP and cGMP. On the basis of the different conformations of

the invariant glutamine in the crystal structures, a mechanism

called ‘‘glutamine switch’’ was proposed for differentiation of the

substrates by PDEs [18]. However, this hypothesis was challenged

by the mutagenesis experiment [19] and the structural studies

[20–22].

To understand the roles of the invariant glutamine, we mutated

Gln453 of PDE9A2 to glutamic acid (PDE9Q453E) and its

stabilizing residue Glu406 to alanine, and measured the kinetic

parameters of the mutants. In addition, we performed molecular

dynamics (MD) simulations on the mutants and determined the

crystal structures of PDE9Q453E in complex with the inhibitors 3-

isobutyl-1-methylxanthine (IBMX) and (S)-BAY73-6691 (Fig. 1).

Our studies reveal the structural asymmetry of PDE9 and

potential protonation state of Glu406, and also suggest that

Gln453 is unlikely to play a key role in differentiation of the

substrates.

Materials and Methods

Molecular cloning, site-directed mutagenesis, and
protein expression

The catalytic domain of the wild type human PDE9A2

(GenBank number BC009047) was subcloned to vector pET15b

by following the protocol described previously [23]. The coding

region for residues 181-506 of PDE9A2 was amplified by PCR.

The amplified PDE9A2 cDNA and the expression vector pET15b

were digested by the restriction enzymes NdeI and XhoI, purified

by agarose gel electrophoresis, and then ligated together by T4

DNA ligase. The recombinant plasmid was selected by ampicillin
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resistance and verified by DNA sequencing (Sangon, China). A

site-directed mutagenesis kit (Stratagene, USA) was used to

generate the PDE9A2 mutants of Q453E and E406A. The

methylated parental plasmid was digested by DpnI endonuclease.

The mutations were verified by DNA sequencing.

The wild type and mutants of the PDE9A2 catalytic domain

were purified by using the similar protocols previously reported

[24]. In brief, the recombinant plasmid was transferred into E. coli

strain BL21 (Codonplus, Stratagene). The E. coli cells carrying the

pET-PDE9A2 plasmids were grown in LB medium at 37uC to

absorption A600 = ,0.7 and then 0.1 mM isopropyl b-D-

thiogalactopyranoside was added to induce expression. The cells

after induction were grown at 15uC overnight. Recombinant

PDE9A2 proteins were purified by column chromatography of Ni-

NTA affinity (Qiagen), Q-Sepharose ion-exchanging (GE Health-

care), and Sephacryl S300 gel filtration (GE Healthcare). A typical

batch of purification yielded 20–100 mg PDE9A2 from a 2-liter

cell culture. The PDE9A2 proteins had purity greater than 95%,

as shown by SDS-PAGE.

Enzymatic assay
The enzymatic activities of the wild type PDE9A2 and its

mutants were assayed by using cAMP and cGMP as substrates. A

100 ml reaction mixture contained 50 mM Tris-HCl pH 8.2,

10 mM MgCl2, 0.5 mM DTT, 174 nM 3H-cAMP or 30 nM 3H-

cGMP (30,000–100,000 cpm, GE Healthcare), and various

concentrations of cAMP or cGMP. Each measurement was

repeated two times. The reaction was carried out at room

temperature for 15 min and then terminated by the addition of

0.2 M ZnSO4 and 0.2 M Ba(OH)2. The reaction product 3H-

AMP or 3H-GMP was precipitated by BaSO4, whereas unreacted
3H-cAMP or 3H-cGMP remained in the supernatant. Radioac-

tivity in the supernatant was measured in 2.5 ml Ultima Gold

liquid scintillation cocktails (PerkinElmer) by a PerkinElmer 2910

liquid scintillation counter. Vmax and KM values were calculated

by nonlinear regression on the curve of velocity versus substrate

concentration and also by Eadie-Hofstee plot. For the measure-

ment of IC50 of inhibitors, nine concentrations of inhibitors,

30 nM 3H-cGMP, and the enzyme concentration that hydrolyzed

up to 70% of the substrate were used. The inhibitors IBMX, (S)-

BAY73-6691, and zaprinast were purchased from Sigma-Aldrich.

The IC50 values were calculated by nonlinear regression.

Crystallization and structure determination
The catalytic domain of the PDE9Q453E mutant (10–15 mg/

mL, amino acids 181–506) was stored in a buffer of 50 mM NaCl,

20 mM Tris.HCl pH 7.5, 1 mM b-mercaptoethanol, and 1 mM

EDTA. After mixing with 2 mM IBMX, the PDE9Q453E-IBMX

complex was crystallized by hanging drop vapor diffusion against

the well buffer of 2.0 M Na formate, 0.1 M HEPES pH 7.5, 5%

xylitol at 4uC. Crystals of the PDE9Q453E-(S)-BAY73-6691

complex were prepared by soaking PDE9Q453E-IBMX co-

crystals in the crystallization buffer plus 2 mM (S)-BAY73-6691

at 25uC for 3 days. The crystals were flash-frozen in liquid

nitrogen by using the well buffer containing saturated xylitol as the

cryosolvent. X-ray diffraction data were collected at 100 K on

Beamline BL17U of Shanghai Synchrotron Radiation Facility,

China (Table 1) and processed by HKL2000 [25]. The structures

of the PDE9Q453E mutant in complex with IBMX and (S)-

BAY73-6691 were solved by the molecular replacement program

AMoRe [26], using the PDE9A2 catalytic domain [23] as the

initial model. The atomic model was rebuilt by program O [27] or

COOT [28] against the electron density maps that were improved

by the density modification package of CCP4. The structures were

refined by CNS [29] and REFMAC [30]. The atomic coordinates

and structure factors have been deposited into the Protein Data

Bank with accession numbers of 3QI3 and 3QI4.

Molecular dynamics simulations
The crystal structures of the wild type PDE9A2 in complex with

(R)- or (S)-BAY73-6691 (PDB access codes of 3K3E and 3K3H)

[24] and of the Q453E mutant in complex with (S)-BAY73-6691

(this study) were used to generate the PDE9A2 monomers for the

MD simulations. The hydrogen atoms were added by software

Sybyl 7.3.5. The protocol of the restricted electrostatic potential

fitting, as implemented in the Antechamber module of the

Figure 1. Chemical formulas of PDE9 inhibitors. 1-(2-chlorophe-
nyl)-6-(3,3,3-trifluoro-2-methylpropyl)-1H-pyrazolo [3,4-d]pyrimidin-
4(5H)-one (BAY73-6691) and 3-isobutyl-1-methylxanthine (IBMX).
doi:10.1371/journal.pone.0018092.g001

Table 1. Statistics on diffraction data and structure
refinement.

Data collection
PDE9A2(Q453E)-(S)-BAY73-
6691

PDE9A2(Q453E)-
IBMX

Space group P41212 P41212

Unit cell (a, c, Å) 103.1, 270.4 103.4, 270.0

Resolution (Å) 2.3 2.5

Total measurements 382,636 665,895

Unique reflections 63,252 50,388

Completeness (%) 95.8 (67.3)* 97.6 (72.5)*

Average I/s 14.5 (2.3)* 12.2 (6.2)*

Rmerge 0.092 (0.54)* 0.094 (0.24)*

Structure Refinement

R-factor 0.222 0.213

R-free 0.242 (10.0%){ 0.239 (10.0%){

Resolution (Å) 15-2.3 15-2.5

Reflections 58,317 48,879

RMS deviation for

Bond (Å) 0.007 0.007

Angle 1.2u 1.2u

Average B-factor (Å)

Protein 49.3 (5372)1 39.9 (5372)

Inhibitor 64.1 (48) 49.5 (48)

Zn 61.0 (2) 61.9 (2)

Mg 46.2 (2) 45.5 (2)

Water 43.8 (23) 42.1 (29)

*The numbers in parentheses are for the highest resolution shell.
{The percentage of reflections omitted for calculation of R-free.
1The number of atoms in the crystallographic asymmetric unit.
doi:10.1371/journal.pone.0018092.t001

Roles of the Invariant Glutamine of PDE9
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AMBER 10 package [31], was used for calculations of the partial

atomic charges of (R)- or (S)-BAY73-6691 at the ab initio HF/6-

31G* level. The Zn2+ and Mg2+ ions were treated by the non-

bonded method [32]. The bridging ligand between the two metal

ions was set as HO2, as previously proposed [33]. The parameters

of the AMBER general force field (GAFF) and ff03 were used for

PDE9A2 and (R)-/(S)-BAY73-6691 [34]. The PDE9A2 complexes

were neutralized by adding sodium counter ions and solvated with

water molecules within 10 Å radius to protein atoms.

The structures were first minimized for 6000 steps to remove

possible steric stress. The relaxed structures were gradually heated

from 0 to 300 K in 100 ps increments and then equilibrated for

200 ps at 300 K using the NVT (number of particles, volume, and

temperature) ensemble. Weak constraints of 10 and 2 kcal N mol21

N Å22 were applied on the proteins during the heating and

equilibrating procedures, respectively. Finally, periodic boundary

dynamics simulations of 8 ns were carried out by using the NPT

(number of particles, pressure, and temperature) ensemble at 1

atm and 300 K. The SHAKE algorithm [35] was turned on for

the covalent bonds involved in hydrogen atoms with a tolerance of

161025 Å. The simple harmonic motion was applied to other

covalent bonds. The Particle-Mesh-Ewald method [36] was

applied to treat the long range electrostatic interactions with a

10 Å non-bonded cutoff.

Results

Subtle conformational changes in the PDE9Q453E
structures

The crystallographic asymmetric unit of the PDE9Q453E

mutant in complex with IBMX or (S)-BAY73-6691 contains two

molecules of the PDE9A2 catalytic domain. A monomer of the

PDE9Q453E mutant is composed of 16 helices (Fig. 2A) that are

folded into a similar topology as PDE9 and other PDE families

[17]. The Q453E mutation did not significantly change the overall

structure, as shown by the small root-mean squared deviations

(RMSD) of 0.17 and 0.28 Å for the superposition of Ca atoms of

the corresponding chains (A over A and B over B) between the

mutant and the wild type enzyme [23,24]. However, the side chain

of Glu453 showed significant conformational change due to the

mutation. In the wild type PDE9A2, the side chain of Gln453 was

stabilized by a hydrogen bond (2.8 Å) between NE2 of Gln453

and OE1 of Glu406. In the Q453E mutant structure, the side

chain of Glu453 rotated about 15u (Fig. 2B). This movement made

a distance of 3.8 Å from OE2 of Glu453 to O4 of (S)-BAY73-6691,

and 3.2 Å to OE1 of Glu406. The 3.2 Å distance between two

electron-rich oxygen atoms may cause energetically unfavored

repulsion. A possible explanation may be that Glu406 is

protonated, as discussed in the section on MD simulations.

Asymmetry of the inhibitor binding and the PDE9 dimer
The major force for the IBMX binding to the active site of the

PDE9Q453E mutant was the hydrogen bond between N7 of

IBMX and OE1 of Glu453 and the stack of the xanthine ring of

IBMX against Phe456 (Fig. 3A). This feature is conserved in both

chains A and B and is similar to the IBMX binding in the wild type

PDE9A2. However, IBMX binding showed certain characteristics

of asymmetry in chains A and B of the PDE9Q453E dimer. First,

the conformation of IBMX was defined by the clear electron

density in chain B, but was less definite in chain A (Fig. S1). The B-

factors were 58 and 41 Å2, respectively for IBMXs in chains A and

B, indicating relatively lower occupancy of IBMX in chain A.

Second, two IBMXs showed a positional difference of about one

Angstrom, as revealed by the superposition between chains A and

B, in spite of the conservation of their stack against Phe456 and

interaction with the common PDE9A2 residues (Fig. 3A). Finally,

the N3 atom of IBMX in chain B formed a hydrogen bond with

OH of Tyr424 (3.2 Å), whereas the same interaction in chain A

shows a distance of 3.6 Å, which belongs to a typical polar

interaction (Fig. 3A).

The asymmetry is also observed in the binding of inhibitor (S)-

BAY73-6691 to the PDE9Q453E mutant. In the PDE9Q453E-

Figure 2. Structures of the PDE9Q453E mutant in complex with (S)-BAY73-6691. (A) Ribbon presentation of superposition of the wild type
PDE9A2 (green) over the PDE5Q453E mutant (purple) in complex with (S)-BAY73-6691 (golden balls). (B) Conformational change of Glu453 in the
PDE9Q453E mutant. The side chain of Glu453 rotated by about 15u to relieve the repulsion between electron-rich oxygens of Glu453 and (S)-BAY73-
6691. The residues of the wild type PDE9A2 and the PDE9Q453E mutant are presented in purple and golden colors, respectively.
doi:10.1371/journal.pone.0018092.g002

Roles of the Invariant Glutamine of PDE9
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(S)-BAY73-6691 structure, the conformation and position of (S)-

BAY73-6691 to chain A was clearly defined by the electron density

maps of (2Fo - Fc) and (Fo - Fc) (Fig. S1). However, the electron

density in chain B had the quality only to reveal the binding

location but not the accurate conformation of the inhibitor. The B-

factor of (S)-BAY73-6691 in chain A (56 Å2) is significantly smaller

than that in chain B (72 Å2), consistent with the observation of low

occupancy of (S)-BAY73-6691 in china B. The interaction of (S)-

BAY73-6691 with chains A and B in the PDE9Q453E dimer is

very different. In chain A, the pyrazolo-pyrimidine ring of (S)-

BAY73-6691 stacked against the phenyl ring of Phe456 and its N5

atom formed a hydrogen bond with OE1 of Glu453 (Fig. 3B). In

chain B, (S)-BAY73-6691 formed no hydrogen bond with Glu453,

but with Tyr424 (Fig. 3B), although its pyrazolo-pyrimidine ring

remained stacked against Phe456.

While the biological implication of the asymmetric binding of

IBMX and (S)-BAY73-6691 in the PDE9Q453E structures is

unclear, it appears to be the consequence of the structural

asymmetry of two subunits in the PDE9Q453E dimer. Indeed, the

structural superposition between chains A and B yielded RMSDs

of 0.64 and 0.77 Å, respectively for the structures of PDE9Q453E-

IBMX and PDE9Q453E-(S)-BAY73-6691. These values are 2–3

times the RMSDs resulting from the comparison of the same

subunits between the wild type PDE9 and its mutants (A versus A

and B versus B). Detailed examination showed significant

positional changes around residues 440–450 that have differences

2 to 3 times the overall average for the Ca atoms (Fig. 3C). This

fragment is known as the M-loop in the PDE families, which is a

component of the active site and has been implicated to play

important roles in catalysis [37]. Since the M-loop also shows the

positional differences in the structures of the wild type PDE9A in

complex with substrate cGMP or inhibitors [22–24], the

asymmetry might have implications for design of PDE9 inhibitors.

The impact of Q453E and E406A mutations on the
enzymatic properties

The PDE9Q453E mutant had the KM values of 2.8 mM for

cGMP and 1.2 mM for cAMP, which represent about 25- and 2.5-

fold loss in comparison with the apparent affinity of the wild type

enzyme [23]. The catalytic activities of the PDE9Q453E mutant

toward cGMP and cAMP were also reduced to about half of those

of the wild type enzyme (Table 2). Thus, the Q453E mutation

caused a loss of about 50- and 5-folds of enzymatic efficacy, kcat/

KM, for cGMP and cAMP, respectively. The reduction of the

enzymatic efficacy for cGMP might be interpreted by the fact that

the Q453E mutation abolishes the hydrogen bond between NE2

of Gln453 and O6 of cGMP. However, the interpretation of the

loss of cAMP activity is unclear because the Q453E mutation

would be predicted not to change the number of hydrogen bond

with cAMP and thus the activity.

The E406A mutation reduced the apparent affinity and the

catalytic activity of cGMP by only 2-fold (Table 2). The E406A

mutation did not significantly change the affinity for cAMP, but

decreased the catalytic activity by about 8-fold (Table 2). In the

crystal structure of the wild type PDE9A2, Glu406 stabilizes the

side chain conformation of Gln453 with a hydrogen bond [22–24].

The E406A mutation will abolish this hydrogen bond and thus

presumably allow the side chain of Gln453 to rotate. As a result,

Figure 3. Asymmetric binding of the inhibitors to the active site of the PDE9Q453E mutant. (A) Interactions of IBMX with the residues in
subunit A (green sticks) and subunit B (golden). IBMX forms an additional hydrogen bond (dotted lines) with Tyr424 in subunit B, but not in subunit
A. (B) Superposition of the interactions of (S)-BAY73-6691 with the residues in subunit A (green and red sticks) and subunit B (golden and purple). (C)
Positional changes of the M-loop at the active site of the PDE9Q453E mutant. Subunit A is shown in cyan and golden colors while green and salmon
are for subunit B.
doi:10.1371/journal.pone.0018092.g003

Roles of the Invariant Glutamine of PDE9
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cAMP may form two hydrogen bonds with the side chain of

Gln453 after the rotation and the E406A mutant would thus be

expected to have increased cAMP activity. However, no significant

change on the apparent affinity (KM) for cAMP, but reduction of

kcat might imply that the Gln453 side chain does not rotate in the

E406A mutant. Thus, our kinetic study provides new evidence

against the mechanism of the ‘‘glutamine switch’’, in which

Gln453 is assumed to rotate for the recognition of substrate cGMP

or cAMP.

Regarding the inhibitor binding, the Q453E mutation led to a

minor loss in the affinity of IBMX and zaprinast (Table 3), but

showed a radical impact on (S)-BAY73-6691. The IC50 value of

(S)-BAY73-6691 for the PDE9Q453E mutant was .160 mM,

which is .1800 fold to IC50 of 86 nM for the wild type enzyme. A

possible interpretation to the different affinity of the inhibitors

might be ascribed to the binding modes among these inhibitors.

The non-selective and weak inhibitors IBMX and zaprinast are

relatively small and may adopt different orientations in the large

PDE9 binding pocket to result in a similar affinity in both wild

type and mutant enzymes. However, since the selective PDE9

inhibitor (S)-BAY73-6691 fits tightly to the binding pocket, the

Q453E mutation would cause a net loss of the hydrogen bond and

thus impact on the binding affinity. On the other hand, the E406A

mutation did not significantly alter the affinity of the three

inhibitors (Table 3). This may be understandable because Glu406

does not directly interact with the inhibitors.

Glu406 is likely protonated in the PDE9Q453E structure
as shown by MD simulations

To further understand the role of Gln453, we performed MD

simulations on the mutants PDE9Q453E and PDE9E406A.

Initially, the known structures of the wild type PDE9A2 in

complex with (R)-/(S)-BAY73-6691 were used to tune the

program for MD simulations. After a 4 ns MD run, stable

trajectories with RMSD of ,2 Å were obtained. The average

distances from NE2 and OE1 of Gln453 to O4 and N5 of (S)-

BAY73-6691 are 2.9 and 2.8 Å in the MD model (Fig. S2), which

compares well with the distances of 2.9 and 2.7 Å in the crystal

structure. In addition, the pyrazolo-pyrimidine ring of (S)-BAY73-

6691 remained stacked against Phe456 in the entire MD

trajectories. Since the hydrogen bond with the invariant glutamine

and the stack against phenylalanine are two key characteristics of

inhibitor binding in almost all PDE structures [17], the MD

simulations apparently simulate the crystal structures well.

Under the same conditions, MD simulations on the

PDE9Q453E-BAY73-6691 complex reached equilibration with

an average RMSD of 2.1 Å. In the simulated model, the pyrazolo-

pyrimidine ring of (S)-BAY73-6691 stacked against Phe456, in

agreement with that of the crystal structure. However, two key

distances between OE1 of Glu453 and N5 of (S)-BAY73-6691,

and between OE2 of Glu453 and OE1 of Glu406 were 5.3 and

4.2 Å, respectively, in contrast to 2.9 and 3.2 Å in the crystal

structure of the PDE9Q453E mutant. Since 3.2 Å represents the

distance of a hydrogen bond and no proton is expected to associate

with OE2 of Glu453 and OE1 of Glu406 under the crystallization

pH 7.5, a possible assumption might be that Glu406 in the

PDE9Q453E mutant locally sequesters a hydrogen atom and thus

exists in the protonated form. To test this hypothesis, a new model

with protonated Glu406 was subjected to MD simulations under

the same conditions (Fig. S2). In this MD simulation model, the

pyrazolo-pyrimidine ring of (S)-BAY73-6691 stacks against

Phe456 (Fig. 4); atom OE2 of Glu453 is in a hydrogen bond

distance (2.6 Å) to the protonated OE1 of Glu406 and 4.2 Å to O4

of (S)-BAY73-6691; atom OE1of Glu453 forms a hydrogen bond

(2.9 Å) with N5 of (S)-BAY73-6691. Therefore, the new MD

simulations agree well with the crystal structure and suggest that

Glu406 in the crystal of the PDE9Q453E mutant likely exists in its

protonated form.

Discussion

The ‘‘glutamine switch’’ is unlikely the mechanism for
differentiation of substrates

An essential question about the PDE function is how PDE

molecules distinguish the two alternate substrates cAMP and

cGMP that show very subtle differences. An early proposal on the

substrate specificity, the ‘‘glutamine switch’’, is based on the crystal

structures of PDE4 and PDE5 in complex with their correspond-

ing reaction products [18]. In these structures, the side chain of the

invariant glutamine takes opposite orientations to form two

hydrogen bonds with AMP or GMP. The ‘‘glutamine switch’’

proposal assumes that the invariant glutamine in the dual specific

PDE families switches its side chain conformations to gain two

hydrogen bonds with different substrates. However, this hypothesis

was challenged by the observations that substrates cAMP and

cGMP have different orientations and interactions in the

structures of the dual specific PDE10 [20], and that cAMP forms

only one, but not two hydrogen bonds with cAMP-specific PDE4

[21]. In addition, the Q817A mutation in PDE5A reduces the

Table 2. Kinetic parameters of the catalytic domain of PDE9A2 and its mutants.

Enzymes cGMP cAMP
(kcat/KM)cGMP

/(kcat/KM)cAMP

KM (mM)
Vmax
(mmol/mg/min)

kcat

(S21) KM (mM)
Vmax
(mmol/mg/min)

kcat

(S21)

Wild type 0.11360.013 0.28560.008 0.1860.00 501643 3.7060.10 2.3760.06 337

Q453E 2.860.18 0.13960.003 0.0960.00 1233692 2.0360.07 1.3060.04 29

E406A 0.31160.04 0.12960.004 0.0860.00 338644 0.4860.02 0.3160.01 280

doi:10.1371/journal.pone.0018092.t002

Table 3. Effects of the mutations on IC50 of inhibitors.

Enzymes IBMX (mM) (S)-BAY73-6691 (nM) Zaprinast (mM)

Wild type 53.961.1 85.861.0 15.961.2

Q453E 117.261.2 (164.261.2)6103 53.761.2

E406A 31.761.1 8261.1 7.661.1

doi:10.1371/journal.pone.0018092.t003

Roles of the Invariant Glutamine of PDE9
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cGMP affinity by about 60-fold, but does not affect the cAMP

kinetic behavior [19]. Since the replacement of hydrophilic

glutamine with hydrophobic alanine may cause relatively large

changes, we performed the Q453E mutation to eliminate the effect

of the side chain rotation of Gln453.

Our studies provide further evidence against the ‘‘glutamine

switch’’ mechanism. First, on the basis of the crystal structure of

PDE9-cGMP [22], the Q453E mutation would be predicted to

reduce the cGMP activity, but not to impact the cAMP activity

because the Q453E mutation will lead to loss of a hydrogen bond

with cGMP but no change with cAMP. However, our kinetic data

showed a 4.5-fold loss of the cAMP catalytic efficacy by the Q453E

mutant (Table 2), implying that substrate recognition is not achieved

by the simple rotation of the glutamine side chain. Second, the

E406A mutation would allow the Gln453 side chain to rotate and to

potentially form two hydrogen bonds with cAMP. Thus, the E406A

mutation would be expected to increase the catalytic efficacy.

However, the kinetic data of the E406A mutant showed that the KM

for cAMP essentially remained at the same level and kcat decreased

significantly. Therefore, our data suggest that the ‘‘glutamine switch’’

is unlikely to be the mechanism for differentiation of the substrates,

although the invariant glutamine is critical for binding of substrates

and inhibitors, as shown by 25- and 1800-fold affinity decrease of the

mutant for cGMP and (S)-BAY73-6691, respectively.

Conclusions

1. The binding of inhibitors IBMX and (S)-BAY73-6691 to the

PDE9Q453E mutant shows significant asymmetry and the M-

loop demonstrates the significant positional difference in the

dimer of the PDE9Q453E mutant.

2. The kinetics of the Q453E and E406A mutants suggest that the

side chain of Gln453 may not rotate and thus the ‘‘glutamine

switch’’ is unlikely to be the mechanism for the substrate

recognition by PDEs.

3. The MD simulations suggest that Glu406 may be protonated

in the PDE9Q453E mutant and thus is capable of forming a

hydrogen bond with Glu453. This may explain the unusual

proximity of two negatively charged oxygen atoms in the

crystal structure.

Supporting Information

Figure S1 Electron density for (A) IBMX in subunit A of
the PDE9AQ453E mutant, (B) IBMX in subunit B, (C)
Bay73-6691 in subunit A, and (D) Bay73-6691 in subunit
B. The (Fo – Fc) maps were calculated from the structures in

which the inhibitors were omitted, and contoured at 2.5 sigmas.

(TIF)

Figure S2 Variation of the key non-bonded distances
during simulation. (A) Distance change between O4 of (S)-

BAY73-6691 and NE2 of Gln453 (black), and N5 of (S)-BAY73-

6691 and OE1 of Gln453 (red) in the wildtype PDE9A2. (B)

Distance change between O4 of (S)-BAY73-6691 and OE2 of

Glu453 (black), N5 of (S)-BAY73-6691 and OE1 of Glu453 (red),

and OE2 of Glu453 and protonated OE1 (labeled as OEh) of

Glu406 (blue) in the PDE9Q453E mutant.

(TIF)
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Figure 4. Simulated binding of (S)-BAY73-6691 at the active site of the PDE9Q453E mutant. (A) Interactions in the MD simulation model.
The carboxyl group of Glu406 was treated as a protonated form (marked as OEh). (B) Superposition of the crystal structure of PDE9Q453E-(S)-BAY73-
6691 (green and yellow) over the MD simulation model (cyan and salmon). The marked distances come from the crystal structure.
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