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We previously demonstrated that in normal glucose (5 mM), methylglyoxal (MG, a model of carbonyl
stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin
glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose
and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-
induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or
12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6 h after cell
transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was
elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH)
synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively.
Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and
GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination.
α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma.
Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels
in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These
results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–
occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression
and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the
dysfunction of the cerebral microvasculature during diabetes.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Diabetes is a clinically important risk factor for cardiovascular
and cerebrovascular diseases which are underscored by vascular
endothelial dysfunction. It is well known that the diabetic condi-
tion is characterized by hyperglycemia and elevated plasma levels
of reactive carbonyl species (RCS), but the mechanism by which
RCS contribute to diabetes-associated cerebrovascular disease is
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poorly understood. Methylglyoxal (MG) is an RCS dicarbonyl
metabolite precursor of advanced glycation endproducts, and is
metabolized via a GSH-dependent glyoxalase detoxification path-
way. Our recent results demonstrated that occludin glycation
induced by MG disrupted barrier function in a human micro-
vascular endothelial cell line (IHEC), and that N-acetylcysteine
(NAC) afforded barrier preservation [1]. These results provide a
compelling argument that the cerebral microvasculature in dia-
betes is sensitive to tissue levels of MG and glutathione (GSH).

The integrity of the cerebral microvasculature and micro-
circulation is maintained by the function of the blood–brain bar-
rier (BBB) which reportedly is disrupted in diabetes [2]. The BBB
phenotype is described by the neurovascular unit, comprising of
brain capillary endothelial cells on the blood side and perivascular
cells on the brain side of microvessels [3,4]. The BBB endothelial
monolayer exhibits high transendothelial resistance that is con-
ferred by the intercellular tight junctions between neighboring
endothelial cells [5]. Occludin is a member of the tight junctional
transmembrane proteins that regulates barrier electrical resistance
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and paracellular permeability [4]. We recently demonstrated that
occludin is a target of MG glycation, and that MG-mediated
occludin modification is associated with increased endothelial cell
permeability in IHECs [1].

GSH was implicated to play a role in the BBB integrity [6]. The
diabetic brain has been associated with decreased tissue GSH [7];
however, the mechanistic relationship between GSH decreases
and cerebral microvascular dysfunction is unclear. We have found
that GSH attenuated hyperglycemia- or MG-induced endothelial
apoptosis [8,9] and barrier permeability [1]. These findings sup-
port a role for GSH in endothelial protection. With regards to MG
handling, GSH is a rate-limiting cofactor in MG metabolism [11,12].
A reduction in cellular GSH levels leads to compromised glyoxalase
function, resulting in the accumulation of free MG, and thereby
increasing its glycating potential. Thus, GSH-dependent elimina-
tion of MG by glyoxalase I and glyoxalase II could be a major
mechanism through which GSH protects against cerebral micro-
vascular dysfunction in diabetes.

Collectively, MG-induced carbonyl stress (protein glycation or
carbonylation) and endothelial GSH imbalance would potentiate
cerebral microvascular dysfunction, and RCS-mediated dysfunc-
tion of the cerebrovascular endothelium and its pathology would
be significant in diabetes. Importantly, given that triosephosphates
derived from glucose metabolism is an MG source [12], the
hyperglycemic state associated with diabetes would have an
exacerbating role in brain endothelial injury. The current study
addresses new links between hyperglycemia, MG and brain
microvascular dysfunction. Using the previously established IHEC
cell line, we sought to investigate whether states of high glucose
or acute glucose fluctuation exacerbate MG-induced occludin
glycation and barrier disruption, and if promoting GSH-dependent
MG metabolism via exogenous NAC administration preserves
barrier function. We further investigated if glycation of the brain
microvasculature in vivo is a significant process during diabetes
using a streptozotocin (STZ)-induced diabetic rat model. The
results show that hyperglycemia and acute glycemic fluctuation
potentiated MG-induced loss of IHEC barrier transendothelial
electrical resistance (TEER), an event that was associated with
increased occludin-MG adduct formation and prevented by NAC.
Importantly, we found that diabetic rat brain microvessels exhib-
ited decreased total occludin expression and elevated glycated–
occludin adduct content.
Methods

Reagents

The following reagents were purchased from Sigma (St Louis,
MO): D-glucose, methylglyoxal, N-acetyl-L-cysteine, L-buthionine-
(S, R)-sulfoximine, insulin-transferrin sodium selenite solution,
glutathione, D-lactate, D-lactic dehydrogenase, glutamic-pyruvate
transaminase, S-D-lactoylglutathione, Medium 199, o-phenylene-
diamine, 2-methylquinoxaline, acetonitrile, and HRP-linked goat-
anti-rabbit and goat-anti-mouse secondary antibodies. Anti-
occludin rabbit polyclonal antibody was obtained from Invitrogen
(Carlsbad, CA), anti-MG mouse monoclonal antibody from JcICA
(Fukuroi, Japan), anti-actin mouse monoclonal antibody from BD
Biosciences (San Jose, CA) and anti-GAPDH mouse monoclonal
antibody from Santa Cruz (Santa Cruz, CA). HRP-linked goat-anti-
rabbit and goat-anti-mouse antibodies, ECL, and chemi-lumines-
cence detection reagents were purchased from Amersham Bio-
pharmacia (Piscataway, NJ). Fetal bovine serum (FBS) was obtained
from Atlanta Biologicals (Atlanta, GA). All other chemicals were of
reagent grade and were purchased from Sigma or local sources.
Cell culture and cell incubations

The human brain microvascular endothelial cell line (IHEC) was
provided by Dr. Danica Stanimirovic of the National Research
Council Canada's Institute for Biological Sciences and was main-
tained by Dr. Steve Alexander at LSU Health Sciences Center.
Routinely, IHECs were cultured in M-199 medium containing
5 mM glucose (normal glucose), 10% FBS, 1% insulin–transferrin–
sodium selenite solution, and 1� antibiotic/antimycotic at 37 °C
in 5% CO2 on T-75 flask. In all cell studies, IHECs were seeded at
specific densities 5 days before the experiment. High glucose-
adapted IHECs were achieved by culturing cells in 25 mM glucose
for 7 or 12 days. Acute glycemic fluctuation was achieved by
transferring 25 mM glucose-adapted cells (12 days) to normal
glucose media for 6 h (designated 25-5 mM glucose).

IHECs (1.5�104) were cultured on 8-mm inserts in 24-well
plates for measurements of TEER. For assays of GSH, Western blot
and glyoxalase I/II activities, IHECs (0.4�106) were grown in
6-well plates. All experiments were conducted on confluent cell
monolayers (5 days post-seeding). The experimental glucose
concentrations include: 5 mM (normoglycemia), 25 mM (hyper-
glycemia), or 25-5 mM glucose (acute glycemic fluctuation). To
achieve high or low cellular GSH, IHECs were pretreated overnight
with 1 mM NAC or 50 mM BSO, respectively. After washing, 2 mM
NAC or 300 mM BSO were added to the incubation to maintain
elevated or low GSH status in these cells throughout the experi-
ment. A range of MG concentrations were used depending on the
type of experiments. MG concentrations of 50 mM to 1 mM were
used to examine the time course and dose dependency of TEER
responses under normal and high glucose states. These MG levels
were previously employed in our recent studies [1]. Since high
glucose will contribute to MG production, a lower dose of 300 mM
MG was then used in subsequent experiments to test the effect of
BSO and NAC under hyperglycemic conditions. An MG level of
50 mM MG was near physiological in diabetic rat plasma (see
Fig. 6).

Measurement of transendothelial electrical resistance (TEER)

Studies of TEER were carried out in HBSS containing 25 mM
HEPES and 10% FBS (pH 7.35) at 37 °C and 5% CO2. After an initial
1 h adjustment period, changes in electrical resistance at different
concentrations of MG without or with NAC or BSO (as above) were
recorded for up to 10 h using an epithelial voltohmeter (EVOM,
World Precision Instruments, Sarasota, FL). Only inserts with a
minimum baseline monolayer resistance of 200Ω/0.33 cm2 were
used. TEER was expressed as the percent of the baseline to account
for batch-to-batch variation.

Western analyses of occludin and MG–occludin

Cell extracts
Cells were harvested and lysed in RIPA buffer containing

50 mM Tris, pH 7.4, 150 mM NaCl, 0.1% SDS, 0.5% sodium deox-
ycholate, 1% Triton X-100 and a cocktail of protease inhibitors, viz.,
aprotinin, PMSF, okadaic acid, and leupeptin.

Tissue extracts
Cerebral vessels were isolated as described previously [13].

Briefly, the brain was removed from the skull and pia matter
containing large vessels was gently teased off and placed in cold
PBS. The brain tissue was then homogenized in ice-cold PBS
(polytron, 1 min). The homogenate was passed through an 18G
needle 10 times, and centrifuged at 2000g for 10 min at 4 °C. The
pellet was suspended in ice-cold PBS, gently layered on top of
30 ml of 15% dextran (MW 38,400) and centrifuged at 17,400g for
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45 min at 4 °C. The final pellet represented the microvessel frac-
tion. Micro- and macrovessels were separately homogenized in
RIPA buffer by passing through an 18G needle followed by 10
pulses with a polytron. The homogenate was centrifuged at
14,000 rpm (10 min at 4 °C), and the supernatants used for Wes-
tern blot analyses.

Western blot analyses
Total protein from cell extracts (60 mg), microvessels (30 mg) or

macrovessels (50 mg) per sample was resolved on 10% SDS-poly-
acrylamide gels (110 V, 2 h), and then transferred onto a PVDF
membranes at 200 mA at 4 °C for 2 h. The membranes were
blocked in 5% non-fat milk in 0.1 M PBS, pH 7.4 at RT for 1 h and
then incubated overnight with rabbit anti-occludin polyclonal
antibody (1:1000) or with mouse anti-MG monoclonal antibody
(1:1000) at 4 °C. The next day, membranes were incubated for 2 h
at RT with HRP-conjugated donkey-anti-rabbit or HRP-conjugated
sheep-anti-mouse secondary antibody (1:10,000), respectively.
Chemiluminescence was detected with ECL reagents per manu-
facturer's instructions. The membranes were stripped and repro-
bed for β-actin or GAPDH using mouse monoclonal antibody
(1:5000) to verify equal protein loading.

HPLC quantification of GSH and methylglyoxal

GSH determination
Cellular GSH concentrations were determined as we previously

described [1,14]. IHECs were harvested by scraping into 5% TCA
followed by centrifugation at 14,000 rpm for 5 min. The acid
supernatants were derivatized with 6 mM iodoacetic acid and 1%
2,4-dinitrophenyl fluorobenzene to yield the S-carboxymethyl and
2,4-dinitrophenyl derivative of GSH, respectively. GSH derivatives
were separated on a 250�4.6 mm2 Alltech Lichrosorb NH2 10 mm
column. GSH contents were quantified by comparison to standards
derivatized in the same manner and expressed as nmole per
milligrams of protein.

Methylglyoxal determination in IHECs and plasma
IHEC cell pellets were washed 3 times with PBS (3000 rpm,

3 min, 4 °C) and sonicated (5 s, 3 times). Blood was taken from the
heart of control and diabetic rats using 20G needles, and plasma
was collected by centrifugation (5000 rpm for 10 min, 4 °C).

α-Oxoaldehyde (MG plus glyoxal) contents were determined
by HPLC as previously described [15]. Cell homogenates or plasma
were treated with 0.45 N perchloric acid (PCA) for 24 h at RT. Post
12,000 rpm centrifugation, acid supernatants (500 ml) were incu-
bated with 5 mM o-phenylenediamine for 24 h at RT and then
centrifuged and filtered (0.45 mm filter). Separation of MG and
glyoxal was performed on a 250�4.6 mm2 Beckman C-18-ODS
5 mm column and quantified using 2-methylquinoline as an
external standard. Cellular concentrations were expressed as
nmole per milligrams protein and plasma levels as μM.

Assay of cellular glyoxalase I and II activity

IHEC cell pellets were suspended in 10 mM Tris–HCl pH 7.4
containing protease inhibitor cocktail and subjected to 3 freeze–
thaw cycles (liquid nitrogen/4 °C), followed by sonication (5 s, 50%
amplitude) and centrifugation (12,000 rpm, 20 min at 4 °C). The
supernatants were used for assays of glyoxalase I and glyoxalase II
activities.

Glyoxalase I activity was determined by S-D-lactoylglutathione
(SDLG) formation [16]. The assay solution contained 182 mM
imidazole buffer pH 7.0, 14.6 mM magnesium sulfate, 5 mM MG,
1.5 mM GSH and 30 mg/reaction cell lysate. SDLG formation was
monitored spectrophoto-metrically at 240 nm at 25 °C, and
quantified using the extinction coefficient of 3.37 mM�1 cm�1.
Glyoxalase I activity was expressed as nanomol SDLG formed per
min/mg protein.

Glyoxalase II function was assessed by D-lactate formation and
SDLG hydrolysis. Post-glyoxalase I reaction (above) was stopped by
addition of 12% PCA, and the pH was adjusted to 7.4. Samples were
centrifuged (14,000 rpm, 10 min at 4 °C) and D-lactate was assayed
in 147 mM glycylglycine buffer (pH 10), containing 3 mM NADþ ,
30 mM glutamate, 40 U/ml D-LDH, 8 U/ml GPT, and 50 ml super-
natant. Reactions were performed at 37 °C for 1 h, and the for-
mation of NADH was determined spectrophotometrically at
340 nm. Glyoxalase II function was expressed as nanomol of D-
lactate formed per milligrams of protein.

SDLG hydrolysis was determined in cell extracts by a modified
method of Talesa et al. [17] based on SDLG hydrolysis and con-
comitant GSH regeneration. The reaction mixture consisted of
0.8 mM SDLG, 0.2 mM DTNB, and 150 ml of cell lysate in 100 mM
Tris–HCL buffer, pH 7.4. GSH formation was monitored by increa-
ses in DTNB absorbance at 412 nm. GSH was quantified using the
extinction coefficient of 13.6 mM�1 cm�1, and glyoxalase II
activity was expressed as nmole of GSH produced per min/mg
protein.

Induction of diabetes

Four-week old male Wistar rats (140–170 g, Harlan Labora-
tories) were injected with streptozytocin (STZ, 30 mg/kg in sodium
citrate buffer, pH 4.5) for 3 consecutive days. Control rats received
injections of sodium citrate buffer alone. Animals were housed
individually and received standard water and chow diet. At 6 days
post-STZ injection and on the day of sacrifice at 8 weeks, blood
was obtained via tail vein punctures and glucose was measured
using a One Touch Ultra Glucometer (Milpitas, CA). STZ-injected
rats with plasma glucose 4300 mg/dl were considered diabetic
(non-diabetic levels¼120–150 mg/dl). Animals were sacrificed by
decapitation and brains were quickly removed and processed for
immunohistochemistry or Western blot analyses. All animal pro-
tocols were approved by the Institutional Animal Care and Use
Committee, and were conducted in accordance with the Principles
for Use of Animals and Guide to the Care and Use of Experimental
Animals.

Immunohistochemistry of occludin and glycated protein expression in
rat brain

Rat brains were placed in a brain slicer matrix (Zivic Instru-
ments, Pittsburgh, PA) ventral side up. Two mm coronal sections
located 8 mm from the anterior portion of the cerebrum were cut
using PBS pre-moistened razor blades. The sections were fixed
with ice-cold 4% para-formaldehyde in PBS (4 °C) for at least 24 h,
followed by tissue dehydration (graded 70-to-100% ethanol and
xylene) and paraffin infusion. Three mm slices were cut and
mounted on glass slides, two to three slices per slide. Brain slices
were oven-baked at 75 °C, de-paraffinized in xylene and rehy-
drated by passage through graded series of ethanol solutions (100-
to-80%), and distilled water. Tissue slices were then incubated
with 1.5 mg/ml serine protease at 37 °C followed by overnight
incubation at 4 °C with 5 mg/ml anti-occludin or anti-MG poly-
clonal antibodies. The slides were washed 3 times with 1� Pro-
Histo washing solution, followed by incubations in 0.3% H2O2 in
50% methanol, and HRP conjugated goat-anti-rabbit or goat-anti-
mouse secondary antibody (1:200) at RT. Diaminobenzidine (DAB)
solution was applied per manufacturers' recommendation. Brain
tissues were counterstained in hematoxylin, mounted and dried.
Immunohistochemical staining was visualized using a Nikon Dia-
phot microscope equipped with a Nikon D90 camera. An average
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of 3–5 different images per brain slice was photographed and 5–6
microvessels were counted per image to determine the percentage
of vessels that were positive for occludin or MG. Coronal sections
from 5 control and 5 diabetic rat brains were analyzed.

Protein assay
Protein concentrations were determined using the Bio-Rad

Protein Assay Kit (BioRad Laboratories, Irvine, CA) according to the
manufacturer's protocol.

Statistical analysis
All data were analyzed by one way ANOVA using Bonferroni's

post-test for comparison of sample groups. po0.05 was con-
sidered statistically significant.
Results

Hyperglycemia and acute glycemic fluctuation exacerbates MG-
induced IHEC dysfunction

At normal (5 mM) glucose, MG at a pharmacologic dose (1 mM)
time-dependently decreased TEER in IHEC monolayers (Fig. 1A),
consistent with endothelial dysfunction, and in agreement with
our previous study [1]. TEER was next measured in (a) 25 mM
glucose-adapted IHECs incubated in media containing 25 mM
glucose (hyperglycemia) or (b) 25 mM glucose-adapted IHECs
transferred to and incubated in media containing 5 mM glucose
(acute glycemic fluctuation) over 6 h. At normal glucose, complete
TEER loss occurred at 6 h. Between 1 and 4 h, MG-induced TEER
loss was significantly potentiated by high glucose states, suggest-
ing that hyperglycemia did, in fact, exacerbate barrier disruption
caused by a pharmacologic MG dose (Fig. 1A). Moreover, TEER at
300 mM MG, a dose that did not elicit barrier dysfunction at nor-
mal glucose, was significantly decreased by hyperglycemia and
acute glycemic fluctuation (Fig. 1B). These results indicate that
IHEC barrier function is sensitive to the media glucose status and
Fig. 1. MG induces barrier dysfunction in human brain microvascular endothelial cells
endothelial electrical resistance (TEER) in IHECs adapted to 5 mM glucose (normoglycem
transfer to 5 mM glucose (acute glycemic fluctuation, 25-5 mM). MG concentration wa
voltohmeter. Only inserts with a minimum baseline monolayer resistance of 200 Ω/0.33 c
account for batch-to-batch variation. npo0.05 vs control, n¼3. (B) Hyperglycemia and a
in IHEC monolayers grown in different glucose conditions: 5, 25 mM or 25-5 mM and
that the IHEC cell is a relevant physiological/pathophysiological in
vitro model for the cerebral microvasculature.

MG causes occludin glycation

We previously demonstrated that MG-induced IHEC barrier
dysfunction was correlated with the glycation of occludin, a tight
junctional protein [1]. In the current study, we determined if MG–
occludin formation was influenced by glucose status. Fig. 2A shows
that the expression of occludin protein per se was unchanged in
IHECs grown for 7 or 12 days in 25 mM glucose (HG) or when high
glucose-adapted cells were acutely transferred to 5 mM glucose
media (GF). However, the basal contents of glycated occludin (i.e.,
MG–occludin adducts) were significantly elevated in high glucose-
adapted IHECs and those subjected to acute glycemic fluctuation
(Fig. 2B). MG–occludin levels in these cells were further increased
following 8 h treatment with 300 mM MG (Fig. 2B). These results
indicate that occludin is a target for MG glycation under conditions
of elevated glucose and acute glucose fluctuation, which could
explain the exaggerated TEER loss in response to MG (see Fig. 1).

MG-induced IHEC barrier disruption during hyperglycemia and acute
glycemic fluctuation is prevented by N-acetylcysteine and exacer-
bated by buthionine sulfoximine

Our previous study has shown that GSH attenuated MG-
induced IHEC barrier dysfunction [1]. Herein, we investigated if
GSH protects against IHEC disruption caused by MG under con-
ditions of high glucose and acute glucose decrease. Pretreatment
with NAC completely prevented TEER loss induced by 300 or
600 mM MG in IHECs incubated in 25 mM glucose (Fig. 3A) or 25-
5 mM glucose (Fig. 3B). MG at 600 mM caused a decrease in cellular
GSH at 2 h (Fig. 3C), a time point that preceded significant loss of
barrier function at 7 h (see Fig. 3A and B). At 2 h, NAC pretreat-
ment elevated cellular GSH concentrations (Fig. 3C) that correlated
with TEER preservation (Fig. 3A and B) regardless of glucose status.

To confirm the role of GSH, 25 mM glucose-adapted IHECs were
pretreated with BSO, a specific inhibitor of GSH synthesis. Fig. 4
(IHECs) under various glucose conditions. (A) Time course of MG-induced trans-
ia) or to 25 mM glucose (hyperglycemia, 12 days) or to 25 mM glucose followed by
s 1 mM. TEER in confluent IHEC monolayers on inserts was recorded for 6 h with a
m2 were used in the experiments. TEER was expressed as percent of the baseline to
cute glycemic fluctuation exacerbates MG-induced TEER loss. TEER was determined
treated with 0–300 mM MG. npo0.05 vs 5 mM glucose, n¼3.



Fig. 2. Hyperglycemia and acute glycemic fluctuation enhances MG occludin glycation. IHECs were grown under normal glucose (5 mM) or high glucose (25 mM glucose for
7 days or 12 days) or in cells subjected to acute glycemic fluctuation (25 mM glucose for 12 days, then change from 25-5 mM glucose for 6 h). Total occludin and MG–
occludin glycated adducts were determined in whole cell lysates by Western blot analyses. Representative blots were shown. The right panels show the quantification of
occludin or MG–occludin band intensities relative to β-actin (mean7SEM) for 6 separate immunoblots. (A) Occludin content and (B) contents of MG–occludin adducts
without or after 300 mM MG treatment for 8 h. The bars with similar alphabets are significantly different from one another, po0.05.
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shows that TEER loss induced by 300 mM MG was exacerbated by
BSO at high glucose status (Fig. 4)A and B that corresponded to
significantly decreased cellular GSH beyond the decrease induced
by MG alone (Fig. 4C). Between 7 and 10 h, BSO treatment elicited
Fig. 3. N-acetylcysteine (NAC), a GSH precursor, attenuates MG-induced IHEC dysfunctio
induced by 300 or 600 mM MG in IHECs adapted to high glucose (12 days 25 mM, A) o
measurements were performed in the absence or presence of 2 mM NAC as described in
GSH levels in high glucose-adapted IHECs (25 mM) or in cells subjected to acute glycemi
IHEC barrier dysfunction at 50 mM MG, a-near physiological level
found in diabetic rat plasma (see Fig. 6). Taken together, these
results indicate that patho-physiological MG levels can mediate
n under conditions of hyperglycemia and acute glycemic fluctuation. TEER loss was
r high glucose and then acutely transferred to 5 mM glucose (25-5 mM, B). TEER
Section Methods. npo0.05 vs MG without NAC, n¼3. (C) Effect of NAC on cellular

c fluctuation (25-5 mM). npo0.05 vs untreated cells; #po0.05 vs MG alone, n¼3.



Fig. 4. MG-induced IHEC dysfunction is exacerbated by buthionine sulfoximine (BSO), a GSH synthesis inhibitor. TEER loss was induced by 50 or 300 mM MG in IHECs
adapted to high glucose (12 days 25 mM, A) or high glucose and then acutely transferred to 5 mM glucose (25-5 mM, B). TEER measurements were performed in the
absence or presence of 300 mM BSO as described in Section Methods. npo0.05 vs MG without BSO, n¼3. (C) Effect of BSO on cellular GSH levels in high glucose adapted
IHECs (25 mM) or in cells subjected to acute glycemic fluctuation (25-5 mM). npo0.05 vs untreated or MG-treated cells, n¼3.

Fig. 5. Glyoxalase I and II activities and cellular oxo-aldehyde accumulation in IHECs adapted to normal (5 mM) or high (25 mM) glucose or subjected to acute glycemic
fluctuation (25-5 mM glucose). (A) GSH-dependent glyoxalase pathway of MG metabolism: GSH serves as an essential co-factor in glyoxalase I-catalyzed conversion of MG
to S-D-lactoylglutathione (SDLG). SDLG is subsequently hydrolyzed to D-lactate by glyoxalase II and GSH is regenerated. (B) The accumulation of D-lactate under conditions of
5, 25 mM or 25-5 mM glucose. D-lactate was determined spectrophotometrically. npo0.05 vs normal (5 mM) glucose (Glc). (C) The cellular accumulation of α-oxoaldehydes
in IHECs cultured in 5 mM normal glucose treated with 300 mM MG without or with BSO or in IHECs adapted to 12 days of 25 mM glucose treated with the same
concentration of MG in the absence or presence of NAC. α-Oxoaldehydes levels were determined by HPLC as described in Section Methods. npo0.05 vs normal (5 mM)
glucose; #po0.05 vs MG treatment in 5 mM glucose; 0po0.05 vs MG treatment in 25 mM glucose. Glyoxalase I (D) and glyoxalase II (E) activities in IHECs adapted to normal
or high glucose or subjected to acute glycemic fluctuation. Glyoxalase I and II activities were determined as the formation of SDLG or D-lactate, respectively. npo0.05 vs
normal (5 mM) glucose. In all studies (B–E), results are mean7SEM for 4 separate IHEC preparations.

W. Li et al. / Redox Biology 5 (2015) 80–90 85
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IHEC barrier dysfunction, a process that is potentiated by low GSH
and high glucose, conditions that mimicked the diabetic state.

Glyoxalase II function is compromised by hyperglycemia and acute
glycemic fluctuation

Since GSH is an essential co-factor in the glyoxalase pathway in
MG metabolism (Fig. 5A) [10,11], we investigated the effect of high
glucose and acute glucose change on glyoxalase enzyme activities.
Cells adapted to high glucose or subjected to acute glucose chan-
ges exhibited decreased D-lactate production (Fig. 5B), consistent
with decreased MG metabolism. IHECs treated with MG at 5 mM
glucose resulted in significant cellular accumulation of free MG
that was further increased by inhibition of GSH synthesis with BSO
or in cells grown under conditions of high (25 mM) glucose
(Fig. 5C). Cellular levels of MG in 25 mM glucose-adapted IHECs
treated with MG and NAC were significantly attenuated (Fig. 5C).
These results with BSO and NAC underscore a role of GSH in MG
elimination. Interestingly, glyoxalase I activity was unaffected by
altered glucose status (Fig. 5D). In contrast, glyoxalase II activity
was significantly lower in 25 mM glucose or 25-5 mM glucose
cells (Fig. 5E), suggesting that GSH regeneration is compromised
by hyperglycemia (Fig. 5A).

Oxo-aldehydes are elevated in diabetic rat plasma, and diabetic brain
microvessels are associated with decreased occludin content and
increased protein glycation

Using the STZ-induced diabetic rat model, we determined if
enhanced protein glycation is a common occurrence in the dia-
betic brain microvasculature. Fig. 6 shows that total levels of oxo-
aldehydes (MG and glyoxal) were elevated in diabetic rat plasma
that paralleled the increased in blood glucose, consistent with
elevated carbonyl stress during diabetes. These results are in
agreement with findings of hyperglycemia and elevated reactive
carbonyl species in the plasma of diabetic patients [12].

Immunohistochemistry of STZ-induced diabetic rat brain
revealed that diabetic brain microvessels displayed 20% less
occludin-positive but two-fold higher MG-positive microvessels as
compared to non-diabetic brain microvessels (Fig. 7A). Corre-
spondingly, Western blot analyses of brain microvessels confirmed
that the expression of occludin was attenuated (40%) while the
ratio of glycated-occludin to total occludin was significantly ele-
vated (Fig. 7B). Interestingly, the expression of occludin and
Fig. 6. Plasma levels of glucose and reactive carbonyl species (α-oxoaldehydes) in
control and streptozotocin (STZ)-induced diabetic rat are elevated. Plasma was
from 4-week STZ diabetic rats. Glucose was measured using a glucometer, and
oxoaldehydes were quantified by HPLC. Left¼glucose content; right¼oxoaldehydes
content. npo0.05, diabetic vs control (mean7SEM, n¼6). RCS¼reactive carbonyl
species.
glycated protein adducts were not different in macrovessels
between normal and diabetic brain (Fig. 8).
Discussion

The current study provides novel evidence that high glucose
and acute glucose change potentiate MG-induced brain micro-
vascular endothelial cell barrier dysfunction, a process that was
correlated with elevated occludin-MG glycation, decreased
glyoxalase II activity, and reduced GSH-dependent cellular MG
elimination. Moreover, we demonstrated for the first time that
cerebral microvessels in diabetic brain in vivo were highly glycated
and exhibited lower expression of the occludin protein than con-
trol brain. The significance of low occludin expression and high
MG–occludin adduct formation in diabetic brain microvascular
dysfunction [18] remains to be determined.

Our results implicate a role for hyperglycemia associated car-
bonyl stress in the disruption of the cerebral microvasculature.
Previously we provided evidence that the brain parenchyma was
similarly vulnerable to MG-induced carbonyl stress. We found that
MG treatment induced apoptosis in the neuronal cell line, PC12,
which was preceded by impaired cellular GSH redox balance,
attenuated glucose 6-phosphate dehydrogenase function, and
enhanced activator protease factor-1 expression [19]. Significantly,
MG-induced PC-12 apoptosis was exacerbated under high glucose
conditions [19], consistent with elevated carbonyl stress and
enhanced neuronal death. Other investigators have shown that
even a physiological level of 5 mM MG combined with high glucose
can induce apoptosis and necrosis in human mononuclear cells
and human umbilical vein endothelial cells via increases in ROS
and alterations in intracellular ATP levels [20,21]. However, we
found no evidence of ROS involvement in MG-induced endothelial
barrier dysfunction [1], suggesting that carbonyl stress, rather than
oxidative stress was the major contributor to the loss of barrier
function.

The high resistance of the endothelium of the BBB is deter-
mined by the tight junctional complex which restricts paracellular
permeability [5,22]. The current results show that the transen-
dothelial electrical resistance of brain microvascular endothelial
cell monolayer in culture was disrupted by MG that was correlated
with enhanced glycation of the tight junction protein, occludin.
Moreover, occludin-glycation was exaggerated in IHECs adapted to
high glucose mimicking diabetic states that elevate carbonyl
stress. Interestingly, barrier damage persisted during acute glucose
normalization. One likely explanation was that at 6-8 h, a sig-
nificant content of glycated occludin remained (Fig. 2B). The fact
that protein carbonylation is an irreversible process and that
occludin half-life was around 11 h [23] is consistent with this
interpretation. Unfortunately, we encountered problems with
maintaining cell viability and stable TEER post 10 h which pre-
cluded the examination of the kinetics of barrier function at longer
time periods after hyperglycemia. These results suggest that for-
mation of stable protein adducts of MG and occludin is a dele-
terious process for extended cerebrovascular damage in diabetes.

Notably, MG-induced barrier disruption under these elevated
glycemic states was not associated with changes in occludin pro-
tein expression, suggesting that, a post-translational process, such
as enhanced occludin carbonylation, is likely the major mechanism
of hyperglycemia potentiation of endothelial dysfunction. Unlike
IHECs, diabetic rat brain exhibited significant decreases in the
contents of occludin protein in addition to elevated levels of gly-
cated occludin adducts. In previous studies, we [1] and others
[13,24–26] have similarly reported that cerebral occludin content
was significantly reduced in STZ-induced diabetic rat. Therefore,
the difference in occludin expression in cultured IHECs in high



Fig. 7. (A) Immunohistochemical staining of occludin and glycated proteins (MG-adducts) in cerebral microvessels in brains from vehicle-treated and diabetic mice at
8 weeks post STZ administration. Arrowheads indicate occludin-positive or MG-positive staining (in dark brown) in representative cerebral microvessels (�50 mm diameter).
Cell nuclei are stained blue with DAPI. The right panel shows the number of occludin or MG-positive microvessels, expressed as a percent of total vessels counted (�50–60).
npo0.05 vs control brain. (B) Western blot analysis of occludin and MG–occludin adducts in tissue extracts prepared from brain microvessels. Western blot of two
representative brain microvessel preparations of control and diabetic brain are shown. The right panels show the quantification of occludin or MG–occludin band intensities
relative to β-actin in brain microvessels (mean7SEM) for 6 separate immunoblots. npo0.05 vs control brain.
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glucose and diabetic brain suggests that other brain cells and/or
factors besides hyperglycemia participate in the transcriptional
regulation of occludin in vivo. It is noteworthy that the attenuated
occludin pool in the diabetic brain appears to be localized to cer-
ebral microvessels, a feature that could contribute to a dysfunc-
tional brain microvasculature during diabetes. Surprisingly, we
saw little evidence of glycation of other components of tight
junctions, such as ZO-1 or claudin-5 (data not shown) which could
be due to inaccessibility of MG to these proteins in the tight
junctional complex. Our recent data have demonstrated that
pharmacologic levels of MG (1 mM) can markedly induce ZO-1
disorganization in IHEC cells independently of protein carbonyla-
tion [1].

Disrupted expressions of ZO-1 and occludin have been descri-
bed in the brains of various neurological disorders, such as mul-
tiple sclerosis [27], HIV-associated dementia [28], and in animal
models of Alzheimer's disease [29], Parkinson’s disease [30], and
temporal lobe epilepsy [31]. In stroke, hypoxia was shown to
relocate claudin-1, ZO-1, and ZO-2 from the plasma membrane to
the cytoplasm, while reperfusion elicited MMP-mediated disrup-
tion of occludin and claudin-5 [32–35]. It remains to be deter-
mined as to whether disrupted components of tight junctions in
these pathologies are associated with post-translational oxidative
modifications, such as we observed for occludin in the diabetic rat
brain. Interesting recent studies revealed that post-translational
mechanisms may play a significant role in the regulation of vas-
cular permeability. For instance, occludin phosphorylation and
ubiquitination were shown to control tight junction trafficking and
vascular endothelial growth factor-induced vascular permeability
[36]. Based on the current data, we contend that occludin carbo-
nylation could be a significant contributor to increased perme-
ability of cerebral microvessels in the diabetic brain in vivo. We
recently established a mouse model of diabetes and demonstrated
that basal BBB permeability, as determined by plasma-to-tissue
leakage of Evans Blue, in the diabetic mouse brain at 4 weeks post
STZ was 35% higher than WT brains, indicating that the BBB was
breached in early diabetes (unpublished).



Fig. 8. (A) Immunohistochemical staining of occludin and glycated proteins (MG-adducts) in cerebral macrovessels in brains from vehicle-treated and diabetic mice at
8 weeks post STZ administration. Occludin-positive or MG-positive staining (in dark brown) of representative cerebral macrovessels (4100 mm diameter) are shown. Cell
nuclei are stained blue with DAPI. The right panel shows the number of occludin or MG-positive macrovessels, expressed as a percent of total vessels counted (�20-30).
(B) Western blot analysis of occludin and MG–occludin adducts in tissue extracts prepared from brain macrovessels. Western blot of two representative brain macrovessel
preparations of control and diabetic brain are shown. The right panels show the quantification of occludin or MG–occludin band intensities relative to GAPDH in brain
macrovessels (mean7SEM) for 5 separate immunoblots. There were no statistical differences in contents of occludin or MG-adducts between control and diabetic mice.
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We have demonstrated that GSH plays an important role in MG
elimination and protected against endothelial barrier integrity in
brain microvascular endothelial cells grown in normal glucose [1].
In this current study, exogenous NAC afforded similar protection
against MG-induced IHEC barrier dysfunction under hypergly-
cemic conditions. The mechanism of action of NAC in elevated
glycemic states is not completely understood. The cysteine residue
in NAC could react with MG to yield thiol–aldehyde (thiohemia-
cetal) adducts [37], but precisely what percent of this no enzy-
matic MG–thiol adduction was formed and whether NAC was a
good nucleophile for MG-adduction are unknown. Our previous
finding that BSO ameliorated the effect of NAC in blocking MG-
induced TEER loss in IHECs [1] strongly suggests that NAC most
likely served as a precursor to maintain endothelial GSH levels to
support the glyoxalase pathway in MG metabolism (Fig. 5A).
Unexpectedly, we found that glyoxalase II function was compro-
mised by hyperglycemia and glycemic fluctuation. Whether the
decreased enzyme activity was due to high glucose-induced
decrease in protein expression is unclear; ongoing studies in our
laboratory are investigating the influence of hyperglycemia on the
transcriptional expression of glyoxalase II. Regardless of mechan-
ism, an attenuated Glo II function means that, besides decreased
MG elimination, GSH regeneration from SDLG conversion to D-
lactate could also be compromised (Fig. 5A) Consequently, an
increase in free MG enhances the potential for protein
carbonylation.

It is interesting that we found no change in glyoxalase I activity
in high glucose-adapted IHEC cells (Fig. 5D). Overexpression of
glyoxalase I was previously shown to reduce hyperglycemia-
induced levels of carbonyl stress, AGEs, and oxidative stress in
diabetic rats [15]. However, literature evidence is varied on the
changes in glyoxalase I and II in diabetes. Glyoxalase I was shown
to be increased in insulin-dependent and non-insulin-indepen-
dent diabetic patients [38], but glyoxalase II activity was increased
only in non-insulin-dependent diabetic patients. Therefore, dia-
betic patients exhibit elevations in both S-D-lactoylglutathione and
D-lactate levels. Other studies found that glyoxalase I and II were
decreased in the liver but increased in skeletal muscle in STZ
diabetic rat. Moreover, glyoxalase I activity in erythrocytes was
significantly higher in diabetic patients with microvascular com-
plications (such as nephropathy, retinopathy and neuropathy) than
non-diabetic patients [39]. These findings suggest that the
expressions or functions of the glyoxalase enzymes are strongly
tissue specific and disease-associated.

Plasma α-oxoaldehydes levels were known to be elevated in
diabetics [38], which correlates with high hemoglobin A1C



Fig. 9. Schematic illustration of (a) MG-induced barrier dysfunction in human brain microvascular endothelial cell monolayer via occludin glycation, a process that is
exacerbated by hyperglycemia and decreased GSH (upper panel), and (b) elevated MG-glycation of the cerebral microvasculature in diabetes (lower panel).
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contents. Hyperglycemia enhances MG formation, a process that
was shown to be potentiated by diabetic ketoacidosis [40], and
attenuated by high doses of the anti-glycemic drug, metformin
[41]. It is notable that plasma MG levels in diabetic rat (0.75 mmol/
l) are at the higher range of those in diabetic patients, ranging
from �200 nmol/l to 1 mmol/l, thus reflecting species-specific
differences. In the current study, the cellular MG levels in IHECs
were comparable in magnitude to the high values in diabetic rat
plasma. If we assume a cell volume of 5 ml/mg protein, the highest
concentrations achieved in BSO treated cells (in 5 mM glucose)
and cells in adapted to hyperglycemia (25 mM glucose) were
estimated to be �54 and 40 mM. In these cells experiments, a
50 mM MG dose can elicit endothelial barrier damage under high
glucose and reduced GSH conditions (Fig. 4), features that char-
acterize the diabetic state.

In summary, this study provides novel insights into a
mechanistic basis for diabetes-induced cerebrovascular damage
(Fig. 9). The data support the conclusion that carbonyl stress,
evidenced by formation of occludin–MG carbonyls, is a likely
mechanism of endothelial barrier dysfunction mediated by MG
under hyperglycemic states. The study further showed that
hyperglycemia compromises GSH-dependent elimination of MG
by the glyoxalase pathway and thereby increase the glycating
potential of MG. Exogenously administered NAC, likely through
GSH production, affords protection against MG-induced endothe-
lial barrier disruption. Taken together, these results will have sig-
nificant implications for hyperglycemia and carbonyl stress-
induced injury to the cerebral microvasculature during diabetes.
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