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Abstract

In this article, we apply the diffuse-interface model [developed by Shah and Yuan 

(2011) [21]] for collision and coalescence of two bubbles in a linear shear flow. 

The governing equations consist of a system of coupled nonlinear partial differential 

equations for conservation of mass, momentum and phase transport. In the two-

phase flow, the diffuse-interface model relaxes certain numerical difficulties for 

tracking the moving interface. An artificial compressibility based numerical scheme 

is implemented to study the effects of surface tension on bubbles coalescence and 

separation. We found the critical value of the surface tension coefficient and observed 

that lowering the surface tension coefficient from the critical value prevent bubbles 

to coalesce.

Keywords: Computational mathematics

1. Introduction

In recent years, prediction and understanding of the conditions for coalescence and 

non-coalescence of bubbles in a shear flow are found to be very important in many 
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industrial processes like lab-on-a-chip [1], oil recovery [2], ink-jet printing [3] and 

surfactant emulsion [4] etc. The presence of surfactant substances may greatly affect 

the physical properties of the fluid mixture. In fact, these effects are crucial in many 

real-world applications. Surfactant molecules are used to reduce surface tension by 

interacting with the bonding forces between fluid molecules. For example, detergents 

make water wetter, and emulsifiers stabilize emulsions by preventing small bubbles 

to coalesce [5]. Since as in coalescence, the fluid between two bubbles drains as 

they approach each other and if this drainage proceeds sufficiently long, the film 

between the bubbles turns out to be adequately thin, a bridge is formed because 

inter-molecular forces become dominant. This bridge grows due to surface tension 

and bubbles coalescence.

Two-phase flow in shear driven channels has gained much attention because of its 

wide applicability in modern science and technology applications. In two-phase flow, 

each phase has its own physical properties (density, viscosity and concentration 

etc.) which are uniform within the occupied domain. As fluids are mixed, physical 

properties may change in a discontinuous way across the interface. The interfacial 

tension dominates the behavior of the two-phase flows phenomena at a very small 

scale. Numerical simulations are used to understand the complex phenomenon of 

two-phase flow. There are many different numerical methods to incorporate the 

surface tension in two-phase flows. For example, front-tracking methods [6, 7] uses 

the Lagrangian particles to track the interfaces. Since merging and breaking of 

bubbles involves interface breakup, the front tracking methods require excessive 

processing time. There, these methods are not that suitable for the simulation of such 

type of problems. On the other hand, front-capturing method capture the interface 

on regular fixed stationary grids. The most popular examples of front-capturing 

methods are the volume-of-fluid (VOF) [8, 9], the level-set (LS) [10, 11, 12, 13, 14]

and the phase-field methods [15, 16, 17, 18, 19, 20, 21, 22]. The diffuse interface 

model replaces the singularity at the interface by a smooth function with some 

transition region. In this thin transition region, the two components are mixed and 

store a certain amount of energy. The free energy is defined by the phase function 𝜙, 

which track the evolution of the interface by solving a time-dependent convection–

diffusion equation. Due to the enormous simplicity in modeling and ease in coding, 

the diffuse interface model (also known as the phase-field model) has become an 

increasingly popular choice for solving multi-phase flow problems. The advantages 

of the phase-field models over others are; (i) relatively easy to construct using simple 

symmetry arguments and conservation laws; (ii) systematic development of the 

continuum limit which makes mesoscopic and macroscopic time and length scales 

accessible; (iii) natural emergence of interfaces and non-equilibrium conditions; 

(iv) relative ease of numerical implementation and; (v) possibility for analytical work 

through projection techniques [23].
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Figure 1. Geometry of the two bubbles in a linear shear flow.

In incompressible two-phase flows, the physical variables required to describe the 

motion are velocity, pressure, density, viscosity, surface tension, and buoyancy force. 

The surface tension is an important quantity of fluids and its variation has interesting 

effects on the flow-field. Generally, to obtain the velocity and pressure of the fluid, 

Navier–Stokes equations are solved numerically by using different discretization 

schemes such as the finite difference, the finite element or the finite volume schemes. 

The dynamics of phase transport is governed either by Allen–Cahn equation [24]

or Cahn–Hilliard equation [25]. The difference between both is that the 2𝑛𝑑-order 

Allen–Cahn equation is not mass conserving while the 4𝑡ℎ-order Cahn–Hilliard 

equation naturally satisfy the mass conservation. We used the modified Allen–Cahn 

equation which is not only the mass preserving but also gives the ease in coupling 

with artificial compressibility formulation of Navier–Stokes equations. Based on the 

phase-field model proposed by Liu and Shen [26], Shah and Yuan [21] has proposed 

a numerical method for the two-phase incompressible coupled system which is based 

on the artificial compressibility method in two- and three-dimensions. In this paper, 

we study the collision, coalescing and non-coalescing of two bubbles in a linear 

shear flow. The coalescence processes usually occur in three stages. Initially, the 

bubbles collide then the drainage of the liquid film occurs and finally film rapture, 

leading to a bigger bubble. Similar studies that use the phase-field model to capture 

the interface dynamics have been conducted. Badalassi et al. [27] solved the problem 

of one bubble in a shear flow by using high-resolution schemes for the convective 

Cahn–Hilliard equation whereas Yue et al. [28] tested their semi-implicit Fourier 

spectral method for one drop deformation in a shear flows. A schematic diagram 

of the coalescence problem is shown in Figure 1. Two initially circular bubbles of 

radius 1.0 are initialized with a shear flow rate [29] 𝑢 = 1
𝜋
(𝑦 − 𝜋). The effects of 

density or viscosity differences between the two phases are studied. Therefore both 

phases have the same density 𝜌 and viscosity 𝜈 constants.
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Figure 2. The double-well potentials for 𝜂 = 1 (a) 𝐹 (𝜙) = 1
4 (𝜙

2 − 1)2 (dash line) and 𝐹 (𝜙) = 𝜙6 −𝜙4 −
𝜙2 + 1 (solid line).

This paper is organized as follows. The governing equation and solution methods are 

given in Section 2. In Section 3, numerical simulations are performed and results are 

illustrated graphically. Section 4 concludes this paper.

2. Methodology

2.1. Phase-field equations

Let Ω be the domain occupied by the system, then the total free energy is defined as;

𝐸(𝜙,∇𝜙) = ∫
Ω

(1
2
∣ ∇𝜙 ∣2 +𝐹 (𝜙))𝑑Ω. (1)

The gradient energy term is zero inside the phases but is nonzero across the interface. 

In Eq. (1), 𝐹 (𝜙) is the double-well potential which has with two real minima at 𝜙 =
±1 i.e.,

𝐹 (𝜙) = 1
4𝜂2

(𝜙2 − 1)2, (2)

where 𝜂 is the interfacial width. Another option for the double-well potential [30] is

𝐹 (𝜙) = 𝜙6 − 𝜙4 − 𝜙2 + 1. (3)

However due to the higher-order polynomial in Eq. (3), the nonlinearity (𝐹 ′(𝜙))
will increase making more time step restrictions. Therefore, we have used the 

comparatively more simple potential 𝐹 (𝜙) given in Eq. (2) and is shown in Figure 2.

The functional derivative of free energy with respect to order parameter is the 

chemical potential 𝜇 of the mixture, defined as,
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𝜇 = 𝛿𝐸

𝛿𝜙
= 𝐹 ′(𝜙) − Δ𝜙.

A minimum in 𝐸 is given by:

𝛿𝐸

𝛿𝜙
= 0 ⇒ 𝐹 ′(𝜙) − Δ𝜙 = 0,

which is a 2𝑛𝑑-order nonlinear differential equation with a solution of the form

𝜙 (𝐱) = tanh

(
𝐱√
2𝜂

)
,

satisfying the boundary condition 𝜙 (±1) = ±1. The momentum equation can be 

described:

𝜌0
[
𝐮𝑡 + (𝐮 ⋅ ∇)𝐮

]
= −∇�̃� + ∇ ⋅ 𝜎,

Stress tensor (viscous + elastic) 𝜎 is given by

𝜎 = 𝜇(𝜙)
[
∇u + (∇u)𝑇

]
− 𝜆∇𝜙⊗ ∇𝜙,

and the viscosity coefficient is, 𝜇(𝜙) = 1 + 𝜙

2
𝜇1 + 1 − 𝜙

2
𝜇2 and surface tension 

coefficient is 𝜆.

2.2. Conservative Allen–Cahn equation

In phase-field method, determination of phase-field variables or order parameters is 

the most important step. Usually order parameters are categorized into conserved 

and non-conserved. Although there is no systematic way to choose these order 

parameters, but it is usually enough for them to describe the morphology and total 

free energy of complex microstructure, qualitatively. In order to simulate the spatial 

and temporal evolution, the non-conserved parameters governed by the Allen–Cahn 

equation is defined as

𝜙𝑡 + (u.∇)𝜙 = −𝛾 𝛿𝐸
𝛿𝜙

= 𝛾(Δ𝜙 − 𝑓 (𝜙)) (4)

Here, 𝛾 is the elastic relaxation time or the mobility of order parameter and 

𝑓 (𝜙) = 𝐹 ′(𝜙). Rubinstein and Sternberg [31] introduced a time dependent Lagrange 

multiplier 𝜉(𝑡) to ensure the conservation of mass of Eq. (4) as

𝜙𝑡 + (u.∇)𝜙 = 𝛾(Δ𝜙 − 𝑓 (𝜙) + 𝜉(𝑡)).

We used the formula for 𝜉(𝑡) derived by Di et al. [24] to keep the maximal principle 

for 𝜙.
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2.3. Governing equations

The governing equation consists of unsteady, incompressible (𝜌 = 1 for simplicity 

and same viscosity), coupled and nonlinear set of the following equations:

∇.𝐮 = 0, (5)

𝐮𝑡 + (𝐮.∇)𝐮 + ∇𝑝 − ∇.[𝜇(∇𝐮 + (∇𝐮)𝑇 )] = −𝜆Δ𝜙∇𝜙, (6)

𝜙𝑡 + (𝐮.∇)𝜙 − 𝛾Δ𝜙 = 𝛾(𝜉(𝑡) − 𝑓 (𝜙)). (7)

The following initial conditions

𝐮|𝑡=0 = 𝐮0, 𝜙|𝑡=0 = 𝜙0, (8)

and appropriate boundary conditions

𝐮|𝜕Ω = 0, 𝜕𝜙

𝜕𝑛
∣𝜕Ω= 0 (9)

are used. Here, 𝐮 = (𝑢, 𝑣) is velocity vector, and 𝑝 represent the pressure.

2.4. Artificial compressibility method

Incompressible flows are governed by continuity and momentum equations. These 

equations are difficult to solve analytically due to nonlinear convective terms in 

momentum equations and absence of pressure term in the continuity equation. 

Chorin [32] has proposed artificial compressibility method by adding time derivative 

of pressure to the continuity equation. By combining Eq. (5), Eq. (6) and Eq. (7) with 

artificial compressibility method as follows;

𝜕𝑝

𝜕𝜏
+ 𝛽( 𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
) = 0, (10)

𝜕𝑢

𝜕𝜏
+ 𝜕𝑢

𝜕𝑡
+ 𝜕(𝑢2 + 𝑝)

𝜕𝑥
+ 𝜕𝑢𝑣

𝜕𝑦
− 𝜇( 𝜕

2𝑢

𝜕𝑥2
+ 𝜕2𝑢

𝜕𝑦2
) = −𝜆𝜕𝜙

𝜕𝑥
(𝜕

2𝜙

𝜕𝑥2
+ 𝜕2𝜙

𝜕𝑦2
), (11)

𝜕𝑣

𝜕𝜏
+ 𝜕𝑣

𝜕𝑡
+ 𝜕𝑢𝑣

𝜕𝑥
+ 𝜕(𝑣2 + 𝑝)

𝜕𝑦
− 𝜇( 𝜕

2𝑣

𝜕𝑥2
+ 𝜕2𝑣

𝜕𝑦2
) = −𝜆𝜕𝜙

𝜕𝑦
(𝜕

2𝜙

𝜕𝑥2
+ 𝜕2𝜙

𝜕𝑦2
), (12)

𝜕𝜙

𝜕𝜏
+ 𝜕𝜙

𝜕𝑡
+ 𝜕(𝑢𝜙)

𝜕𝑥
+ 𝜕(𝑣𝜙)

𝜕𝑦
− 𝛾(𝜕

2𝜙

𝜕𝑥2
+ 𝜕2𝜙

𝜕𝑦2
) = 𝛾(1 − 𝜙2)( 𝜙

𝜂2
+ 𝜉 (𝑡)). (13)

The artificial compressibility factor 𝛽 is chosen in such a way that incompressibility 

condition is satisfied when steady state is reached. Writing the above Eqs. (10)–(13)

in conservative form as

𝑄𝜏 + 𝐼𝑚𝑄𝑡 + (𝐸 − 𝐸𝑣)𝑥 + (𝐹 − 𝐹𝑣)𝑦 = 𝑆𝑖𝑛𝑡, (14)

with initial and boundary conditions given in Eq. (8) and Eq. (9). In Eq. (14), 𝑄 is 

the solution vector, 𝛾 is the elastic relaxation time, 𝛽 is the artificial compressibility 

factor, 𝜏 is the pseudo-time and 𝑡 is the physical time. The 𝐼𝑚 is the modified identity 
on.2018.e01024
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matrix comes when we write conservative form of our governing Eqs. (10)–(13). 

The 𝑆𝑖𝑛𝑡 is the source term on the right hand side of the governing equations. The 

discretization techniques and solution algorithm developed by Shah and Yuan [21] is 

used for the purpose of numerical simulation in the next section. The main advantage 

of this formulation and method is that (i) the formulation is in primitive variables (ii) 

it is implicit so time step restriction is relaxed (iii) and its extension to 3D is very 

straight-forward.

3. Results & Discussions

In this section, the numerical simulations are performed for different values of 

surface tension coefficient 𝜆 while keeping other parameters fixed i.e., 𝜇 = 𝛾 =
0.023, 𝜂 = 0.02 and computational domain is a square of [0, 2𝜋] × [0, 2𝜋] which 

discretized with uniform mesh of size 321 × 321. For the sake of simplicity, we 

present results only for 𝜆 = 0.02 (coalescence) and 𝜆 = 0.01 (non-coalescence). The 

physical time step is Δ𝑡 = 0.005, pseudo-time step Δ𝜏 is determined based on a CFL 

number of 5, the maximum number of sub-iteration = 100 and 𝛽 = 200. The initial 

velocity field (𝑢, 𝑣) = ( 1
𝜋
(𝑦 − 𝜋), 0), pressure is extrapolated from the interior, while 

the initial condition for phase function 𝜙 is specified as follows;

𝜙 (𝐱, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

tanh

(
1 − ‖‖𝐱 − 𝐱1‖‖√

2𝜂

) ‖‖𝐱 − 𝐱1‖‖ < 1 +
√
2𝜂

tanh

(
1 − ‖‖𝐱 − 𝐱2‖‖√

2𝜂

) ‖‖𝐱 − 𝐱2‖‖ < 1 +
√
2𝜂

−1 otherwise

so that 𝜙 = 1 inside the two bubbles of radii 1 having center at 𝐱1 = (2.14, 4.14) and 

𝐱2 = (4.14, 2.14) and 𝜙 = −1 in the surrounding fluid.

3.1. Bubbles coalescence

In a shear driven flow, the two bubbles initially come closer, collide and then 

coalescence occurs for surface tension coefficient greater than a critical value [29]. 

In our first experiment for 𝜆 = 0.02, as the simulation begin, the two bubbles start 

moving towards each other with a given velocity till the collision occurs at 𝑡 ≃ 2.75
as shown in Figures 3(a–d), then they start merging to form a larger bubble, the 

fluid between them drains having the deformation shown in Figures 3(e–h). The 

coalescence between the bubbles depends upon the value of the surface tension 

coefficient. Also as the system evolved, the effect of the Lagrange multiplier used 

in the Allen–Cahn equation can be seen clearly so that the newly formed bubble has 

the mass conserving property [21].
on.2018.e01024
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Figure 3. Evolution of two interacting bubbles in a linear shear flow from (a–h) at time 𝑡 =
0.0, 1.0, 2.5, 2.75, 2.85, 4.0, 5.0 10.0 respectively for 𝜆 = 0.02. It can be seen that the two bubbles come 
closer and merge at 𝑡 = 2.75 approximately.

Figure 4. Complex flow (streamline contours) for the two bubbles from (a–h) at time 𝑡 =
0.0, 1.0, 2.5, 2.75, 2.85, 4.0, 5.0 10.0 respectively for 𝜆 = 0.02.

In Figures 4(a–h), the streamline contours are given to show the effect of surface 

tension in a shear flow. Initially, the flow-field is linear in Figure 4(a), as the time 

passes, the flow-field becomes more turbulent in the vicinity of the interaction 

of the two bubbles and becomes stronger and much more complex as shown in 

Figures 4(b–h). The appearance and growth of different convection cells is due to 

the motion of two bubbles towards each other.

3.2. Non-coalescence of bubbles

The next simulation is for 𝜆 = 0.01, where initially the two bubbles came closer to 

each other with a given velocity. However, they do not drain but slide over each other 
on.2018.e01024
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Figure 5. Evolution of two interacting bubbles in a linear shear flow from (a–h) at time 𝑡 =
0.0, 1.0, 2.50, 3.0, 3.25, 3.5, 4.0, 7.5 respectively for 𝜆 = 0.01, having no coalescence.

Figure 6. Complex flow (streamline contours) for two bubbles from (a–h) at time 𝑡 =
0.0, 1.0, 2.50, 3.0, 3.25, 3.5, 4.0, 7.5 respectively for 𝜆 = 0.01.

as shown in Figures 5(a–h). It is observed that there is a critical value 𝜆𝑐𝜖 (0.02, 0.01)
such that for 𝜆 < 𝜆𝑐 , there is no coalescence while 𝜆 > 𝜆𝑐 , the coalescence occurs.

In Figures 6(a–h), the streamline contours are given to show the effect of surface 

tension in a shear flow. Initially from a linear flow-field Figure 6(a) to a more 

turbulent flow-field in the vicinity of the interaction of the two bubbles as shown 

in Figures 6(b–h).

4. Conclusion

We have discussed the application of a the phase-field method to model two-phase 

flows by solving a coupled system of incompressible Navier–Stoke equations and 

phase-field equation numerically. We have shown the effect of surface tension in a 

simple linear shear flow. From the simulation results, it is observed that for 𝜆 = 0.02, 
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the coalescence of bubbles occur and then by lowering i.e., for 𝜆 = 0.01, the bubbles 

show a non-coalesce behavior. Therefore, it is concluded that the critical values for 

coalescence and non-coalescence is between 𝜆 = 0.02 and 𝜆 = 0.01. In our future 

work, we want to add the effect of surfactant [29] in our present model to study the 

interfacial tension of the two-phase flow.
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